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Abstract 

In this work the relay feedback autotuning is extended 
to handle process nonlinearity. Local models from relay 
feedback tests are scheduled using the Takagi-Sugeno 
fuzzy modeling. The characteristics of the fuzzy im- 
plications are analyzed and an  even simpler model is 
explored. The importance of the selection of the sche- 
duled parameters is emphasized. One transfer func- 
tion example and a recycle plant are used to illustrated 
the advantage of the simple model scheduling method. 
More importantly, the improved control performance 
can be achieved using already known process know- 
ledge. 

1 Introduction 

Last decade has seen significant progress in the auto- 
tuning of PID controllers. Most of approaches are the 
variation of the Astrom-Hagglund relay feedback tests 
(1984). First, a continuous cycling of the controlled 
variable is generated from a relay-feedback experiment 
and the important process information, ultimate gain 
(K,) and ultimate frequency (w,), can be extracted 
directly from the experiment. A controller can be de- 
signed according to I<, and w, (e.g., Ziegler-Nichols 
method, Tyreus-Luyben Tuning, 1992; Shen and Yu, 
1994). Applications of relay feedback based autotuners 
are shown throughout process industries. 

Chemical processes are often operated at different 
steady-state. Changes in. the operating condition are 
usually initiated by external factors. These parameters 
can be known a priori, , e.g., changes in the production 
rate or product specifications. The  concept of multiple 
local models (Lainiotis, 1976; Narendra et al., 1995; 
Johansen and Foss, 1997; Banerjee et al., 1997) provi- 
des a new framework for automated chemical process 
control. 

The relay-feedback based autotuning is proven reliable 
at the neighborhood of nominal operating point. Ap- 
plications to complex chemical plants are also reported 
(Luyben et al., 1998; Yu, 1999). However, if the pro- 
cess is operated in a wide range of operating conditions 
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Figure 1: (A) Block diagram for a relay feedback system 
and (B) relay feedback test for a system with 
positive steady-state gain 

the local controllers have to. be detuned considerably 
(as the result of large uncertainty bound) in order to 
meet global robust stability. On the other hand, know- 
ledge on process dynamics accumulated as the plant 
starts operation. Provided with an efficient autotu- 
ning procedure, multiple models can be obtained in a 
straightforward manner. Conventionally, these models 
are utilized via a look-up table type of approach. 

Once multiple models are available, the next step is to 
employ the  local model(s) at corresponding operating 
regime. In this work, fuzzy models of Takagi-Sugeno 
(1985) are used to schedule local models using linear 
membership function. Finally, a model scheduling pro-. 
cedure is proposed and the completeness of the g10- 
bal model varies with the available process knowledge. 
A transfer function example and a plantwide control 
example are used to illustrate the combined automatic 
tuning and model scheduling procedure. 

2 Autotuning 

Consider a relay feedback system where G(s) is the pro- 
cess transfer function, y is the controlled output, yye* 
is the set point, e is the error and U is the manipulated 
input (Figure 1). Figure 1(B) illustrates how the re- 
lay feedback system works. A relay of magnitude ii is 
inserted in the feedback loop. Initially, the input U is 
increased by h. As the output y starts to  increase (af- 
ter a time delay D), the relay switches to the opposite 
position, U = -h. Since the phase lag is -a, a limit 
cycle with a period P, results (Figure 1). The  period 
of the limit cycle is the ultimate period. Therefore, the 
ultimate frequency and ultimate gain are: 

27r 4h 
w, = - and I<, = - 

PIA ' aa 
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where h is the height of the relay and a is the amplitude 
of oscillation. These two values can be used directly to 
find controller settings. 

Based on the integrator plus time delay system, Ty- 
reus and Luyben (1992) proposed a tuning rule which 
also utilizes the information of A-, and P,. Modifica- 
tions are also proposed (Shen and Yu, 1994). For a PI 
controller, the settings are shown in Table 1. 

Table 1 Different versions of the Ziegler-Nichols set- 
tings for PI controller. 

