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SUMMARY

This article proposes a novel algorithm integrating iterative dynamic programming and fuzzy aggregation
to solve multi-objective optimal control problems. First, the optimal control policies involving these
objectives are sequentially determined. A payoff table is then established by applying each optimal policy in
series to evaluate these multiple objectives. Considering the imprecise nature of decision-maker’s judgment,
these multiple objectives are viewed as fuzzy variables. Simple monotonic increasing or decreasing
membership functions are then defined for degrees of satisfaction for these linguistic objective functions.
The optimal control policy is finally searched by maximizing the aggregated fuzzy decision values. The
proposed method is rather easy to implement. Two chemical processes, Nylon 6 batch polymerization and
Penicillin G fed-batch fermentation, are used to demonstrate that the method has a significant potential to
solve real industrial problems. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, a considerable number of studies have been made on the optimization of
dynamic systems with single objective [1–7]. However, multiple aims are usually desired in
practice. For instance, when operating a batch reactor, maintaining undesirable byproducts at
the lowest possible levels and attaining the desired fractional conversion in the shortest amount
of time are both important. Furthermore, the operators can simultaneously consider other
important factors such as economic efficiency, safety, reliability, or the impact on the
environment. All these objectives are usually non-commensurable. Operators thus need a multi-
objective decision-making technique to help them look for a satisfying solution from those
conflicting objectives. Recently, application of multi-objective approach on dynamic optimiza-
tion problems has been addressed by many researchers [8].

Optimization for a multi-objective problem is a procedure looking for a compromise policy.
The result, called a Pareto optimal or non-inferior solution, consists of an infinite number of
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alternatives. There is a large variety of methods for treating the multi-objective optimization
problem. Those methods can be classified in many ways according to different criteria [9, 10].
For example, Cohon [11] categorized methods into two relatively distinct subsets: generating
methods and preference-based methods. The generating methods produce a set of Pareto optima
and then the decision maker (DM) selects one of them on a basis of subjective value judgment.
Among them the weighting-sum method and the e-constraint method are well-known. As the
algorithm cannot converge to a suitable solution, or the DM does not agree with the result, the
DM can adjust the related parameters used in the algorithm, such as the weighting factors in
the weighting-sum method. The computation can be repeated until a satisfactory solution is
obtained. The preference-based methods, on the other hand, contain DM’s preference as the
solution process goes on, and the solution that best fulfills DM’s preference is selected. Thus, all
these multi-objective optimization methods for finding a Pareto optimal solution are filled with
subjective and fuzzy properties [10].

In order to overcome the difficulty of describing a fuzzy attribute, Zadeh [12] proposed the
fuzzy set concept. By using multi-valued logic to replace the traditional Boolean logic, people
can quantitatively elucidate unclear information or knowledge. Afterward, Bellman and Zadeh
[13] further extended the fuzzy concept to the decision making under fuzzy environment.
Tanaka et al. [14] brought in the concept of fuzzy mathematical programming and proved that
fuzzy mathematical programming can be reduced into conventional non-linear programming
problem. Zimmermann [15] introduced fuzzy set theory into conventional linear programming
problems, considering linear programming problems with a fuzzy goal and some fuzzy
constraints. Following the fuzzy decision, together with linear membership functions, he proved
that there exists an equivalent linear programming problem. Recently, Sakawa et al. [16]
proposed the fuzzy satisfying method to find solution for multi-objective linear problems by
applying the payoff table. Wang et al. [17] proposed a fuzzy decision-making procedure to
determine the feed profile of a fermentation process for fuel ethanol production, using the
fuzzy min–max method. In this paper, we attempt to extend the fuzzy inference on solving
the dynamic optimization problem with multiple objectives. The augmented min–max
approach, proposed by Sakawa et al. [16], is applied instead of the conventional min–max
approach used by Wang and Shieh [18] since the uniqueness of the optimal solution is not
guaranteed in non-linear systems. By mapping each objective value into a normalized domain
referenced from the payoff table and further aggregating these normalized values, the vector
objective problem can be grouped into a single objective problem. Then, the iterative dynamic
programming (IDP), developed by Luus and his co-workers [4], is utilized as the platform to
determine the solution for such problems. By using appropriate mapping functions and
aggregates, the solution found by the proposed algorithm can be proved to be (local) Pareto
optimal. Notably, by applying the fuzzy aggregation and payoff table approach, one can obtain
single Pareto optimal solution that best satisfies the decision maker with least subjective
knowledge. Furthermore, the grouped single objective dynamic optimization problem can also
be solved by using other searching methods, such as the integrated controlled random search
(ICRS) [7, 19].

