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Abstract

A multi-product, multi-stage, and multi-period scheduling model is proposed in this paper to deal with multiple incommensurable goals
for a multi-echelon supply chain network with uncertain market demands and product prices. The uncertain market demands are modeled
as a number of discrete scenarios with known probabilities, and the fuzzy sets are used for describing the sellers’ and buyers’ incompatible
preference on product prices. The supply chain scheduling model is constructed as a mixed-integer nonlinear programming problem to satisfy
several conflict objectives, such as fair profit distribution among all participants, safe inventory levels, maximum customer service levels, and
robustness of decision to uncertain product demands, therein the compromised preference levels on product prices from the sellers and buyers
point of view are simultaneously taken into account. The inclusion of robustness measures as part of objectives can significantly reduce the
variability of objective values to product demand uncertainties. For purpose that a compensatory solution among all participants of the supply
chain can be achieved, a two-phase fuzzy decision-making method is presented and, by means of application of it to a numerical example,
proved effective in providing a compromised solution in an uncertain multi-echelon supply chain network.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Industries around the world are now all rushing the ter-
ritory of globalization and specialization. Cooperating with
good strategic partners is the sure way to tackle the po-
tential problems arising from competition. Companies can
achieve the optimum operating efficiency by working with
other companies through communication and specialization,
which evolve a new type of relationship, the supply chain
relationship, among these companies and further foster a
new concept in management: the supply chain management
concept. A great variety of companies, those in chemical
industry included, can also take advantage of this novel
management scheme. Therefore, many researchers in pro-
cess systems engineering (PSE) society devote themselves
to this interesting field (Applequist, Pekny, & Reklaitis,
2000; Bose & Pekny, 2000; Chen, Wang, & Lee, 2003;
Garcia-Flores, Wang, & Goltz, 2000; Gupta & Maranas,
2000; Gupta, Maranas, & McDonaldet, 2000; Perea-Lopez,

∗ Corresponding author.+886-2-23636194; fax:+886-2-23623040.
E-mail address:CCL@ntu.edu.tw (C.-L. Chen).

Grossmann, & Ydstie, 2000; Pinto, Joly, & Moro, 2000;
Zhou, Cheng, & Hua, 2000; to name a few).

In traditional supply chain management, the focus of the
integration of supply chain network is usually on single
objective, minimum cost or maximum profit. For example,
Gjerdrum, Shah, and Papageorgiouet (2001)proposed a
mixed-integer linear programming model for a production
and distribution planning problem and solve the fair profit
distribution problem by using the Nash-type model as the
single objective function. However, there are no design tasks
that are single objective problems. The design/planning/
scheduling projects are usually involving trade-offs among
different incompatible goals(Cheng, Subrahmanian, &
Westerberg, 2003). Recently, a multi-objective production
and distribution-scheduling scheme for a supply chain sys-
tem is formulated byChen et al. (2003). In this method,
in addition to maximizing profit for the entire system, fair
profit distribution among all members, customer service
levels, and safe inventory levels are taken into account
simultaneously. All the problem parameters are determin-
istically known in the model. In practice, however, this is
rarely the case as it is usually difficult to foretell prices
of chemicals, market demands, and availabilities of raw
materials, etc., in a precise fashion (Liu & Sahinidis, 1997).
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A number of works have devoted to studying supply chain
management under uncertain environments. For example,
Gupta and Maranas (2000), Gupta et al. (2003)incorporate
the uncertain demand via a normal probability function and
propose a two-stage solution framework. A generalization
to handle multi-period and multi-customer problems is re-
cently proposed (Gupta & Maranas, 2003). Tsiakis et al.
(2001)use scenario planning approach to describe demand
uncertainties. Therein a number of demand scenarios with
assigned non-zero probabilities is used as discrete stochastic
demand quantities. All scenarios are simultaneously taken
into account in the supply chain network design. However,
the robustness of decision to uncertain product demands is
not considered in these studies. Due to the potential of deal-
ing with linguistic expressions and uncertain issues (Zadeh,
1965; Petrovic, Roy, & Petrovic, 1998) use fuzzy sets to
handle uncertain demands and external raw material prob-
lems, and further considering uncertain supply deliveries in
a later work (Petrovic, Roy, & Petrovic, 1999). Giannoccaro,
Pontrandolfo, and Scozzi (2003)also apply fuzzy sets the-
ory to model the uncertainties associated with both market
demand and inventory costs. The product price, despite with
their obvious negotiable and uncertain characteristics in
real businesses, seems seldom to be taken into account as a
source of uncertainty in previous works. Instead, the prod-
uct prices at selling points are usually treated as determined
parameters.