Rule K, TI 
original KJ2.2 1.2 . P, 

.Shen-Yu h- , /3  2 .  P, 
Tyreus-Luyben Ku/3.22 2 . 2 .  P, 

The ultimate gain (k,) ultimate frequency (Lj,) can be 
used directly to back-calculate the local transfer func- 
tion model. As pointed out by several authors (Tyreus 
and Luyben, 1992; Luyben and Luyben, 1997), the high 
frequency characteristic of the integrator plus time de- 
lay model offers an  attractive means in modeling slow 
chemical processes. The, transfer functions have the 
following form: 

KP e- DS 
G(s) = - 

s 

The model parameters can be solved directly from the 
ultimate gain and ultimate frequency. 

2ir pu and D = -  
4 

K -- '- K,P, (3) 

The controller parameters of the modified Ziegler- 
Nichols tuning can be expressed explicitly in terms of 
K p  and D. 

3 Model Schedul ing  

Similar to gain scheduling, the model scheduling 'id de- 
fined as using different models as the operating condi- 
tion changes. The  process (or scheduled) variables z 
is often referred to as model parameters or controller 
settings and the scheduling variables z is the variable 
indicates the changes in the operating condition. They 
can often be set from process, e.g., production rate, 
product specification, process outputs etc. The model 
scheduling problem is then becomes: Given sets of pro- 
cess da ta  (2, z ) ,  find the functions z = f ( ~ )  which can 
describe the global behavior. 

The fuzzy modeling of Takagi and Sugeno (1985) is 
employed to  construct the global model. The linguistic 
nature of the fuzzy set makes it easy to incorporate 
process knowledge into a quantitative model. A brief 

description of the fuzzy set is given. In fuzzy set, a va- 
riable z may belong partially to a set. The membership 
function ( A )  characterizes this degree of belonging. A 
is defined as: 

A ( T )  : x + [0 ,  I], .x E X 

where X, generally, is a subset of R and the grade 
falls between 0 and 1. In this work linear members- 
hip function is employed. The truth value ( T V )  of a 
proposition ''11 is A1 and x2 is A2" is expressed as: 
A l ( z l ) ~  A ~ ( z z )  = m i n ( A l ( z l ) ,  A z ( z 2 ) )  where A is the 
logical .AND. operator. 

Takagi and Sugeno suggest that a multivariable system 
can be represented by the fuzzy implications (R( j ) ) .  
Consider a multivariable system with n input variables 
(zi,i = l , . . ' n )  and an output (2) with k fuzzy impli- 
cations. The j t h  implication is: 

R ( j )  : If 11 is A y ) , . . . a n d  zn is A:) ,  then 

2 = d, + + . . . + Az, 
Then, the output z becomes: 

k 

j = 1  

where 

The Takagi-Sugeno method offers a general framework 
to  establish a nonlinear (global) model between the 
scheduling variable z (e.g., production rate, product 
specification etc.) and the process variable z (e.g., pro- 
cess steady-state gain, time constants, time delay etc.). 
Let us  use a single-input-single-output example to  ana- 
lyze the fuzzy model. 

Example 1. Suppose the trend of the process variable' 
(2) around two operating points are known. We have 
the following two implications: 

R(')  : If z is A(') then z = z + 1 
R(2)  : If z is A(') then z = 0 . 5 z +  0.5 

The membership functions A(') and A ( 2 )  are given in 
Fig. 2. If the scheduling variable z = 1.8, the two im- 
plications give: z = 2.8 with.a truth value of TV = 0.8 
and z = 1.4 with TI/ = 0.2. Thus, the process variable 
inferred by R ( 1 )  and R(2) is z = 2.52 Figure 3 shows 
that the fuzzy modeling results in a piecewise nonli- 
near function between z and I .  Actually, the nonlinear 
function can be found analytically. Obviously, a linear 
combination of two linear functions (Fig. 3) is used 
for the fuzzy reasoning. That results into a nonlinear 
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function. OSeveral observations can be made imme- 
diately. Consider the linear membership functions in 
Fig.2 where the scheduling variable ( I )  superimposes 
the same range. 

01. If the output variable L shows the same trend as 
the scheduling variable I varies (i.e., the slopes 
have the same sign), then the resultant nonlinear 
function is monotonic. 

0 2 .  If the output variable z shows different trends as 
the scheduling variable I varies (i.e., the slopes 
have different signs), then the resultant nonlinear 
function is non-monotonic. 

An even simpler model scheduling mechanism can be 
devised. 