In the rest of this article, the formulation of the problem is set out in Section 2. The procedure
for grouping the vector objectives into a scalar one using the fuzzy set concept is given in
Section 3. Some related mathematical properties required to guarantee the optimality of the
solution are given in Section 4. In Section 5, a review and modification for IDP is presented.
Therein, limitations of proposed method on local Pareto optimum is also discussed. Two
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numerical examples are supplied in Section 6, demonstrating the usefulness of the proposed
method. Some conclusions and discussions are made in Section 7.

2. PROBLEM STATEMENT

Consider the following multi-objective dynamic optimization problem (MODOP) with a
specified final time tf ;

min
uðtÞ2O

J1ðxðtf ÞÞ

and min
uðtÞ2O

J2ðxðtf ÞÞ

..

.

and min
uðtÞ2O

JI ðxðtf ÞÞ

ð1Þ

or in a more compact form

min
uðtÞ2O

Jðxðtf ÞÞ ¼ ½J1ðxðtf ÞÞ; . . . ; JI ðxðtf ÞÞ�T ð2Þ

Here, xðtÞ denotes the n� 1 state vector with initial condition xð0Þ ¼ x0; uðtÞ is the m� 1 control
vector; O is the feasible region in the control action space uðtÞ that satisfies some constraints,
O ¼ fuðtÞjhðxðtÞ; uðtÞÞ ¼ ’xxðtÞ � fðxðtÞ; uðtÞÞ; xð0Þ ¼ x0; gðxðtÞ; uðtÞÞ40; u4uðtÞ4%uug; hð*Þ ¼ ½h1ð*Þ;
. . . ; hLð*Þ�T and gð*Þ ¼ ½g1ð*Þ; . . . ; gK ð*Þ�T are equality and inequality constraints, respectively; u
and %uu are the lower/upper bounds for control vector; and Jðxðtf ÞÞ denotes an I � 1 dimensional
objective function vector.

The multi-objective dynamic optimization problem is to determine the optimal control policy
unðtÞ over t 2 ½0; tf � which brings the state vector xðtÞ from the initial condition x0 to the final
state xðtf Þ so that these objectives in Jðxðtf ÞÞ; regardless of the commensurability, are minimized
under given constraints. These objective functions, however, are usually conflicted with one
another in practice. It is thus impossible to attain their own optimum, Jn

i ðxðtf ÞÞ
0s;

simultaneously. The optimization of one objective implies the sacrifice of other targets.
Therefore, the decision maker must make some compromise among these goals. In contrast to
the optimality used in single objective optimization problems, Pareto optimality characterizes
the solutions in a multi-objective optimization problem [9–11].

Definition 1

unðtÞ 2 O is said to be Pareto optimal for Equation (2), if and only if there exists no uðtÞ such that
JiðuðtÞ; xðtf ÞÞ4JiðunðtÞ; xnðtf ÞÞ for all i 2 f1; . . . ; Ig and JjðuðtÞ;xðtf ÞÞ5JjðunðtÞ; xnðtf ÞÞ for some
j 2 f1; . . . ; Ig:

From the above definition, the number of solutions satisfying Pareto optimality in a
multi-objective optimization problem can be infinite. It is difficult for the DM to attribute
a set of incompatible objectives, such as economic efficiency, safety, reliability, or environmental
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impact, without knowledge of the possible level of attainment for those objectives. It is
thus a fuzzy problem for finding a Pareto optimal solution that best satisfies the decision
maker.

3. FUZZY DECISION MAKING IN MODOP

In this work, we extended the fuzzy set theory of Zadeh [12] to deal with the multi-objective
dynamic optimization problem. By considering the uncertain property of human thinking, it is
quite natural to assume that the DM has multiple fuzzy goals, Ji; i ¼ 1; . . . ; I ; where an
interval ½J‘

i ; J
u
i � exists for each fuzzy objective Ji: For the ith minimum objective, it is

thoroughly satisfied as the objective value Jiðxðtf ÞÞ is less than J‘
i ; and it is unacceptable as

Jiðxðtf ÞÞ4Ju
i : For a Jiðxðtf ÞÞ value in between J‘

i and Ju
i ; the extent of satisfaction by the DM

decreases with an increase in its value. A strictly monotonic decreasing membership function,
mJi

ðJiðxðtf ÞÞÞ 2 ½0; 1�; can be used to characterize such a transition from the objective value,
Jiðxðtf ÞÞ; to the degree-of-satisfaction, m

Ji
[7]

mJi
ðJiðxðtf ÞÞÞ ¼

1 for Jiðxðtf ÞÞ5J‘
i

FJi
ðJiðxðtf ÞÞ; J‘

i ; J
u
i Þ for J‘

i 4Jiðxðtf ÞÞ4Ju
i

0 for Jiðxðtf ÞÞ > Ju
i

8>><
>>: ð3Þ

Here, a membership value of 1 denotes absolute satisfaction and 0 means unacceptable. The
original MODOP is now equivalent to look for a suitable control policy that can provide the
maximal degree-of-satisfaction for the multiple fuzzy objectives.

max
uðtÞ2O

mJ1
ðJ1ðxðtf ÞÞÞ

and max
uðtÞ2O

mJ2
ðJ2ðxðtf ÞÞÞ

..