In this paper, we incorporate two kinds of uncertain-
ties including the market demands and product prices. The
scenario-based approach will be adopted for modeling the
uncertain market demands, and the product prices will be
taken as fuzzy variables where the incompatible preference
on prices for different members are handled simultaneously.
The whole supply chain scheduling model would turn into
a mixed-integer nonlinear programming (MINLP) problem
ultimately. The compromised solution for ensuring fair profit
distribution, safe inventory levels, maximum customer ser-
vice levels, decision robustness to uncertain product de-

Fig. 1. Research region.

mands, and simultaneously considering incompatible prefer-
ence of product prices for all participants will be determined
by applying the fuzzy multi-objective optimization method.

In the rest of this article, the problem statement and
assumptions are outlined inSection 2. The considered
uncertain issues in supply chain scheduling are de-
scribed inSection 3. The formulation of a production and
distribution-scheduling model is set out inSection 4. The
procedure for grouping the scenario-dependent multiple
conflict objectives and uncertain fuzzy product prices into
a scalar one using the fuzzy sets concept is presented in
Section 5. The contents of a numerical example, used to
demonstrate the usefulness of the proposed method, are
given in Section 6. Finally, some concluding remarks are
drawn inSection 7.

2. Problem description

A general supply chain that consists of three different lev-
els of enterprises is considered and showed inFig. 1 (Chen
et al., 2003): the first level enterprise is retailer or market
from which the products are sold to customer under the con-
ditions subject to a given low bound of customer service; the
second level enterprise is distribution center (DC) or ware-
house using different type of transport capacity to deliver
products from plant side to retailer side; and the third level
enterprise is plant or manufacturer that batch-manufactures
one product at one period. The fixed manufacture/idle costs
are also employed: on one hand, if the production line is
changed over to manufacture another product, manufacture
cost would be remained fixed; on the other hand, if the pro-
duction line is set up to manufacture one specific product
but actually is idle, the idle cost, also fixed. Furthermore,
the plant has options of manufacturing in regular time or
overtime to satisfy the customer demand. To simplify the
problem here, we do not consider the problem of purchase
and inventory of the raw material in plants nor incorporate
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the purchasing cost into manufacturing cost. The research
region of this paper, therefore, is from manufacturer to cus-
tomer, like the dash line region showed inFig. 1. And the
following assumptions have been made:

1. Products are independent to each other, related to mar-
keting and sales price.

2. Each enterprise has its own safe inventory quantity to
reduce the influence of uncertain product demand.

3. Several scenarios of product demands with known proba-
bilities are forecasted over the entire scheduling periods.

4. The buyer’s acceptability for product price can be quite
different from the provider’s.

The overall problem can thus be stated as follows:

• Given:
1. Manufacture data, such as batch manufacturing quan-

tity of regular time and overtime, overtime number
constraint, etc.

2. Transportation data, such as lead time, transport ca-
pacity, etc.

3. Inventory data, such as inventory capacity, safe inven-
tory quantity, etc.

4. Each cost parameter, such as manufacturing, inventory,
etc.

5. The buyers’ and providers’ acceptable levels for prod-
uct prices.

6. Several scenarios of forecasted product demands with
known probabilities.

• Determine:
1. Production plan of each plant.
2. Transportation plan of each DC.
3. Sales quantity and compromised product price of each

participant.
4. Inventory level of each enterprise.
5. All kinds of cost.

• The target is to integrate the multi-echelon decisions si-
multaneously to:
1. Guarantee a fair profit distribution among all partici-

pants.
2. Elevate the customer service levels, the safe inventory

levels, the product-prices satisfaction levels, and the
robustness of all considered objectives to product de-
mand uncertainties as much as possible.