Example 2. Suppose the trend of the process variable is 
not known. The two data points we have are: z = 3 at 
x = 2 and z = 1 at x = 1. The implications of Ezample 
1 then becomes: 

R(') : If I is A(1) then z = 3 
R(') : If x is A(') then z = 1 

The membership functions A(') and A(2) are the same 
as those in Fig. 2. Again, for the case of x = 1.8, the 
inferred process variable becomes z = 2.52. For this 
system (process with monotonic trend), the results of 
both examples are practically the same. Actually, the 
resulting function is simply a linear interpolation. 0 

The following observation points out its limitation. 

03. If the trend of the output variable z is not inclu- 
ded, then the resultant function is simply linear 
interpolation of these two different data points 
which is always a monotonic function. 

Despite its limitation, this simple approach offers an 
attractive alternative in most cases. 

Another nice feature of the Takagi-Sugeno modeling 
is that  once a new identification. result becomes avai- 
lable, we can simply add another implication to  the 
original sets (e.g., R(') and R(*) in Example 2. For 
example, if we obtain a new data x = 1.5 and 
z = 2.2, the third implication becomes: R(3) : 
If x is A(') then z = 2.2 Notice that the ran- 
ges of the input variable (x) in the membership func- 
tion should be modified accordingly. (Certainly, it can 
be done in a automated manner.) Figure 4 shows the 
modified membership functions 

'From previous discussion, i t  should be recognized that 
nonmonotonic behavior is more difficult to capture. It 
generally requires more process information in quantity 
as well as in quality. Therefore, in building a global mo- 
del, i t  is important to  select appropriate scheduled va- 
riables ( z )  such that the nonmonotonic behavior can be 
avoided. Let use the linear integrator plus time delay 

model to illustrate the effect of different scheduled va- 
riables. Suppose the T-L tuning (Table 1) is employed 
to tune the typical slow processes (Eq. 3). 

Consider the first case where both model parameters 
(ICp and D )  increase as the operating condition chan- 
ges (i.e., increase in the scheduling variable). Figure 
5A shows that the controller parameters also changes 
monotonically as the operating condition varies. But a 
better global model can be achieved if the model pa- 
rameters are selected as the scheduled variables. The 
second case is that  the K P  and D move toward diffe- 
rent directions as the operating condition changes (Fig. 
5B). This is a mort: likely situation in process systems. 
However, if the controller parameters are used as the 
output variable, we have a nonmonotonic behavior in 
the controller gain li", as shown in Fig. 5B. As mentio- 
ned earlier, we need either more identification results or 
very precise description of the process trend to find a re- 
asonable global model. The examples clearly illustrate 
the importance in selecting the scheduled variables. 

4 Results and Discussion 

For the practicality and simplicity, the local model is 
described by the integrator plus time delay system (Eq: 
3). The controller tuning of Shen and Yu gives a gain 
margin of 2.83 (GM = 2.83) and phase margin of 46.1 
degree ( P M  = 46.1') for all possible model parameters 
(i.e., K p  # 0 and D # 0). First we would like to 
know how well the nominal controller settings work. 
Considering the nominal condition of K p  = 1 and D = 
1, Figure 6 shows the region of robust stability (RS). 
For example, the closed-loop system becomes unstable 
when lip = 2 and D = 2 (Fig. 6) and i t  remains stable 
for small values of K p  and*D.  Figure 6 shows that 
the settings remain stable for a fairly large region in 
the parameter space. A more useful assessment is the 
region can achieve the robust performance (RP). In this 
work, a very simple measure of the RP is defined: A 
system is RP if and only if 2.21 5 GM 5 3.95 and 
36.1' 5 P M  5 56.1'. It means we allow the 1/GM 
and P M  to vary by f O . l  and &lo0, respectively. The 
region of the RP can then be found by solving equations 
describing G M  and P M .  The shaded area in Fig. 6 
indicates the parameter space where the RP can be 
achieved. In other words if the process drifts out of the 
shaded area the controller has to be retuned for good 
performance. Therefore, the region of the RP can b e  
used to evaluate the effectiveness of model scheduling 
approaches. 

