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Abstract- A simple method for generating a multiple-inputkingle- 
output crisptype fuzzy model from observed data is presented. The 
crisp-type fuzzy model is composed of triangular fuzzy partitions for 
inputs and singletons for the output. Explicit input-output equation 
of the crisp-type fuzzy model is supplied. For a set of observed 
inpuUoutput data pairs, the structure and the parameters of a suitable 
fuzzy model with required accuracy can be determined by a series of 
algebraic computations. Numerical examples are given to demonstrate 
the effectiveness of the proposed identification method for modeling 
static and dynamic data. 

1. INTRODUCTION 

System Identification is concerned with setting up math- 
ematical models to represent system input-output rela- 
tionships, and with the choice of a specific model for the 
class of models. Though numerical data are abundant 
in most real world problems, the linguistic models are 
the one that people are accustomed to. This is because 
people very often make decisions basing on qualitative 
information. Zadeh’s f uuy  sets theory was thus proposed 
to enable people to describe and formulate the linguistic 
mental models apparent in daily life behaviour [ll}. 

Building model from numerical data by fuzzy tech- 
nology has several advantages over the other competing 
modeling technology such as neural networks: (1) the 
procedures are easy to implement; (2) it is not necessary 
to apply cumbersome optimization calculation; (3) the 
structure of the model can be varied during the construc- 
tion; (4) the resulting model has more physical meanings 
than others. 

Two types of fuzzy models are popular in the litera- 
ture: the pure fuzzy model and the Takagi-Sugeno-Kang 
(TSK) fuzzy model [7], 161. The latter is appealing to 
practitioners since the consequent parts of the IF-THEN 
rules in a TSK fuzzy model are simple linear functions of 
input variables, and thus the model putput value is some 
kind of weighted average of those linear output equa- 
tions [lo]. Some researches [3], [4] have pointed out the 
convenience of the TSK model, and have presented a 
constructing algorithm without using optimizations. 

The crisp-type fuzzy model is the simplest possible form 
of the TSK model. The crisp-type fuzzy model studied 
in this article is composed of triangular fuzzy partitions 
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for inputs and singletons for the output. Such a fuzzy 
model with crisp consequent parts can afford adequate 
approximation properties for a function by using less 
number of model parameters, when compared to the 
classical TSK model. 

In this article, a simple yet effective method will be 
presented for generating a multiple-input/single-output 
crisp-type fuzzy model from observed input/output data. 
Explicit input-output equation of the crisp-type fuzzy 
model will be given. For a set of observed input/output 
data pairs, the structure and the parameters of a suit- 
able crisp-type fuzzy model with required accuracy will be 
determined by a series of algebraic computations. One 
advantage of the proposed method is no time-consuming 
optimization procedure is required. Several numerical ex- 
amples will be supplied to demonstrate the effectiveness 
of the proposed model and the identification method. 

11. THE CRISP-TYPE FUZZY MODEL 
The following equation depicts a typical crisp-type fuzzy 

model with p inputs and single output, 

R, : ~f z1 is xii’); z2 is xii2), 
then y = y(i) (i = I,... ,n) 

... , xp is xP) 
(1) 

where xi and y are the j t h  input variable and the out- 
put variable, respectively; XjiJ ) denotes the z;h linguistic 
term for xi; {X;’),Xj’),--- ,Xj”} is the term set for 
xi with triangular membership functions XjiJ)(xi)’s such 
as shown in Fig. 1; in the figure, zyl)’s  are arbitrarily 
distributed principal values; g( i )  is the crisp output value 
of the ith rule. 

For an input pattern (zl, 2 2 ,  ... ,xp), the degree of 
fulfillment of the ith rule, v,, is the fuzzy intersection 
(t-norm) of the relevant input membership values, i.e., 
xp)(xl), X4i2)(z2), . . . , X$p)(a,). 
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1. Linguistic terms X y ) ' s  and triangular membership functions 

Xji)(zj)'s for variable z j ,  where 3~:)'s are principal values 

2. Construct two linguistic terms, Xj')  and Xy), with 
principal values at xj,,in and xj,maz, respectively, for xj 

with the universe of discourse as the support set. The 
p input variables, each with two linguistic terms, can 
establish 2 P  rules with the following antecedent part, 

~ ( i )  : x1 is x:'), 2 2  is xii2), ... , xp is x?) 
then y = y(i) ij E {1,2} i = I,-.- ,2p Here, T can be any t-norm. Without loss of generality, 

we adopt the algebraic prodluct for T in the following dis- - 
cussion. The corresponding model response is a weighted 
sum of crisp outputs of the 71 rules, {di) I i = 1, * - *  ,n},  