3. Uncertainties in the supply chain scheduling

In the market, the participants of a supply chain not only
face the uncertainties of product demands and raw mate-
rial supplies but also faces the uncertainties of commodity
prices and costs (Liu & Sahinidis, 1997). The first concern
in incorporating uncertainties into supply chain modeling
and optimization is the determination of suitable repre-
sentation of the uncertain parameters (Gupta & Maranas,
2003). Three distinct methods are frequently mentioned
for representing uncertainty (Liu & Sahinidis, 1997; Gupta

& Maranas, 2003): first, the distribution-based approach,
where the normal distribution with specified mean and
standard deviation is widely invoked for modeling uncer-
tain demands and/or parameters; second, the fuzzy-based
approach, therein the forecast parameters are considered as
fuzzy numbers with accompanied membership functions;
and third, the scenario-based approach, in which several dis-
crete scenarios with associated probability levels are used
to describe expected occurrence of particular outcomes. We
will address issues of demand uncertainty and uncertain
product prices in the following.

To simplify the subsequent mathematical calculations, we
will adopt the discrete scenario-based approach for model-
ing uncertain product demands. For applying the discrete
cases representation for modeling uncertain demands, sev-
eral possible outcomes with known probabilities, PPDs, s ∈
S where

∑
∀s∈S PPDs = 1, should be determined at first.

Then all variables will become scenario dependent, and the
expected value of any variable will be the weighted average
of those scenario-dependent values. That is, for any vari-
ablev, we have to solve for several scenario-dependent val-
ues,vs, s ∈ S, and the expected value ofv can be taken
as
∑

∀s∈S PPDsvs. In such a case the deterministic supply
chain model can be easily extended to cope with uncertain
demand conditions, as shown in the next section.

Due to the obvious negotiable and uncertain characteris-
tics of products’ prices at various selling sites in real busi-
nesses, the final product prices are usually result of com-
promised considerations. When contemplating the compet-
itive positions hold between sellers and buyers in settling
sales/purchase prices for a specific product, the preference
of the price would be very different from each one’s point of
view. For example, the retailer would be fully satisfied if the
selling price to customers is higher than an expected high
value, say(USP)1S ; on the other hand, it would be totally un-
acceptable for a price less than a lower minimum(USP)0S ;
and the degree-of-acceptability will increase in accordance
with the increase of price between these two bounds. To de-
scribe such a transition from numerical price value to linguis-
tic preference expression, it is quite suitable to set up a fuzzy
set,SP, with some kinds of monotonic increasing member-
ship function,µSP(USP) whereµSP(USP≤ (USP)0S) = 0,
µSP(USP ≥ (USP)1S) = 1, andµSP((USP)0S < USP <

(USP)1S) = Finc(USP; (USP)0S, (USP)1S) ∈ [0,1], to mea-
sure the seller’s preference for product price. The buyer side,
on the other hand, has its own fuzzy preference of purchase
price,BP, and corresponding monotonic decreasing mem-
bership function,µBP(USP)whereµBP(USP≤ (USP)1B) =
1, µBP(USP≥ (USP)0B) = 0, andµBP((USP)1B < USP<
(USP)0B) = Fdec(USP; (USP)1B, (USP)0B) ∈ [0,1]. The de-
termination of membership functions are usually based on
decision maker’s subjectivity. It has been shown that use
of linear membership functions can provide similar solu-
tion quality to that using more complicated nonlinear mem-
bership functions (Delgado, Herrera, & Verdegay, 1993;
Sakawa, 1993; Liu & Sahinidis, 1997). Thus, we will assume
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Fig. 2. Membership functions for seller’s (a) and buyer’s (b) fuzzy product prices.

Fig. 3. Typical membership functions for fuzzy product prices when
simultaneously considering the seller’s and buyer’s viewpoints.

constant rate of increased/decreased membership satisfac-
tion and will adopt linear membership functions, as shown
below andFig. 2.

µSP(USP)

=




0 for USP≤ (USP)0S
USP− (USP)0S
(USP)1S − (USP)0S

for (USP)0S≤USP≤(USP)1S

1 for USP≥ (USP)1S
µBP(USP)

=




1 for USP≤ (USP)1B
(USP)0B − USP

(USP)0B − (USP)1B
for (USP)1B≤USP≤(USP)0B

0 for USP≥ (USP)0B
(1)

The final product price is determined by a compromising
procedure taken place between these conflicting fuzzy pref-
erences. Some typical final membership functions of the
fuzzy product price—incorporating both the seller’s and
buyer’s—are depicted inFig. 3.

