
n method for fur 

C.-L.Chen 
C.-T. Hsieh 

Indexing terms: Fuzzy logic control, Fuzzy sets, Shrinking-span membership functions 

Abstract: A new means for designating 
membership functions in a fuzzy logic controller 
(FLC) is presented. The method allows a novice 
to construct a set of membership functions, called 
shrinking-span membership functions (SSMFs), 
for a specific linguistic variable systematically by 
using only two parameters: number of elements of 
the term set and the shrinking factor for that 
linguistic variable. The SSMFs have different 
spans for various term set elements in the 
universe of discourse and this gives the FLC more 
power to deal with the nonlinearity of the control 
problems encountered in the real applications. 
When there is not enough domain knowledge 
about the process, the SSMFs make it possible 
for a designer to set up a reasonable and practical 
rule base for the FLC. According to the 
computational simulations presented, the 
satisfactory performance of such an FLC for 
several test problems can be acquired without 
laborious optimisation of the tuning parameters. 
Therefore the proposed approach narrows the 
gap between a theoretical FLC and a practical 
one and makes the FLC more down-to-earth. 

1 Introduction 

People very often make decisions in their daily lives 
based on qualitative information. Zadeh’s fuzzy sets [ 11 
theory was thus proposed to enable people to describe 
and formulate the linguistic mental models apparent in 
daily life behaviour. 

Mamdani and colleagues [2, 31 were pioneers in 
applying fuzzy techniques to process control. Their 
results, as well as those of many other researchers, have 
demonstrated the potential value of the fuzzy logic con- 
trol system on simple process dynamics. A comprehen- 
sive review of the classical design and implementation 
of the fuzzy logic controller (FLC) can be found in [4]. 
More advanced design techniques have also been 
reported in literature, such as the adaptive hierarchical 
fuzzy controller [5] and the fuzzy logic controller with 
multiple inputs [6]. 

The superior performance of FLC as reported in lit- 
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erature is usually conjectured to have its origin in their 
switching nature [7], where the magnitude of the rate of 
change in controller output is greater for larger error 
but smaller for process output close to set point. The 
relations between fuzzy and conventional three-mode 
(proportional-integral-derivative, PID) controllers 
have been studied in [8, 91 and other works. 

To simplify the analysis of the FLC, most researchers 
prefer to use simple triangular functions, especially the 
equal-span isosceles, as the membership functions of 
the FLC. However, the membership functions of the 
FLC in most of the real applications are constructed by 
using knowledge of domain experts, and for the pur- 
pose of obtaining a good control result, these member- 
ship functions often come out with various physical 
shapes. Intuitively, when the control response is closer 
to the set point, the corresponding membership func- 
tion for the specific linguistic variable should have a 
narrower range. Chen [lo] has confirmed this by apply- 
ing neural-network training techniques to an FLC. 

In this article, we propose a systematic approach to 
construct membership functions for the FLC. By using 
this method, the designer of an FLC assigns only the 
number of elements of the term set and the shrinking 
factor for a specific linguistic variable and then obtains 
a series of well-located membership functions. 

Such shrinking-span membership functions (SSMFs) 
not only make themselves more reasonable from the 
human experts’ point of view but also provide the FLC 
the ability to easily adapt to different control systems 
by slight modification. After incorporating SSMFs into 
the FLC structure, the FLC, designated as SSMFs- 
FLC, can therefore generate large and fast control 
actions when the system output is far from the set 
point and only make moderate and slow changes when 
the system output is near the set point. Such behaviour 
saves a lot of time in optimising the scaling factors in 
the design procedures, and this reduces the difficulties 
in implementing an FLC and makes it more robust in 
real operational environments. 

2 

Complete and thorough descriptions of the design pro- 
cedure for an FLC have been presented [l 1, 121 there- 
fore only the essential materials and notations are 
stated here as a fundamental work. 

Basic design procedures of FLC 

2. I Rule base 
The rule base is formed by a family of linguistic rules 
that describes the relationship between the input and 
output variables of the controller. In the case of I- 
inputs single-output fuzzy systems, for example, the j th 
control rule in the rule base with J rules can be 
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expressed as 
Rj : IF 2 1  is AI ,  AND 2 2  is Az, AND . . .  

(1) AND XI is AI, THEN y is Bj 
where xi (i = 1 - I> is the process state linguistic varia- 
ble defined on the universe of discourse Uxi with term 
set Tx,, Ai, (j = 1 - J) is the linguistic value of xi with 
Ai, E Tx,. y ,  Uy, Ty and Bj are the counterparts of xi, 
UX,, Txi and Ai, for control action. We name the repre- 
sentation method described in eqn. 1 the sequence rep- 
resentation of the rule base. 