Suppose the process are operated at three different con- 
ditions: high, nominal and low productions which cor- 
respond to ICp = D = 0.5, land2, respectively (indi- 
cated by x in Fig. 7). We examined three approa- 
ches: (1) fixed gain control, (2) crisp switching control 
and (3) fuzzy switching control By crisp switching, 
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we mean the model parameters (and consequently the 
controller parameters) is chosen from one of the th- 
ree set if certain condition in the scheduling variable is 
met. the fuzzy switching implies the model parameters 
(and consequently the controller parameters) is genera- 
ted from a fuzzy model (e.g., R ( j )  in Ezample l .  In the 
fixed gain control, we only have the nominal settings, 
the region of R P  is indicated by the shaded area in the 
middle (Fig..--7). If we decide to use the crisp model 
switching alhong three sets of model parameters, then, 
at best, the regions of R P  are the three shaded areas. 
However, if the local models are scheduled according to 
the Takagi-Sugeno fuzzy implications, we have a much 
larger region for the R P  as shown in Fig. 7. The de- 
gree of sophistication in the consequence (e.g., with or 
without knowledge on process trend) has little effect on 
the .RP region. 

Ezample 9. Consider the following nonlinear system: 

with Kp(y) = D(y) = y + 1. Nominally the system is 
operated at y = 0. A PI  controller with the T-L tuning 
is employed and the results shows that  the fixed gain 
control gives oscillatory set point responses (dashed line 
in F.ig.. 8) If we obtain new identification results a t  
y = 1, a fuzzy model scheduling can be constructed. 
The  reaults’show that  much better set responses can 
be obtained (solid line inFig .  8) when these two local 
models are scheduled using the simple Takagi-Sugeno 
fuzzy implications. 

The second example is a reactor/separator plant stu- 
died by Yu (1999). The conventional control struc- 
ture is designed and the nominal controllers parame- 
ters are tuned using the sequential tuning approach of 
Shen-Yu (Shen and Yu, 1994). The production rate 
is used as the scheduling variable. The nominal value 
is 4601bmollhr and as the economic condition changes 
the plant produces 70% - 130% of the nominal rate. 

If only the nominal model parameters are available, we 
use the settings at all possible operating points. The 
dashed lines in Fig. 9 show the closed-loop responses 
for f30% changes in the production rate. On the other 
hand, as the process knowledge accumulates, we have 
the model parameters at +20% and -30% of the nomi- 
nal production. The  fuzzy modeling can, then, be em- 
ployed for the model scheduling. The integrator plus 
time delay model is appropriate for this application. 
Again, the simplest fuzzy modeling is used: Figure 9 
shows that  improved closed-loop responses can be ob- 
tained using the model scheduling. Notice that for the 
2ntire range of the production (-40% +40%), the 
model parameters show slight nonmonotonic behavior. 

5 Conclusion 

In this work the relay feedback autotuning is exten- 
ded to handle process nonlinearity. Local models from 
relay feedback tests are scheduled using the Takagi- 
Sugeno fuzzy modeling. The characteristics of the 
fuzzy implications are analyzed and an even simpler 
model is explored. The importance of the selection of 
the scheduled parameters is emphasized. One transfer 
function example and a recycle plant are used to il- 
lustrated the advantage of the simple model scheduling. 
method. Simulation results show that improved tran- 
sient responses and (unknown) disturbance rejection 
can be achieved when additional local models becomes 
available. More importantly, the controller design and 
model scheduling procedure is carried out in an  auto- 
mated manner. 
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Figure 2: Fuzzy implications of Takagi-Sugeno (Example 
1). 

Figure 3: The resultant global model from fuzzy mqdeling 
(Example 1) .  

6 .1A L 
Figure 4: The linear membership functions for the case 

of three intervals in input variable. 

m 

Figure 5: The effect of the selected scheduled (output) 
variables. 

o~~ 

K. 

Figure 6: The regime of robust stability (RS) and robust 
performance(RP, shaded area). 

3 

1. 

Figure 7: The regimes of robust performance at  diffe- 
rent operating conditions (indiated by x )  for 
the fixed gain control (the middle shaded area), 
crisp switching (shaded areas) and fuzzy swit- 
ching. 

Figure 8: Set point responses of Example 3 using the fixed 
gain control and fuzzy switching. 
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A : : : p =  
Figure 9: Load responses of the recycle plant for f30% 

production rate changes using the fixed gain 
control and fuzzy switching. 
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