4. Supply chain modeling with demand uncertainty

A general supply chain that consists of three different
levels of enterprises is considered here: the first level en-
terprise is the retailer from which the products are sold

to customers; the second level enterprise is the distribu-
tion center (DC) or warehouse using different type of trans-
port capacity to deliver products from plant side to retailer
side; the third level enterprise is the plant or the manufac-
turer that batch-manufactures one product at one period. In
the following, we develop an integrated multi-echelon sup-
ply chain model for optimal decisions (Chen et al., 2003).
The scenario-based representation for uncertain product de-
mands is considered in the modeling.

4.1. Indices, sets, parameters, and variables

The indices, sets and parameters, designed to model the
supply chain network with product demand uncertainty are
shown in the nomenclature. Therein, parameters are divided
into two categories: the cost parameters, including inventory
cost and transport cost; and other parameters describing the
system information, such as inventory capacity, transport
lead time, etc. Two kinds of scenario-dependent variables are
used: the binary variables that act as policy decisions to use
economies of scale for manufacturing or transportation, and
continuous variables that include manufacturing quantities
and product prices.

4.2. Manufacture constraints

Six constraints on manufacturing are set up for all prod-
ucts and plants over concerned periods.∑
∀i∈I

βipts = 1 (2)

oipts ≤ αipts ≤ βipts (3)

γipts ≥ βipts − βip,t−1,s (4)∑
∀i∈I

∑
∀t∈T

oipts ≤ MTOp (5)

∑
∀i∈I

∑
∀n∈N

oip,t−n+1,s ≤ N − 1 (6)

wherei ∈ I, p ∈ P, t ∈ T, s ∈ S.
Eq. (2)denotes that the plant can be setup for manufactur-

ing one product.Eq. (3)states that the plant is able to manu-
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facture a product in regular time only after the plant has been
setup to produce it, and the plant is able to manufacture the
product in overtime only when the regular time production
is insufficient. InEq. (4), γipts = 1 only if βipts−βip,t−1,s = 1,
thus the plant can be changed to manufacture producti at
periodt. Eq. (5)implies total number of overtime periods is
less than the maximal allowable overtime periods, MTOp.
And Eq. (6) says the number of continuous overtime peri-
ods should be less than a specified valueN. Notably, these
constraints are scenario dependent.

4.3. Transportation constraints

The transportation constraints at considered periods,t ∈
T, in different economic scales are given below.

TCLk
′−1

pd Yk
′

pdts< TQk
′

pdts ≤ TCLk
′

pdY
k′
pdts (7)

TCLk−1
dr Ykdrts < TQkdrts ≤ TCLkdrY

k
drts (8)∑

∀k′∈K′
Yk

′
pdts ≤ 1,

∑
∀k∈K

Ykdrts ≤ 1 (9)

TQpdts =
∑

∀k′∈K′
TQk

′
pdts =

∑
∀i∈I

SQipdts (10)

TQdrts =
∑
∀k∈K

TQkdrts =
∑
∀i∈I

SQidrts (11)

∑
∀p∈P

TQpdts ≤ MITCd (12)

∑
∀r∈R

TQdrts ≤ MOTCd (13)

∀d ∈ D, p ∈ P, r ∈ R, k′ ∈ K′,
k ∈ K, t ∈ T, s ∈ S
Eqs. (7)–(9)imply that several transport-capacity levels with
various unit transport costs can be used, as depicted inFig. 4
for a three-level case, and at most one transport capacity can
be chosen at each period. InEqs. (10) and (11), the transport
quantities of each product from plants to DCs or from DCs to
retailers at each period are respectively translated into total
transport quantities, andEqs. (12) and (13)are constraints
on these total transport quantities.

4.4. Inventory constraints

All relevant inventory constraints in all plants, DCs, and
retailers can be summarized as follows:

Iirts = Iir,t−1,s +
∑
∀d∈D

SQidr,t−TLTdr,s
−
∑
∀c∈C

SQircts (14)

Iidts = Iid,t−1,s +
∑
∀p∈P

SQipd,t−TLTpd,s
−
∑
∀r∈R

SQidrts (15)

Fig. 4. Piecewise linear relation (solid lines) between transport cost (TC)
and shipment quantity (TQ).