2.2 Decision making logic 
The individual-rule based inference ( [ I l l  p. 94) is 
employed and modified here to cope with the inference 
of fuzzy sets. In this approach, a four-steps operation is 
proposed to accomplish the inference procedure ([ 121 
Section 4.3): . 

A ( x ;  a,c,d) 

Fig. 1 Membership functions of trupezoidul jumily 

Step 1: Computing the level of matching Ai,(x,T) 
between the crisp input value xi* and linguistic value 
Ai,: 

A i j ( ~ , * )  M(x,*; Aij) ( 2 )  
M maps a crisp input value to a membership degree 
subjected to a specific membership function. Following 
[ 131 (let xI = inf U,, xu = sup U,), function A is used here 
to construct the membership functions used in this 
research (see Fig. 1) 

( 0  f o r x l < z < a  
for a 5 2 < c { f o r c ( x ( d  

A(z ;  a,  e,  d)  = H(z; a, e,  e,  d )  = 21; 
( 0  f o r d < n : < x ,  

( 3 )  
Step 2: Finding the firing level qj of each of the rules in 
the rule base: 

(4) 

In the Mamdani-FLC, F is the MIN aggregating oper- 
ator. However, it can be replaced by other triangular 
norms (t-norms for short) [14]. 
Step 3: Deciding the output fuzzy set B> of each rules. 
The formulation that determines how Qj and the fuzzy 
set Bj interact to form the rule output is called a fuzzy 
implication. Here, I denotes this operation. 

I 

i= 1 
d) j  = F ( A i j  (x?), . . . , AI ,  ( 2 ; ) )  = F (AZ3 (.,*)) 

B:(d = W , > % ( Y ) )  ( 5 )  

I is usually implemented as the MIN or the product 
though other t-norms are possible. 
Step 4: Aggregating the individual output fuzzy sets 
B)s to form the overall system output fuzzy set B. 
Operator A, usually implemented as the MAX or the 
summation, is used here: 

J 

,=1 
B(Y) = A(B: (?I), . . . , %(Y)) = ,A (B~(Y)) (6) 
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2.3 Defuzzification interface 
The defuzzification operator D converts the fuzzy set B 
into a single crisp value y*, i.e. 

Y* = D(B(Y)) (7 )  
Centre of area/gravity (COA or COG for short) 
method is the most popular scheme used to calculate 
the crisp value [l I]: 

In short, the crisp control action y* of an FLC can be 
obtained by a series of operations: 

3 
membership functions 

From the description of previous Section, one would 
find that a lot of design parameters must be chosen 
before an FLC can be constructed. The most cumber- 
some tasks in designing these parameters lay in the des- 
ignation of proper membership functions and the 
formulati'on of a comprehensive and reasonable rule 
base. Therefore, how much and how effectively one can 
lessen the difficulties in building the membership func- 
tions and the rule base becomes a main concern in the 
whole FL,C design procedure. 

In this Section, we propose a systematic design 
method fix the FLC. This organised method not only 
simplifies the sequences in constructing an FLC but 
also makes the FLC more flexible in practical applica- 
tions. 

First, we make a few modifications on the rule-base 
representation and then introduce the shrinking-span 
membership functions, and finally derive the simply 
input-output relation of the FLC. 

3. I Sirnple rule base 
With the purpose of making the FLC expression less 
complex, we use a numerical sequence to map the ele- 
ments in the term-set of the linguistic variable x. For 
an I-input single-output FLC, the term-set for input 
variable xi is denoted by 

Design of FLC with shrinking-span 

Tz, = { . . . , A(%,-l) > A(i,O), A(i,l) ,  . . ' , A(i,mz) 1 
- 
- { A(Z,l%) 11; E 17% } 

(10) 
here Im, = {-mi, ..., -1, 0, 1, ..., mi} is the index set with 
M ,  ( M ,  = 2mi + 1) terms for linguistic variable xi. That 
is, the un:iverse of discourse UX, of linguistic variable xi 
is partitioned into M ,  sections and each section is isso- 
ciated with a linguistic term and is characterised by the 
fuzzy set A(i,lt). Similarly, the output variable y for the 
FLC has the term-set as follows: 
T y  = {B-mzq,. . . ,B-1, Bo,BI, .  . ' ,  Bmy} 1 { B I I ~  E Im,} 

(11) 
my, Imy, I and My are analogous to mi, Zm,, li and Mi, 
respectively. In this way, the rule base for the I-input 
single-output FLC can be expressed by 