.

and max
uðtÞ2O

mJI
ðJI ðxðtf ÞÞÞ

ð4Þ

or in a more compact form,

max
uðtÞ2O

mðxðtf ÞÞ ¼ ½mJ1
ðJ1ðxðtf ÞÞÞ; . . . ;mJI

ðJI ðxðtf ÞÞÞ�T ð5Þ

Under incompatible objective circumstances, a DM must make a compromise decision that
provides a maximum degree-of-satisfaction for all of these conflict objectives. The new
optimization problem, Equation (5), can be interpreted as the synthetic notation of a
conjunction statement (maximize jointly all objectives). The result of this aggregation, D; can be
viewed as a fuzzy intersection of all fuzzy objectives, Ji; i ¼ 1; . . . ; I ; and is still a fuzzy set.

D ¼ J1 \J2 \ � � � \JI ð6Þ
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The final degree-of-satisfaction resulting from certain kinds of control actions, mDðxðtf ÞÞ;
over t 2 ½0; tf � can be determined by aggregating the degree-of-satisfaction for all objectives,
mJi

ðJixðtf ÞÞ via specific t-norm, T:

mDðxðtf ÞÞ ¼ TfmJ1
ðJ1ðxðtf ÞÞÞ; . . . ;mJI

ðJI ðxðtf ÞÞÞg ð7Þ

The fundamental properties for a fuzzy set and the related operators can be found in Reference
[20]. As the firing level for each control policy is determined by the above procedure, the best
control policy unðtÞ with the maximal firing level, mn

DðuðtÞÞ; over t 2 ½0; tf � can be selected.

mn

Dðxðtf Þ; u
nðtÞÞ ¼ max

uðtÞ2O
mDðxðtf ÞÞ

¼ max
uðtÞ2O

TfmJ1
ðJ1ðxðtf ÞÞÞ; . . . ;mJI

ðJI ðxðtf ÞÞÞg ð8Þ

Two famous t-norms are discussed here.

1. T ¼ algebraic product

mn

Dðxðtf Þ; u
nðtÞÞ ¼ max

uðtÞ2O

YI
i¼1

mJi
ðJiðxðtf ÞÞÞ ð9Þ

2. T ¼ Zadeh-minimum

mn

Dðxðtf Þ; u
nðtÞÞ ¼ max

uðtÞ2O
minfmJ1

ðJ1ðxðtf ÞÞÞ; . . . ;mJI
ðJI ðxðtf ÞÞÞg ð10Þ

Notably, an equivalent expression when the Zadeh-minimum is used as the t-norm is,

max
uðtÞ2Oþ

a ð11Þ

where Oþ ¼ O\ fmJi
ðJiðxðtf ÞÞÞ5a; i ¼ 1; . . . ; Ig:

4. RELATED MATHEMATICAL THEOREMS

Since the original problem, Equation (2), has been modified as an another multi-objective
problem, Equation (5), using the t-norm, this new problem is converted into a new single
objective problem, Equation (8). It is necessary to ensure that the solution from this procedure is
Pareto for Equation (2). Since the original problem may be non-convex, only local Pareto
is guaranteed if a local optimizer is applied [9]. Should the global optimum is emphasized for
non-convex non-linear optimal control problems, one can refer to recent work done by Esposito
and Floudas [21]. However, the calculations involved can be hard to unravel. Notably,
that Equation (5) is also a multi-objective problem, it makes sense to give the following
definitions [10]:
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Definition 2

un in O is said to be (local) M-Pareto optimal for Equation (2) if and only if it is (local) Pareto
for Equation (5), that is, there exists no u such that mJi

ðuÞ5mJi
ðunÞ 8i; with strict inequality for

some i; where M refers to membership.

Note that the set of (local) Pareto optimal solutions is a subset of the set of (local) M-Pareto
optimal solutions. Using the above definitions, it is clear that only (local) M-Pareto solutions
can be looked for as Equation (2) is solved through Equation (5) and a local optimizer is used.
Thus, it is quite natural to question

1. How can we guarantee a (local) M-Pareto solution for Equation (2) as the t-norm is used?
2. Under what conditions is a (local) M-Pareto solution a (local) Pareto?