Iipts= Iip,t−1,s + FMQipα
i
p,t−1,s

+ OMQipo
i
p,t−1,s −

∑
∀d∈D

SQipdts (16)

Birts = Bir,t−1,s + FCDirts −
∑
∀c∈C

SQircts, BirTs = 0 (17)

∑
∀i∈I

Ii∗ts ≤ MIC∗ (18)

SIQi∗ − Ii∗ts ≤ Di∗ts (19)

Ii∗ts,SQi∗ts, B
i
∗ts,D

i
∗ts ≥ 0 (20)

where∗ ∈ {p, d, r}, p ∈ P, d ∈ D, r ∈ R, i ∈ I, t ∈ T,
s ∈ S.

Here, Eq. (14) states that inventory level of one prod-
uct of a retailer at each period equals the amounts at pre-
vious period plus the amounts received from all DCs and
less the amounts sold to customers. Similar constraints ap-
ply for DCs and plants, as shown inEqs. (15) and (16).
Eqs. (14) and (15)also consider delayed transport quantity
caused by transport lead time.Eq. (17)means that backlog
level of one product equals the amounts at previous period
and added to the amounts of forecasting customer demand,
less the amounts sold to customer; and the backlog at the
last period should be zero for fulfilling expected customer
demand.Eq. (18)says that the amounts of all products can
not exceed the maximal inventory capacity. By using safe
inventory quantity constraints, we can make the short safe
inventory level of a product to be zero if inventory level is
greater than safe inventory quantity, or to be the difference
of safe inventory quantity and inventory level if inventory
level is smaller than safe inventory quantity, as shown in
Eq. (19).
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4.5. Costs and revenues

The plants’ manufacturing costs, purchasing costs for
DCs, retailers and customers, all inventory and handling
costs, and the transportation costs are listed in the following
for all p ∈ P, d ∈ D, r ∈ R, t ∈ T, ands ∈ S.

TMCpts=
∑
∀i∈I

[FMCipγ
i
pts + FICip(β

i
pts − αipts)

+ UMCipFMQipα
i
pts + OMCipOMQipo

i
pts] (21)

TPCdts=
∑
∀p∈P

∑
∀i∈I

USPipdsSQipdts,

TPCrts =
∑
∀d∈D

∑
∀i∈I

USPidrsSQidrts (22)

TIC∗ts =
∑
∀i∈I

UICi∗I
i
∗ts ∗ ∈ {p, d, r} (23)

THCpts

=
∑
∀i∈I

UHCip

×
(

FMQipα
i
p,t−1,s + OMQipo

i
p,t−1,s +

∑
∀d∈D

SQipdts

)

(24)

THCdts =
∑
∀i∈I

UHCid


∑

∀p∈P
SQipd,t−TLTpd,s

+
∑
∀r∈R

SQidrts




(25)

THCrts =
∑
∀i∈I

UHCir

(∑
∀d∈D

SQidr,t−TLTdr,s
+
∑
∀c∈C

SQircts

)

(26)

TTCpts =
∑

∀k′∈K′

∑
∀p∈P

(FTCk
′

pdY
k′
pdts+ UTCk

′
pdTQk

′
pdts) (27)

TTCdts =
∑
∀k∈K

∑
∀r∈R

(FTCkdrY
k
drts + UTCkdrTQkdrts) (28)

PSPpts=
∑
∀d∈D

∑
∀i∈I

USPipdsSQipdts,

PSPdts=
∑
∀r∈R

∑
∀i∈I

USPidrsSQidrts,

PSPrts =
∑
∀c∈C

∑
∀i∈I

USPircsSQircts (29)

In Eq. (21), the manufacturing cost is a composite obtained
by fixed manufacture and idle cost plus regular and overtime
manufacturing costs. Here, theγipts value (measured if we

are going to change production plan to produce producti)
will be either zero (ifβipts − βip,t−1,s = 0, continuing to

produce or not to produce producti) or 1 (if βipts−βip,t−1,s =
1, changeover to start producing producti). Eq. (22)gives
the purchasing costs for DCs and retailers;Eq. (23) is the
inventory cost, andEqs. (24) and (26)are handling costs for
plants, DCs, and retailers, respectively;Eqs. (27) and (28)
are transport costs for plant and DC, respectively. Here, the
transport cost is a composite of transport level-dependent
fixed cost and a transport quantity-dependent carrying cost.
This would cause a discontinuous piecewise linear transport
cost, as illustrated inFig. 4with skipped subscripts. Notably,
the discontinuities in the transport cost make the model more
general than the continuous one proposed byTsiakis et al.
(2001). Finally, Eq. (29)is product sales for all plants, DCs,
and retailers.