R(11, . . . ,11; 1) :IF XI is A(l,Ll) AND 
. . . AND 21 is A(I,l,) THEN 1~ is Bl 

V1% E In,, 1 E Im, 
(12) 
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This representation method of rule base is called the 
index-represented rule mapping [6]. We call it index 
representation in the following text to distinguish it 
from the sequence representation depicted in eqn. 1. 
Assume that the complete and simple rule mapping 
properties [6] hold for the remaining parts of this 
research, that is 

I 

l=E12 (13) 
i=l 

From the previous relation, it can be shown that for a 
simple rule mapping my is the summation of all mis, 
that is m, = Cf=l  mi, and the number of linguistic val- 
ues for output y ,  My, in an Z-input single-output FLC 
is determined by M y  = 2m, + 1 = 2 C!=, mi + 1 and the 
total number of rules in the rule base is J = nfZl Mi 
( M i  = 2m, + 1). 

To take advantage of both the index representation 
and sequence representation, the following relations are 
proposed as transformations between the indices lis of 
the index representation and the index j of the sequence 
representation: 

j = h(l1,. . . , I I )  

= ( I 1  +m1) x M.2 x M.3 x I . .  x MI 
+ (l.2 + ma) x M3 x . . . x M I  

+ (11-1 + m I - 1 )  x MI 
+ ( I1  + r n I )  + 1 

+ * . .  
(14) 

n ILfk 
k=z+l  

f o r i  = 1 N I 
(15) 

Of course, other forms of h and h are acceptable as 
long as they are adequate to perform accurate mapping 
between these two types of representations. From the 
relations proposed, it is obvious that whenever a set of 
lis is chosen a corresponding j is determined, and vice 
versa. 

Table 1 illustrates both the index representation and 
sequence representation of a simple rule mapping. 

Table 1: Simple rule mapping for I 2 and m, = m2 = 2 

1, 1, 

I - 2 - 1 0  1 2  j - 2 1  0 1 2  

I* -2 -4 -3 -2 -1 0 /2 -2 1 2 3 4 5 

-1 -3 -2 -1 0 1 - 1 6  7 8 9 10 

0 - 2 - 1 0  1 2  0 11 12 13 14 15 

1 - 1 0  1 2  3 1 16 17 18 19 20 

2 0 1 2 3 4  2 21 22 23 24 25 

(a) Index representation (6 )  Sequence representation 

3.2 Sh rin king-spa n m em be rsh ip functions 
In the real applications of FLC, the membership func- 
tions are constructed by assembling knowledge of the 
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domain experts and then modified by laboriously sur- 
veying the control response of the process. In most 
control cases, the FLC cannot be effective without 
carefully arranging the membership functions. 

In the theoretical analysis of the FLC, however, the 
selection of membership functions does not get much 
attention by the majority of researchers. Most choose 
isosceles triangular functions with equal spans through- 
out the whole universe of discourse as membership 
functions for their FLCs [2, 6, 8, 91. The main advan- 
tage of choosing this type of membership function is 
that equal-span isosceles triangular membership func- 
tions ease the difficulties in analysing the structure of 
the FLC. However, almost all the applications of FLC 
adopt nonequal-span membership functions to cope 
with the real control problems. Instinctively, the closer 
the control response to the set point (or normal condi- 
tion), the narrower the membership function range 
should be. For some highly nonlinear processes, such 
as inverted pendulum system, an FLC with equal span 
triangular membership function is not adequate to 
achieve a good control result. 

To accomplish a better performance and to devise a 
more rational FLC, the shrinking-span membership 
functions is propounded to fulfill these aims. As an 
illustrative study, the following assumptions are made: 
[All Trapezoidal family membership functions are pre- 
supposed here as a fundamental work. This implies 
that all membership functions are normal. Other types 
of membership functions, such as gaussian family 
membership functions, can be applied directly. 
[A21 The universes of discourse for all linguistic varia- 
bles xis and y are confined to the range [-1, 11. Such a 
restriction can be easily satisfied by multiplying a scal- 
ing factor to the original values of these linguistic vari- 
ables. 