To answer these queries, the following propositions [22] can be applied:

Proposition 1

Let T be an arbitrary t-norm. If un is the unique (local) optimal solution for Equation (8), then
un is (local) M-Pareto.

Proposition 2

If un is a (local) optimal solution for Equation (8) such that mJi
=0 8i; and T is strictly

monotonous, then un is (local) M-Pareto for Equation (2).

Based on Propositions 1 and 2, the following corollaries arise:

Corollary 1

An (local) optimal solution for Equation (9), say un is (local) M-Pareto for Equation (2), if
either it is the only (local) solution or mJi

½un�=0 8i; since the Product is a strictly monotonous t-
norm.

Corollary 2

An (local) optimal solution from Equation (10) or Equation (11) will be (local) M-Pareto when
it is unique, because the Zadeh-min is not strictly monotonous.

Based on these corollaries and the property of the product operator, as the control policy
causes some objectives to deviate from their own optimum to an unacceptable extent,
membership values for these objectives will become zero. At that time, this control policy will be
rejected. Thus, as the product is used for solving Equation (8), any meaningful solution will be
(local) M-Pareto. On the other hand, when Zadeh-min is used as the aggregate, a test for the
uniqueness of the (local) optimal solution for Equation (10) or Equation (11) is unavoidable to
ensure the (local) M-Pareto solution. Furthermore, as strictly decreasing functions are used to
calculate membership value for each objective, the solution with (local) Pareto optimality can be
found from the following propositions:

Proposition 3

Let un be (local) M-Pareto for Equation (2) with mJi
2 ð0; 1Þ 8i: If all of the mJi

functions are
strictly decreasing, then un is (local) Pareto for Equation (2).
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Proposition 4

Let un be an (local) optimal solution for Equation (8) with all of the mJi
being strictly

decreasing. un is the (local) Pareto for Equation (2) if either

1. un is the unique (local) solution or
2. T is strictly monotonous and mJi

2 ð0; 1Þ 8i:

From the above discussions, if Zadeh-min is selected as the t-norm, the key point that
guarantees (local) Pareto solution is to determine the unique optimal solution. To achieve this,
two strategies can be utilized. The first is to employ a global optimization technique to
determine the solution [21]. However, it is difficult to justify whether the solution is the only
global optimum or not. The second strategy is to employ the augmented minimax algorithm
[10]. The merit of this method is that it circumvents the necessity for testing the uniqueness of
the solution by modifying the objective function. Based on this algorithm, Equation (10) can be
reformulated as follows:

min
uðtÞ2O

max
8i

½ %mmi � mJi
ðJiÞ� þ r

XI
i¼1

½ %mmi � mJi
ðJiÞ�

( )
ð12Þ

or equivalently
min
uðtÞ2O

o

s:t: %mmi � mJi
ðJiÞ4o� r

PI
i¼1

½ %mmi � mJi
ðJiÞ� i ¼ 1; . . . ; I

ð13Þ

where %mmi is the reference membership level determined by the DM, and r is a sufficiently small
positive constant. For such a modification, we can apply the following theorem, which is similar
to the works done by Sakawa et al., to ensure the properties of the solution:

Theorem 1

Let un be a (local) optimal solution for Equation (12) or Equation (13) for some %mmi; i ¼ 1; . . . ; I :
Then un is a (local) Pareto optimal solution of Equation (2).

5. THE ITERATIVE DYNAMIC PROGRAMMING (IDP)
INCORPORATING FUZZY DECISION

Methods for solving the dynamic optimization problems can be classified into three major
categories: (1) the variation-based approach, (2) the non-linear programming (NLP) approach
and (3) the dynamic programming. The variation-based methods, a direct applications of
Pontryagin’s minimum principle, transforms the original problem into a two-point-boundary-
value problem (TPBVP). It is usually a complex and extreme difficult task to solve the resulting
TPBVP, however. The NLP approaches, including complete parameterization [1, 3] and control
parameterization [2, 5, 6, 19], transform the dynamic optimization problem into a general non-
linear optimization problem. Any standard NLP technique can then be used to determine the
solution. All of these parameterization methods exhibit convergence difficulties, and it is difficult
to obtain a global optimum because of the highly non-linear, multi-modal, and/or discontinuous
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natures of these systems. The direct use of dynamic programming in solving dynamic
optimization problems is usually difficult. Two major barriers discourage the use of dynamic
programming. The greatest difficulty is the problem of setting up the grid values for the state
and control. To produce a meaningful result, the state grids must be sufficiently fine. At each
time stage, therefore, a large numbers of integration must be performed for each state grid and
each allowable control value. A greater problem arises when the trajectory calculated for a
particular grid point does not meet a grid point at the next time step. Under such condition,
interpolation can be used, but the resulting approximation is usually unreliable.