3. Determine the consequence part for each of the 
2' rules by the nearest data point. For exam- 
ple, if (xl,e,x2,1 ,... ,zP,e) in the training data set is 
the nearest point to ( ~ l , ~ i ~ , x 2 , ~ i , , ,  . . . i.e., 

C L  Yidi) = E;' &Ji) E:=, (xj,l - is minimum, the output measure- 
ment yf corresponding to (zlg, x ~ , L , .  . . ,zP,c) is set to be 
the crisp output of the rule. That is, 

E;=1 vi Y =  

where 

Notably, only two input membership values are nonzero 
for each element of the input data, and the membership 
values sum to unity. Thus for any input pattern, there 

Additional linguistic terms and inference rules should 
be appended on the existing fuzzy model if the latter can 

are 2P non-zero elements in {&, 42,. . . , 4n}. Therefore 
only 2P rules make contribution to the final output for 

not afford required 
It is to 

for data. 
'ew terms and rules on the 

any input pattern. existing model thus the point with maximum modeling 
error can be eliminated. The model outputs at sampling 

111. GENERATING THE CRISP-TYPE FUZZY MODEL 

The unknown parameters in a fuzzy model include 
structural parameters (number of rules or number of 
linguistic terms for each variable) and tuning parame- 
ters (locations of principal %values ~ 9 ) ~ s  and crisp output 
of each rule y(j), i.e., the imput/output membership func- 
tions). A simple yet effective identification method is pre- 
sented in the following to determine both model structure 
and input/output membership functions in an integrated 
procedure. The proposed method comprises three com- 
putational steps: initializing phase, growing phase, and 
refining phase. Details of the three identification steps 
are provided in the following. 

A. Initializing Phase 

A simplest possible crisp-type fuzzy model is deter- 
mined at first where two liinguistic terms with the same 
support over the whole universe of discourse are used 
for each variable. 

The target of this step is to build the initial model with 
two linguistic terms for each input. The initializing step 
will generate 2 P  rules for a p-input-single-output system. 
The computational details include: 
1. Find the universe of discourse for each input variable, 

points can be found from Eq. (3), 

Suppose maximum error of the current model outputs 
occurs at ( Z ~ , ~ , X ~ , ~ ,  . . . , x ~ , ~ ) .  Then one should append 
new linguistic term for xj with principal value zj,-,. The 
crisp outputs of the additional rules can be found by the 
nearest-point method as mentioned in initializing phase. 
Notably the total number of inference rules becomes 
L1 x x Lp, where Lj denotes number of linguistic 
terms for xj. 

C. Refining Phase 
One can enhance the performance of the fuzzy model 

by adjusting the crisp consequent part of the whole rules. 
With a set of new crisp outputs y(*)'s of these rules, the 
model output at the kth sampling point is, 
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One can obtain a new A, the new crisp outputs, which 
gives minimized sum of squared errors between the model 
outputs, Y ,  and the observed data, Y G [PI y2 . . . ymIT, 

A = (@T+)-l+TY (7) 

Notably the matrix of firing levels, @, might be large 
and sparse. It may have some diaculty to calculate the 
pseudo-inverse. The recursive least-squares technique is 
recommended in such case [2], [4], [7]. 

D. Stopping Criteria 
It is a trade-off problem between model complexity 

and accuracy. B o  criteria are suggested for selecting a 
simplest possible model with required accuracy. 
1. Maximum number of input linguistic terms 
A realistic linguistic model should not consist of too many 
linguistic terms. The maximum number of linguistic terms 
of each variable can be predefined. Notably the number 
of inference rules is meanwhile limited. This criterion 
can prevent the fuzzy model from becoming unacceptable 
high dimension. The accuracy of the obtained model is 
not guaranteed, however. 
2. Maximum mean of squared errors 
The model complexity will be increased to proceed pre- 
specified accuracy. The mean of squared errors (MSE) 
is an adequate performance measure of model accuracy. 

m 

IV. NUMERICAL EXAMPLES 
The proposed method gives a simple way to construct 

a fuzzy model without optimizations. Two examples are 
used to illustrate the effectiveness of the identification 
method. 