Conceptually, the SSMFs are a series of orderly 
arranged membership functions for a linguistic variable 
across its universe of discourse. By using a series of 
A(x,)s, we propose the following representation for the 
trapezoidal family SSMFs A ~ ( ~ , z J ( x ~ )  for linguistic varia- 
ble xi: 

A & )  = 

,~ (z : 2 2 1 ) AT2. i, - 1 1 - (1 - /3 A;. , 1 ;  ) [ l - ~ ) A ~ ~ , , ~ ~ - ( l - / 3 ) A ; ~ , ~ ~ + l ~  
J ( ? > l % ) >  

for I ,  E Im, 
(16) 

here A$,I,) is the principal value of A(i,l,)(xi) defined by 

where si E [0, I ]  is the shrinking factor for linguistic 
variable x,. To comply with this representation, let 
A*(i,-m,-l) = A*(i,-m,) and A*(i,m,+l)=A*(i,mi); Ap(i,-ml)(A*(i,-mi)) 
= 1 and AP(i,m,)(A*(i,m,)) = 1. By applying various shrink- 
ing factors to the same linguistic variable, different 
membership functions can be obtained to examine 
which is the most suitable for a specific application 
process. p is the overlapping factor whose reasonable 
range is [0, 11. p can take values greater than unity as 
long as the resultant membership functions are rational 
in applications. The overlapping region increases 
monotonically as p increases. For p = 0 it is clear that 
there is no overlap between the SSMFs and if /3 = I the 
supports for the SSMFs have proper overlapping 
regions. 
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A typical SSMF is shown in Fig. 2 (the notations 
have been simplified to make them easier to be compre- 
hended). 

Fig.2 Typicul trupc'zoiduljumily SSMFJ tn = 4; s = 0.7; p = I 

Note that when shrinking factor s, = 1, the SSMFs 
A(i,/J(x& degrade to ordinary equal-span membership 
functions. Therefore the conventional equal-span mem- 
bership functions are a special case of the SSMFs. 

The specifications of the SSMFs described above 
have the advantage of reducing the design parameters 
of an FLC. With the definitions of SSMFs, the number 
of linguistic values m, and the shrinking factor si are 
the only required parameters for setting up the mem- 
bership functions of a linguistic variable. This not only 
dramatically lessens the efforts in obtaining the mem- 
bership functions but aso provides a more reasonable 
interpretation of these membership functions. 

3.3 Design of FLC with SSMFs 
In this Section, we construct an FLC based on the con- 
ception of simple rule mapping and SSMFs. We name 
this type of fuzzy controller a fuzzy controller with 
shrinking-span membership functions (SSMFs-FLC for 
short). Further, we make some simplification of 
SSMFs-FLC by choosing proper operators to make the 
SSMFs-FLC more practical. 

Basically, an SSMFs-FLC is an FLC having input/ 
output relation described in eqn. 9 except that the rule 
base adopts the simple rule mapping principle and the 
membership functions of the input variables xis and 
output variable y are restricted to SSMFs. 

To make the structure more easily understood, the 
following assumptions are observed. First, all input lin- 
guistic variables are assumed to have the same number 
of linguistic values, that is m, = m2 = ... = mI = m. 
With the simple rule mapping my = E[=, mi = Im holds 
and thererore the number of linguistic values for output 
is M y  = 2my + 1 = 21m + 1. Furthermore, the trapezoi- 
dal family membership functions having the form of 
eqn. 16 are chosen for both the input and output lin- 
guistic variables with p = 1. Other values for p are 
acceptable provided that the membership functions are 
reasonable for applications. 

Explicitly, the membership functions of input linguis- 
tic variable xi can be expressed as (let A?i,-m-l) = A &m,) 
and A?ii,nzi+1) = AIi,mi); Aji,-m,)(A*(,-nzi)) = 1 and 
A(~,M~,)(AT~,,ZJ) = 1 in the following equations) 

As for the output linguistic variable y ,  similar represen- 
tations cam be obtained: 

Bl(y) = A(y;  B7-1, BT,BT+i) (19) 

, 1 E Im7, = {0,+1, .  . . , & I m }  (20) 

here, B,* is principal value defined by 
B,* - . p u - i L l  1 

my 

The following three properties can be derived for the 
SSMFs with p = 1. 
Property I :  Given numerical value xi* E ;  lA?z,l,), At,l,+k)l 
c Uxi for linguistic variable xi, there exists only two 
nonzero membership values in the SSMFs, that is 

1, E 1, - {m> 
Proof: Straightfoward results from the definition of 
SSMFs. 

It is not necessary to calculate the membership values 
for all SSMFs owing to this property. This greatly 
reduces the computational effort in implementing 
SSMFs in industrial processes. 
Property 2: The two nonzero membership values in the 
SSMFs of property 1 have a sum of 1 and hence the 
summation of all membership values for x, is also 1.  
That is 

A(%,l&3 = 1 vx; E uz7 
l , t I m  

Pro05 Straightforward results from the definition of 
SSMFs. 