Recently, Luss [4] proposed the so-called iterative dynamic programming (IDP) to alleviate
the computational burdens of the original dynamic programming. By using the accessible grid
points and region-reduction strategy, the IDP can successfully overcome the curse of
dimensionality, and its computational effectiveness has been elucidated in many reports, such
as Reference [23]. Although IDP is not a deterministic global optimizer which can guarantee
convergence to the global solution, there are many advantages. First, it is easy for
implementation and no gradient information is required. Second, the probability of obtaining
the global solution is high and can be even higher by increasing the parameter resolution and by
repeating the optimization process with several different initial trials. These properties are very
practical in real industrial environments. One of the best inherent properties of dynamic
programming is that it is easy to extend the algorithm into parallel or distributed computation.
As the computation efforts is heavily related to the number of state grids, the computation effort
can be reduced significantly if multiple searching loops work simultaneously. Therefore, the
barrier of numerous integrations is overcome by the parallel version of IDP, proposed by Hartig
et al. [24]. In this article, only the regular version is demonstrated because the major purpose of
this paper is to illustrate the fuzzy decision making.

In order to apply the IDP to solve our problem, Equation (8), we first divide the entire time
horizon into P time stages, P ¼ tf =T : Further assume that the control action within each
duration T is kept constant. Therefore, the original infinite-dimensional problem can then be
put into the following finite-dimensional form:

max
ui2 *OOd

TfmJ1
ðJ1ðxðtf ÞÞÞ; . . . ; mJI

ðJI ðxðtf ÞÞÞg ð14Þ

where *OOd is the feasible searching space defined as

*OOd ¼fu0; . . . ; uP�1 j hðxðtÞ; uðtÞÞ ¼ ’xxðtÞ � fðxðtÞ; uðtÞÞ;xð0Þ ¼ x0; gðxðtÞ; uðtÞÞ40;

u4uðtÞ ¼ ui4%uu 8t 2 ½iT ; iT þ T �; i ¼ 0; . . . ;P� 1g

The multi-objective dynamic optimization problem can now be regarded as finding a series of
piecewise constant control actions ui; i ¼ 0; . . . ;P� 1 with the highest firing level to attain the
least compromise between the objectives, meanwhile the state equations and related constraints
are all satisfied.

The IDP-based algorithm for the MODOP can be stated as follows:

* Preliminary phase (I): generation of state grid points

1. Divide the time horizon tf into P time stages each with length T ¼ tf =P:
2. Choose the number of state grid points, N; the number of allowable control values,

M; and the testing region r for control action.
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3. By Choosing M sets of control actions at the time stages, integrate the dynamic
equation M times to generate the state grids at the time stages.

* Preliminary phase (II): generation of payoff table

1. Determine the optimal value for each single objective, Jn
i ; and record the

corresponding control policy, uni : Meanwhile record the other objective values
when applying uni ; i.e. Js;s=i s ¼ 1; . . . ; I :

2. Construct the payoff table (Table I),
3. Let J‘

i ¼ Jn
i ðu

n
i Þ and Ju

i ¼ max8sfJiðuns Þg: Determine the membership function FJi

for each objective.
4. Choose a suitable t-norm to perform aggregation. If the Zadeh-min is used, it is

needed to modify the objective function and assign the %mmi and r values. The default
values for %mmi and r can be set as 1.0 and 10�3; respectively.

* Search by the IDP:

1. Begin at the ðP� 1ÞT ; corresponding to time tf � T : Integrate the dynamic equation
from time tf � T to tf ; starting from each grid point and using each of the M
allowable control values.

2. Calculate membership values for all objects at tf attained by the M control actions
at each grid point.

3. Take aggregation on each objective via the selected t-norm operator to calculate
firing levels for the control actions.

4. Select the control action with highest firing level as the best choice for the state grid
and record it.

5. Step back one stage, corresponding to time tf � 2T : Integrate the dynamic equation
from time tf � 2T to tf for each state grid with M allowable control actions. To
continue integration from tf � T to tf ; use the best control action for the closet state
grid point tf � T :

6. Re-calculate membership values for all objects at tf ; since state trajectory at tf does
not exactly meet target value obtained from previous computation. Take
aggregation on objects to calculate firing level for each control value used at this
stage.

7. Select the control action with highest firing level as the best choice.
8. Continue the above procedure until t ¼ 0: Store control actions with maximal fuzzy

decisions and store the corresponding state trajectory.

Table I. The payoff table for a standard multi-objective
optimization problem.