Consider a nonlinear function with two inputs and single 
output, 

Example 1: Modeling a static function 

0 I 31,22 5 5 (9) y = ell + e"2 

There are 1,000 input/output data randomly distributed 
on the considered domain, such as shown in Fig. 2. 
1. Initial phase 

' The upper and lower bounds for the two inputs, x ~ , ~ i ~ ,  

Sl ,mmt ~ 2 , m i n  and ~ 2 , ~ ~  are found at first. Two linguistic 

Fig. 2. Original output surface for example 1 

+ 0 0 5  1 1 5  2 2 5  3 3 5  4 4 5  5 

Fig. 3. Input membership functions and crisp-type fuzzy rules for the 
initializing phase of example 1 

terms are defined for x1 and x 2 ,  respectively, and the 
crisp outputs for the four initial rules are evaluated, such 
as shown in Fig. 3. 
2. Growing phase 
The maximum discrepancy between the model outputs 
and the observations is found. Additional linguistic terms 
are appended for both variables to eliminate the maxi- 
mum error. The crisp consequent parts of the additional 
rules are determined subsequently such as shown in Fig. 
4. The growing phase is continued until at least one 
stopping criterion is satisfied. Fig. 5 depicts results of 
the second iteration. 
Fig. 6 illustrates the output surfaces of the resulting 
models. Fig. 7 are results of refining the model in the 
sense of least squared errors. 
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(a) 2 x 2 rules, MSE = 0.294 

3 
2 
1 

Fig. 4. Input membership functions and crisp-type fuzzy rules for the 
growing phase of example 1: first iteration 
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(b) 3 x 3 rules, MSE = 0.0124 
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(c) 4 x 4 rules, MSE = 0.00458 

Fig. 6. The model output surfaces for example 1 during the develop- 
ment of the crisp-type fuzzy model 

Fig. 5.  Input membership functions and crisp-type fuzzy rules for the 
growing phase of example 1: second iteration 
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(a) 2 x 2 rules, MSE = 0.0315 

(b) 3 x 3 rules, MSE = 0.00242 
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Fig. 8. Modeling Mackey-Glass time series: (a) original observations 
(-); (b) 34 rules, MSE = 0.0057; (c) 44 rules, MSE = 0.0023 

Example 2: Mackey-Glass chaotic time series 151, [S] 
Mackey-Glass delay differential equation is used as a 
benchmark problem in the neural network and fuzzy 
modeling communities: 

0.2x(t - T )  

1 + z y t  - T) X(t) = - O.lz(t), T 2 17 (10) 

Eq. (10) is integrated with initial conditions z(0) = 
1 . 2 , ~  = 17, and z(t)  = 0 W < 0 [3]. The proposed 
model is a 4-input-single-output system. The inputs are 

The output is 9 = z(t + 6) .  One set of time series with 
1,800 samples is shown in Fig. 8(a). In this modeling 
problem, the sampling data for 1,000 i t 5 1,500 are 
used for identification, and data in 1,500 5 t 5 1,800 are 
applied to test the adequacy of the resulting model. The 
number of linguistic terms is limited within four for each 
input variable. The results of identification and testing 
are illustrated in Fig. 8 (b),(c). 

3 
2 
1 

21  f ~ ( t  - 1 8 ) , ~  E ~ ( t  - 12),23 ~ ( t  - 6),24 E ~ ( t ) .  0 0 

(c) 4 x 4 rules, MSE = 0.00074 

Fig. 7. The refined model output surfaces for example 1 

v. EXTENSON TO TAKAGI-SUGENO-KANG MODEL 

A Takagi-Sugeno-Kang (TSK) fuzzy model has linear 
equations as its consequent parts. For a p-input-single- 
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output system 

R(i) : If 
then 

Here aij% are coefficients to be determined in the conse- 
quent part. The least squares technique [9] must be used 
in each growing phase for identifying a TSK model. For 
the kth point in a set of m training data, the input-output 
relationship of a TSK model is, 

Let 

j = l , 2 , . . .  , p  

Thus, if we consider all1 training data, the result is 
almost the same as Eq. (7): 

Y = @ A  (13) 

The least-squares solution of A is the same as Eq. (7). 

VI. CONCLUSIONS 

A simple algorithm for identifying a crisp-type fuzzy 
model has been proposed in this article. One major 
advantage of using the crisp-type fuzzy model is that the 
input-output relation of the model can be derived explic- 
itly. For a set of observed patterns, a simplest possible 
fuzzy model with required accuracy can be determined 
in three steps: the initializing phase, the growing phase, 
and the refining phase. No time-consuming optimization 
techniques are required in the identification of model 
structure and the estimation of model parameters. The 
proposed method has great potential for engineering ap- 
plications since one can proceed the model identification 
without any searching procedure and thus no numeri- 
cal converging problem. Two numerical examples are 
supplied to demonstrate to applicability of the proposed 
method in building a crisp-type fuzzy model from static 
or dynamic operating data. 
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