The following property states that the centroid of a 
single membership function (local centroid) for output 
linguistic variable with the form of eqn. 19 can be com- 
puted by using the principal values only. 
Property 3: For the SSMFs Bl(y)s defined in eqn. 19, 
let cls be the centroids of membership functions Bl(y)s, 
then 

1 

cl = ?(B,*_, + B; + B T + ~ )  for I E I- ,  (21) 

Proof: In computing the centroid value for membership 
function Bl(y), the widely used centre of area (COA) 
method is adopted here to generates the result. In the 
case of a continuous universe of discourse, this method 
gives 

3 

First, for 1 E Imj - {-my, my} let B, = h(y;B,_,,B;,B&), 
and the numerator of eqn. 22 is referred to as the 
moment and the denominator is called the area of the 
membership function for convenience. Then the 
moment Ml of the membership function Bl is 
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Therefore the centroid of membership function BI is 

As for I t {my, my} ,  the same result can be obtained 
by restricting the integration range within the universe 
of discourse. This completes the proof. 

The following theorem states that the final crisp out- 
put of the SSMFs-FLC can be computed from the 
local centroids with a discrete method. This result less- 
ens computation and favour digital implementation. 
Theorem 1; For a SSMFs-FLC with its membership 
functions described in eqns. 18 and 19, suppose the 
algebraic product is chosen as operator F and I, sum- 
mation (C) is chosen as operator A, and COA is used 
for defuzzification. Given the crisp input values sl . 's .  
then the final crisp output y* can be computed from 
local centroids: 

m ,, 

l=-m, 

here cl and SI are the centroid and area of the Zth inem- 
bership function of output linguistic variable J. @/ is 
the summation of the firing levels of all rules whose 
consequent fuzzy sets equal the Zth fuzzy set of J', that 
is 

'I @ l  = 4.7 = jn &.&;I 
V l t  €ITraz V I ,  € I ? , 2 9  1=1 

L . 1  I ,+  + r r = 1  3 t l l i -  + I 1 = l  
& ,=/ , , ( l ,  + . + I r )  & , = h ( l l + . .  + I I )  

(24) 
where A(i,/,)(x,*)s are the membership values of inputs 
X I  s. 
Proofi According to the inference procedures proposed 
for SSMFs-FLC, we first use the sequence representa- 
tion of the rule base to show that the crisp output of 
the system described in theorem 1 can be obtained 
from local centroids and firing levels, and then perform 
a transformation to the index representation to get the 
final results. 

Starting from the primitive eqn. 9 and applying the 
proper operators, we get 

* 

(23 )  

here, is the firing level of the j th rule and equals 
r IL ,A( lJ ) (xJ .  Let S, and cj be the respective area and 
centroid of the Ith rule's consequent set B,: 

s, = /BMdY 
c' 7, s YB,(Y)dY s YB,(?J)d?J (26 )  

substituting from eqn. 26. Hence 

.i' YB, (?J)dY = c3s3 (27)  
1 71 

Substituting eqns. 26 and 27 into eqn. 25, we derive 
J c c.7 s, 4.7 

( 2 8 )  
j=1 

?Jx = 

5 s34j 
j=1 

As noted previously, the sequence representation of 
rule base can be mapped to index representation, eqns. 
14 and 13 serving the purpose of transformation 
between these two representations. From the relations 
given there may be several j s  mapping to the same I, 
that is there are several rules having the identical con- 
sequent set. Substituting 1 f o r j  in eqn. 28 and sum the 
firing levels of the same consequent set into a single 
term, we get the final form for the centroid: 

m, 

l=-m, 
C l S L Q I  

c Sl@l 

yx 
?nu 

l=--m,i 

where is the summation of the firing levels of all 
rules whose consequent fuzzy sets equals the lth fuzzy 
set of y :  as defined in eqn. 24. 

In summary, the SSMFs-FLC is more rational than 
the FLC in both theory and implementation. Due to 
the features of fuzzy sets, SSMFs-FLC can deal with 
the indistinctness of some processes that we cannot 
describe with real precision. Moreover, the SSMFs pro- 
vide SSMFs-FLC another equipment to handle the 
obstacles in constructing membership functions for an 
FLC. By only setting m and s, a series of membership 
functions with reasonable physical meaning are 
attained for complicated processes. Further, with 
proper parameters of SSMFs the calculation of the 
controller is lessened dramatically. All these make the 
SSMFs-FLC a promising implementation over the con- 
ventional FLC. 

In the following Section we apply the SSMFs-FLC to 
some representative processes to demonstrate its utility. 