J1ðuni Þ � � � Jsðuni Þ � � � JI ðuni Þ

Jiðun1Þ Jn
1 ðu

n
1Þ � � � Jsðun1Þ � � � JI ðun1Þ

..

. ..
. . .

. ..
. . .

. ..
.

Jiðuns Þ J1ðuns Þ � � � Jn
s ðu

n
s Þ � � � JI ðuns Þ

..

. ..
. . .

. ..
. . .

. ..
.

JiðunI Þ J1ðunI Þ � � � JsðunI Þ � � � Jn
I ðu

n
I Þ
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9. Reduce the region for state grid and region for allowable control values using a
contracting factor e; i.e.

rðjþ1Þ ¼ ð1� eÞrðjÞ ð15Þ

where j is iteration index. Use the optimal state trajectory from previous search as
the midpoint for the state grid at each time stage. Use the optimal control policy
from previous steps as the midpoint for allowable values for control.

10. Increment the iteration index j by 1 and go back to step 1. Continue the iteration for
a specific number of iterations, such as 20, and examine the results.

Notably, the number of required integrations (NT ) for each iteration can be analytically figured
out as follows:

NT ¼ M � P� 1þ
NðP� 1Þ

2

� �
ð16Þ

One can estimate the overall computation time if M; N; P and the number of iterations are
given. Though the proposed method requires huge resources of computer processing time, it has
a significant potential to solve real industrial problems due to its easy implementation. The
feasibility and superiority of the IDP for solving the MODOP is demonstrated in next section.

6. NUMERICAL EXAMPLES

Two chemical processes are used to demonstrate the proposed algorithm. The first example
concerns the multi-objective dynamic optimization for the non-vaporized Nylon-6 polymeriza-
tion in the batch process. The second is production of penicillin G via fed-batch fermentation.
We use the Pentium-100 personal computer, and DVERK and LSODI integration packages for
computation.

6.1. Example 1: Nylon 6 polymerization problem

The optimization for Nylon 6 polymerization has drawn considerable attention in the past
decade. Ray and Gupta [25] explored the optimum temperature profiles using the minimum
principle for respective single objective. Recently, Wajge and Gupta [26] applied the so-called
surrogate worth trade-off (SWT) method to study the operation under two objective functions.
Based on the mass and moment equations proposed by Ramagopal et al. [27], we attempt to find
the temperature profiles TðtÞ which simultaneously optimize the following three objectives:

min J1 ¼ concentration of unreacted monomer in product

min J2 ¼ concentration of undesirable cyclic compounds

ðprimarily; cyclic dimerÞ in product; ½C2�tf ðmol=kgÞ

min J3 ¼ reaction time; tf ðhÞ
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Meanwhile, the following constraints are considered:

1. To ensure a single phase polymerization, the control variable (temperature) should be
limited within the range between 220 and 2708C;

2208C4TðtÞ42708C ð17Þ

2. To guarantee processing properties (number average molecular weight MNðtf Þ within 1:4�
104 and 2� 104), the stopping criterion is setting the number average chain-length of
polymer, CLNðtf Þ; to be 140

CLNðtf Þ ¼ 140 ð18Þ

Under this condition, the number average molecular weight MNðtf Þ is about 1:6� 104:
3. To facilitate and smooth control profile for implementation, the change in temperature

between successive time intervals should not exceed 208C

jTðtkÞ � Tðtk�1Þj4208C ð19Þ

Furthermore, each time interval must be larger than 15 min

tk � tk�1 > 15 min ð20Þ

In this example, we set N ¼ 49; M ¼ 5; P ¼ 10 and 30 iterations for each run of optimization.
With the same physical data, initial conditions and tolerance as that of Wajge and Gupta [26],
we first determine optimal values for considered objectives to establish the payoff table, as
shown in Table II. The results in Table II show that:

* When the polymerization temperature is maintained at its highest value, 2708C; the
concentration of unreacted monomer can be kept at the lowest level and the reaction time
the shortest. The cyclic compound concentration is increased, however.

* The reaction temperature should be kept at the lowest value, 2208C; to suppress the cyclic
compound concentration.

From the above results, the control profiles can be qualitatively divided into three stages:

Stage 1: Initializing the reaction with the highest temperature to promote the monomer
conversion.

Stage 2: Keeping the temperature at its lowest level to limit the concentration of undesired
product as low as possible.

Stage 3: Re-increasing the temperature to raise the product concentration.

Table II. Payoff table for Nylon 6 batch polymerization.