4 Simplified SSMFs-FLC and its performance 

In this Section, some numerical simulations are used to 
examine both the effects of the design parameters and 
the ability of SSMFs-FLC. First, the effects of shrink- 
ing factor are illustrated by observing the changes 
occurred in the control surfaces when different shrink- 
ing factors are applied to the two-input one-output sys- 
tem. Next, some typical processes are used to examine 
the control ability of SSMFs-FLC on linear systems 
which have same designing parameters (m and s) of 
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SSMFs-FLC. Finally, the SSMFs-FLC is applied to a 
pendulum-car system to demonstrate both the effects 
of shrinking factors on control performances and the 
robustness of the SSMFs-FLC on different initial con- 
ditions. 

4. I Simplified SSMFs-FLC 
Although the SSMFs-FLC is designed as a multi-input 
one-output FLC, the two-input one-output system is 
adopted here as an example. We refer this type of 
SSMFs-FLC as a simplified SSMFs-FLC. 

For an ordinary feedback control scheme, the inputs 
of the SSMFs-FLC used in this Section are error e and 
change in error Y of the process, the output linguistic 
variable is the change in controller output U. The asso- 
ciative universe of discourse and term-sets of these lin- 
guistic variables are U, and Te, U, and T,, and U, and 
Tu for e, Y and U ,  respectively. 

In this study, simple rule mapping is applied to con- 
struct the rule base and the inference procedures 
described in eqn. 9 are used to calculate the result for 
the following cases. Some assumptions are made 
beforehand: U,, U,. and U, are all set to [-1, 11; the 
term-sets T, and T,. have the same number of elements, 
that is m, = m,. = m and therefore m, = m, f m, = 2m. 
The subscripts i, j and k(= i + , j) are associated with e, Y 

and U, respectively, as indices. The typical two-input 
one-output SSMFs-FLC feedback control system and 
its detailed computational steps are depicted in Figs. 3 
and 4. 

process con tro I ler , 
Fig 3 Typical SSMFs-FLC feedback control system 

The notations therein are defined as follows: 

Fig.4 Detail of fuzzy 

here, T is the sampling interval; sp(t) is the set point, 
CO(t) is the controller output and y( t )  is the process 
output; e,,(n), r,(n) and u,(n) are error, rate of change 
in error and change in controller output, respectively, 
at the nth sampling point. GE, GR and GU are scalers 
for e,(n), v,(n), and u,(n), respectively, and the scaled 
crisp value e*, Y* and U* have a numerical range in 
[I ,  -11. -Inle, I,, and -Imu are the index sets for the term- 
sets of liriguistic variable e, r and U, respectively; E,(e*) 
and R,(Y") are the membership grade for e and r, 
respectively; U,(U) are membership functions for U. 

Operators M, F, I, A and D are defined in eqns. 2, 4, 5 ,  
6 and 7, respectively. 

4.2 Control surface of simplified SSMFs-FLC 
The effects of shrinking factors on FLC can be exam- 
ined by comparing the control surface of different sets 
of shrinking factors. Here we present four control sur- 
faces (Figs. 5-8) with various values of shrinking fac- 
tor. In the implementation the algebraic product is 
chosen as; operators F and I, summation (E;) is picked 
as operator A, COA is used for defuzzification opera- 
tor D. One can find that the control surfaces are quite 
different for distinct values of shrinking factors. There- 
fore by modifying shrinking factors the human opera- 
tor can acquire numerous control surfaces and then 
pick up the one that is most suitable. 

0 

U 

-0 

Fig.5 
1.0 

Typical control surfaces ofsimplEfied SSMFs-FLC .se = s,. = su = 

From Figs. 5-8 one can find that the control surface 
of the SSMFs-FLC with equal-span membership func- 
tions (se == s, = s, = 1) is a linear one, and thus is obvi- 
ously not adequate to control the nonlinear processes. 
On the other hand, an FLC with nonlinear control 

defuzzif I'cation 
OUtDUt 

- I 
d, I 

I 
L _I 

controller in Fig. 3 
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4.3 Control response of SSMFs-FLC on linear 
processes 
Five linear processes are used to explore the feasible 
nominal performance of the SSMFs-FLC: 
(i) TY: typical first-order with dead-time process 

e-o.2s 

G p ( s )  = ~ 

s i 1  

e-4s 
G p ( s )  = ~ 

s + l  

e-' 

0.5 

U 0  (ii) LD: first-order with large dead-time process 

-0.5 
(iii) UD: underdamped process 

I 
G p ( s )  = 9s2 + 2.4s + 1 

(iv) HO: high-order process 
.\ e-3s 

Fig.6 Tvpicul control sz4rfiice.s ojsimplified SSME\--FLC .se = s, = 0.6; 
s,, = 1.0 G p ( S )  = ( s  + 1)2(s2 + 1) 

(v) IR: inverse response process 
(-s + l)e-' 

G p ( s )  = 
(2s + l ) (s  + 1) 

Fig.7 
s, = 0.6 

Typicd coritrol surfaces of siniplified SSMFs-FLC s, = s,- = 1.0; 

0' 
r 

- J  -\ 

Fig. 8 
0.6 

Typical control surfhces of siniplified SSMEs-FLC s, = s, = s, = 

surface may not be a good one to handle the linear 
processes. For that reason, the characteristics of the 
control surface can be modified by only the shrinking 
factors is clearly a merit of the SSMFs-FLC. 