TðtÞ J1ðuni Þ ¼ ½C1�tf J2ðuni Þ ¼ ½C2�tf J3ðuni Þ ¼ tf

Jiðun1 ¼ 2708CÞ 1.9005 0.01202 6.071

Jiðun2 ¼ 2208CÞ 2.2430 0.00735 35.33

Jiðun3 ¼ 2708CÞ 1.9005 0.01202 6.071
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Based on Table II, we set up the following linear type membership functions, designated as
Condition-1, to express our preference on each objective.

mJ1
¼

1 if J151:9005

2:2430� J1

2:2430� 1:9005
if 1:90054J142:2430

0 if J1 > 2:2430

8>>>><
>>>>:

ð21Þ

mJ2
¼

1 if J250:00735

0:01202� J2

0:01202� 0:00735
if 0:007354J240:01202

0 if J2 > 0:01202

8>>>><
>>>>:

ð22Þ

mJ3
¼

1 if J356:071

35:330� J3

35:330� 6:071
if 6:0714J3435:330

0 if J3535:330

8>>>><
>>>>:

ð23Þ

Here, both min and product are utilized as fuzzy aggregation for exploring the effect on final
results, such as shown in Table III. Table III illustrates the fact that min operator has the
tendency to distribute the preference on average. It can be seen in the third column of the table
that membership values are all equal to 0.61. However, the product is more inclined to
concentrate the preference on some objectives. This can be shown in the fifth column that
membership values for J1 and J3 are larger than that of J2: Control profiles for Condition-1
are shown in the following. Notably, applying the min operator in aggregation does not
guarantee that the final results is (local) Pareto optimal. We modify the max–min type objective
function into the augmented min–max type objective function. The simulation results for this
modification are listed in Table IV, Comparing the results from Tables III to IV, we find that
although we have replaced the max–min type objective function with the augmented min–max
type function, the final results do not change significantly. The possible reason is that
IDP determines the unique solution for the former objective function. But, to ensure (local)
Pareto optimality, we still recommend using the augmented min–max type objective function
(Figure 1).

Table III. Comparisons between min and product operator
under Condition-1 (Example 1).

min product

mJ mJ

½C1�tf 2.0339 0.61 1.9634 0.8164

½C2�tf 0.00917 0.61 0.00989 0.4563

tf 17.472 0.61 14.354 0.7169
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Now considering a practical operation (8 h per day), the maximal allowable operating time is
changed from 35.330 to 15 h (Condition-2). The membership function for operating time
becomes,

mJ3
¼

1 if J356:071

15� J3

15� 6:071
if 6:0714J3415

0 if J3 > 15

8>>>><
>>>>:

ð24Þ

For this modification, we also use the min and the product operators to perform the aggregation
at the beginning. The results are listed in Table V, which are similar to results from Condition-1.
The control profiles are shown in Figure 2. We replaced the min–max type objection function by
the augmented max–min objective function. The simulation results are shown in Table VI.

Table IV. Results for augmented min–max type function
under Condition-1 (Example 1).

Aug. min–max Aug. min–max
(r ¼ 10�3) (r ¼ 10�5)

mJ mJ

½C1�tf 2.0342 0.61 2.0341 0.61

½C2�tf 0.00917 0.61 0.00917 0.61

tf 17.441 0.61 17.478 0.61

Figure 1. Temperature profiles for Condition-1 (Example 1).

Table V. Comparisons when using min and product under
Condition-2 (Example 1).

min product

mJ mJ

½C1�tf 2.0751 0.49 1.9917 0.7338

½C2�tf 0.00973 0.49 0.01056 0.3126

tf 10.624 0.49 8.747 0.7003
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6.2. Example 2: Penicillin G fed-batch fermentation

The simplified Heijnen’s model [28] was considered:

dS

dt
¼ �sX þ uðtÞ

dX

dt
¼ nX

dP

dt
¼ pX � khP

dG

dt
¼

1

Cs;in
uðtÞ � 0:0008G

dCs

dt
¼

1

G

dS

dt
�

Cs

G

dG

dt

ð25Þ

In these equations, S; X and P denote the amount of substrate (glucose), cell mass and product
(penicillin) in broth, respectively. G is the total broth weight. u is substrate feed rate (mole/hr).
Cs;in and Cs designate the glucose concentration in feed and broth, respectively. kh is the
penicillin hydrolysis constant. The specific rates s; n; and p are modelled as follows.

1. The specific substrate rate s is modelled by a Monod-type relationship.

s ¼ Qs;max
Cs

Ks þ Cs
ð26Þ

where Qs;max denotes the maximum specific sugar uptake rate and Ks is the Monod constant for
the sugar uptake.

Figure 2. Temperature profiles for Condition-2 (Example 1).

Table VI. Results for augmented min–max type function
under Condition-2 (Example 1).

Aug. min–max Aug. min–max
ðr ¼ 10�3Þ ðr ¼ 10�5Þ

mJ mJ

½C1�tf 2.0759 0.49 2.0752 0.49

½C2�tf 0.00974 0.49 0.00973 0.49

tf 10.636 0.49 10.632 0.49
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2. The (overall) specific growth rate n is given by

n ¼ YX=Sðs�m� p=YP=SÞ ð27Þ

where m is the overall specific maintenance demand. YX=S is the biomass-on-substrate yield
coefficient. YP=S denotes the product-on-substrate yield coefficient.

3. The specific production rate p is assumed to be directly coupled with the specific growth
rate m; following a Blackman-type relation

pðnÞ ¼ Qp;max

n
ncrit

for n4ncrit

1 for n5ncrit

8<
: ð28Þ

where Qp;max denotes the maximal specific production rate, and ncrit is critical specific growth
rate.

The initial conditions and the related physical data are shown in Table VII. Now, if we limit the
glucose feeding rate as not exceeding 2000 mole=h; and assign the total amount of glucose
during the operation as equal to 2� 105 mol:

04uðtÞ42000 mol=h ð29ÞZ tf

0

uðtÞ dt ¼ 2� 105 mol ð30Þ

Such a fermentation process can be divided into two phases [28]. The first phase is rapid growth
with almost no product formation and the second phase has limited growth during product
formation. Thus the optimization problem can now be formulated as finding the glucose feeding
policy uðtÞ that simultaneously maximizes the final product amount J1 ¼ Pðtf Þ and finishes the
operation in the shortest time J2 ¼ tf : That is,

J1 ¼ max
uðtÞ

Pðtf Þ ¼ min
uðtÞ

�Pðtf Þ ð31Þ

J2 ¼ min
uðtÞ

tf ð32Þ

Table VII. Initial conditions and constants used in Penicillin G fermentation model.

S 5500 mole kh 0.002 1
h

X 4000 mol dry weight Qs;max 0.0245 mole
ðmol dry weightÞðhÞ

P 0 mol Qp;max 3:3� 10�4 mole
ðmol dry weightÞðhÞ

G 1� 105 kg m 0.0034 mole
ðmol dry weightÞðhÞ

Cs;in 1=0:36 mole
kg

YX=S 3.67 mol
mol dry weight

Cs 0.055 mole
kg

YP=S 0.46 mole
mole

Ks 0.0056 mole
kg

ncrit 0.01 1
h
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As stated previously, we must search for the optimal value for each single objective to build the
payoff table. By using the IDP with N ¼ 49; M ¼ 5; P ¼ 10 and the number of iteration is 30,
we can produce 7878 mol of penicillin G during 232:2 h of operation if only the maximum
production is considered. However, one can obtain 3463 mole of product when the shortest
operating time, tf ¼ 100 h; is involved. The payoff table can be found in Table VIII. The linear
type membership functions can then be constructed to depict the change in preference for
individual objective.

mJ1 ¼

1 if J1 > 7878

J1 � 3463

7878� 3463
if 78785J153463

0 if J153463

8>>>><
>>>>:

ð33Þ

mJ2 ¼

1 if J25100

232:3� J2

232:3� 100
if 1004J24232:3

0 if J2 > 232:3

8>>>><
>>>>:

ð34Þ

As we use the min operator to perform the fuzzy aggregation, profiles for control policy and
specific growth rate are shown in Figure 3. As product is used as the aggregating operator, the
resulting control policy and specific growth rate are shown in Figure 4. The numerical results
using different operators that are slightly different, as depicted in Table IX.

7. CONCLUSIONS

An algorithm applying iterative dynamic programming and fuzzy inference to solve the multi-
objective optimal control problems is proposed. The optimal control policy for each objective is

Table VIII. Payoff table for Penicillin G fed-batch
fermentation.

J1ðuni Þ J2ðuni Þ

Jiðun1Þ 7878 232.3

Jiðun2Þ 3463 100

Figure 3. Control policy and specific growth rate m ðT ¼ minÞ:
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determined sequentially at first. The payoff table is established by applying these optimal control
policies to individual objective. A simple monotonic increasing or decreasing membership
function is then used to define the degree of satisfaction for each objective function. The final
optimal control policy is searched by maximizing the aggregated membership values. Herein,
two popular t-norms, the min and the product, have been applied as the fuzzy aggregation. By
applying the fuzzy aggregation and payoff table approach, one can obtain single Pareto optimal
solution that best satisfies the decision maker with least subjective knowledge. This hybrid
algorithm is not only easy to implement, but powerful and efficient in computation. Two
chemical processes, the Nylon 6 batch polymerization and the Penicillin G fed-batch
fermentation, are used to demonstrate the feasibility and superiority of the proposed algorithm.
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