The same number of linguistic members and shrinlc- 
ing factors are assigned to all the five cases to show the 
generality of the SSMFs-FLC. The only tuning param- 
eters are input/output scalers (GE, GR, GU) which are 
tuned by the rules-of-thumb. Two principles must be 
observed in tuning the parameters: 
( a )  GE and GR must appropriately transfer the sensor 
data, error and change in error, into the specific uni- 
verse of discourse, say [-1, I]. 
(6) The control action should not go beyond the physi- 
cal capability of the controller, that is, GU is confined 
to a certain range. 

The number of linguistic members is set to nine for 
both error and rate of change in error, that is m, = m, 
= 4, thus the number of linguistic members for change 
in controller output is therefore 17 (mu = me + m,). 

Table 2 shows the design parameters (me, m,, se, sr, 
sJ: tuning parameters (GE, GR, GU) used and result- 
ing IAE of the five demonstrated cases for 10% set 
point response. Fig. 9 shows the set-point responses, 
i.e. set point is changed from 50 to 600/0. 

6 g. # :'e, 
"1 55 

50 50 
a b 

s. - & 

55 
50 

0 20 40 60 80 100 
C d 

z. S 6 5 ~ ~ ~ ~  60 
"x 55 

50 
0 20 40 60 80 to0 

e 
Fig. 9 
a Typical first-order process 
h Large dead lime process 
c Underdamped process 
d High-order process 
e Inverse response process 

Responses of demonstrated cases 

364 IEE Proc -Control Theory Appl., Vol. 143, No. 4, July 1996 



Note that the shrinking factors are arbitrarily 
selected in these examples. Since optimisation is not 
involved in the procedures for obtaining the values of 
GE, GR, GU, the performances should be viewed with 
an eye to their rationality rather than their superiority. 

Table 2: Design and tuning parameters of demonstrated 
cases 

Case Shrinkingfactors GE GR GU IAE 

se s, s, 
TY 0.150 0.03 3.00 61.21 

LD 0.050 0.01 1.50 106.89 

UD 0.90 0.90 0.75 0.075 0.02 1.00 108.87 

HO 0.075 0.02 1.00 142.49 

IR 0.075 0.02 1.00 106.28 

4.4 Control response of SSMFs-FLC on 
nonlinear process 
From the control surface of the SSMFs-FLC, one can 
find that the SSMFs-FLC possesses a nonlinear feature 
in its control structure. To exhibit its control ability for 
nonlinear processes, the SSMFs-FLC is applied to a 
pendulum--car system to achieve this aim. 

a car moving along a line on two rails of limited 
length 

a pendulum hinged in the car by means of ball bear- 
ings rotating freely in the plane containing this line 

a car driving device containing a D C  motor, a D C  
amplifier, and a pulley-belt transmission system 

Such a system is characterised by an unstable equilib- 
rium point in the upright position of the pendulum, a 
stable equilibrium point in pendant position, as well as 
two uncontrollable points when the pendulum is hori- 
zontal. The dynamic behaviour of the pendulum-car 
system can be derived [ 15, 161 and expressed as 

[ ( . M c + i ~ p ) , y t a n Q +  $ i ~ ~ ~ s i n O . Q ' ~ ]  + U  
,'/ = 

where the M/, and I are the mass and length of the pen- 
dulum, respectively, Mc is the mass of the car, 8 is the 
angle measured from the pendant position, and U is the 
driving force applied to the car. 

The parameters of the model are taken as follows 
[ 161: 

Ad,- = 2.81ig; M p  = 0.2kg; L = 0.75rn; g = 9.81m/s2 

The control objective is to stabilise the pendulum in 
upright (1 80") position from an initial deflect position 
(say 170") by changing the driving force U .  Due to the 
characteristics of the pendulum-car system, the control 
scheme is slightly modified so that the output linguistic 
variable is the controller output, rather than the change 
in controller output. It means that the controller out- 
put CO(t) no longer equals CO(t - 1) + um(n) but 
equals u,(n) directly. 

The main aim of the simulation is to demonstrate the 
effects of both the shrinking factors and robustness of 
the SSMFs-FLC for nonlinear systems. 

The pendulum-car system [I  5,  161 consists of: 

(29) -$(ALLc + Mr))LsecQ + ;lWpLcose 

4.4. I Effects of shrinking factors: The effects of 
shrinking factors on control performance are demon- 

strated by applying different combinations of s,, s,, s,, 
to the SSMFs-FLC with constant parameters (m = 4, 
GE = 0.5, GR = 0.01, GU = 300), the initial position 
of the pendulum is 170", the initial control value is 0, 
and the sampling interval in this simulation is set to 
10ms. To make the differences between the responses 
clearer, J,, and J, are set to 0.9, 0.6 and 0.3; s, is 
changed from 1.0 to 0.7 to 0.4. Fig. 10 shows the 
responses of the nine combinations of shrinking fac- 
tors. One can see that the responses differ markedly 
between these simulations. Some trends can be 
observed from the responses: for the pendulum-car sys- 
tem: the less are s, and sr, the less the overshoot and 
oscillation; the less is ru, the slower the response. This 
is due to the fact that modifying the shrinking factors 
not only alters the layout of the membership functions 
of the linguistic variables but also changes the rules 
fired for the identical inputs. Certainly, the trends men- 
tioned may not occur for other noillinear systems, how- 
ever, the effects of shrinking factors are already 
elucidated by this example. 

185ti a t b  t c  

1 7 0 r -  I V  

2qp m p, i, 
175 

170 - 
0 5 1 0 0  5 1 0 0  5 10 

t t t 
Fig. 10 
(e(0) = 170") 

Rrsponse of e( ( )  ming dqferenl ,rhrinking,Jaclors 

(U)  ~S<, = s r  = 0 9; s, = 1.0 
(b) s.. = 5.. = 0 6: s,. = 1.0 

I L  , 
(e)  s, = s,. = 0.3; s,, = 1.0 

(e) s,, = s,. = 0.6: s,, = 0.7 
(d) s,. = ,SF = 0 9; .S8, = 0.7 

I ,  

U, s, = si- = 0.3; s, = 0.7 

(h)  .s<, = A~ = 0.6: = 0.4 
(i) s ,  = s, = 0.3; s, = 0.4 

(g) .r ,  = .si = 0 9, s, = 0.4 

4.4.2 Robustness of SSMFs-FLC: The robustness 
of SSMFs-FLC is showed by changing the initial posi- 
tion of the pendulum. In this example, the shrinking 
factors of the SSMFs-FLC are s, = s,. = 0.3 and s, = 
1.0, the other parameters are the same as those in Fig. 
10. These values are originally used to control the pen- 
dulum wilh the initial position of 170", however, the 
same values are applied to control the other three pen- 
dulums with initial position of 150, 130, and 1 lo", 
respectively, to examine the robustness of the SSMFs- 
FLC. The simulation results are plotted in Fig. 11. All 
the four pendulums reach the set point with little oscil- 
lation and then maintain their positions at 180" 
perfectly. 
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From these empirical studies, the desired control 
actions of the SSMFs-FLC can be obtained readily by 
carefully choosing the appropriate shrinking factors. 
Moreover, the SSMFs-FLC has shown its ability as an 
efficient and yet robust control scheme for either linear 
and nonlinear processes. 

5 Conclusion 

We have proposed a new scheme, shrinking-span mem- 
bership functions, to specify the membership functions 
for a fuzzy logic controller. With only two parameters 
(shrinking factor and number of linguistic variables), 
this method provides an easy and systematic way in 
designating membership functions and the membership 
functions generated are more reasonable to the human 
perception than those with equal spans. When lacking 
thorough knowledge of the process, the human opera- 
tor can use both SSMFs and simple rule mapping to 
construct a primitive FLC which can be used as a fun- 
damental structure for further fine tuning. 

According to the simulation results, the SSMFs-FLC 

shows its control ability in either linear and nonlinear 
systems. Satisfactory responses can be acquired without 
laborious optimisation calculation. Further, the 
SSMFs-FLC also exhibits its robustness in controlling 
the highly nonlinear pendulum-car system with very 
different initial conditions. All these features demon- 
strate that the SSMFs-FLC possesses the capability to 
adapt itself to different system deviations easily. 

Since it reduces both the domain knowledge of the 
process and the load of computation in devising an 
FLC, the SSMFs-FLC narrows the gap between a the- 
oretical FLC and a practical one, and thus helps the 
FLC more realistic. 
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