4.6. Multiple objectives

The conflict objectives such as each participant’s profit,
the average customer service level, and the average safe
inventory level are considered simultaneously, as stated in
the following.

Objective1: to simultaneously maximize participants’ ex-
pected profits forp ∈ P, d ∈ D, and r ∈ R.

Instead of directly maximizing the overall profit of
the integrated supply chain network, we intend to fairly
distribute the profit to all members within scheduling
periods. The profits of all participants to be maximized
are considered separately, where the profit at periodt

is equal to the product sales less all kinds of costs.

Z∗ =
∑
∀s∈S

PPDsZ∗s, ∗ ∈ {p, d, r} (30)

where

Zps=
∑
∀t∈T

(PSPpts − TMCpts − TTCpts

− TICpts − THCpts) ∀p ∈ P, s ∈ S

Zds=
∑
∀t∈T

(PSPdts − TPCdts − TTCdts

− TICdts − THCdts) ∀d ∈ D, s ∈ S

Zrs =
∑
∀t∈T

(PSPrts − TPCrts − THCrts − TICrts)

∀r ∈ R, s ∈ S.
Objective2: to maximize average safe inventory levels for
p ∈ P, d ∈ D, r ∈ R.

The safe inventory level of retailerr at periodt for
scenarios is defined as the expected average percentage
of 1 less the ratio of short safe inventory level of product
i of retailerr at periodt, Dirts, over the safe inventory
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quantity of producti of retailerr, SIQir, for all products.
Similar definitions are also applied to plants and DCs.
All participants’ safe inventory levels are concerned as
objectives for simultaneous optimization.

SIL∗ =
∑
∀s∈S

PPDsSIL∗s, ∗ ∈ {p, d, r} (31)

where

SIL∗s (%) = 100

IT

∑
∀t∈T

∑
∀i∈I

(
1 − Di∗ts

SIQi∗

)
, ∀s ∈ S

Objective3: to maximize average customer service levels
for r ∈ R.

Under the condition of taking all products into con-
sideration, the customer service level of retailerr at
period t is defined as the expected average percentage
ratio of actual sales quantity of producti from retailer
r to customers at periodt,

∑
∀c∈C SQircts, over the ex-

pected total demand quantity. The expected total de-
mand quantity is the sum of backlog level of product
i for retailerr at the end of periodt − 1, Bir,t−1,s, and
forecasting customer demand of producti to retailerr
at periodt,

∑
∀c∈C FCDircts.

CSLr =
∑
∀s∈S

PPDsCSLrs, ∀r ∈ R (32)

where

CSLrs (%)= 100

IT

∑
∀t∈T

∑
∀i∈I

×
( ∑

∀c∈C SQircts

Bir,t−1,s +∑
∀c∈C FCDircts

)
, ∀s ∈ S.

Objective4: to maximize robustness of selected objectives
to demand uncertainties.

It has been mentioned that all variables are scenarios
dependent when the explicit scenario-based approach
is applied to the uncertain product demand. However,
the profit realization might be unacceptably low for cer-
tain scenarios with especially low probabilities (Suh &
Lee, 2001). It is thus significant to reduce the variabil-
ity of above-mentioned objective values for any real-
ization of scenarios. An important issue in enforcing
robustness to uncertainties is the choice of variabil-
ity metric (Ahmed & Sahinidis, 1998). For those ob-
jectives to be maximized as mentioned previously, the
decision-maker usually does not care if the objective
value is greater than the expected one. We thus propose
the lower partial mean as the measure of robustness,
where only objective values less than the expectation
are penalized and are weighted by probabilities of re-
lated scenarios.

RIm′ =
∑
∀s∈S

PPDs min{0, Jm′s − Jm′ }, ∀m′ ∈M′

(33)

Here,M′ is the index set of objectives inEqs. (30)–(32)
with dimension [M′] = M ′ = 2P + 2D+ 3R.

In summary, the feasible searching space,Ω, are
composite of all constraints mentioned above. The
multiple objectivesJm(x),m ∈ M, whereM is the
index set of all objectives including the robustness
indices with [M] = M = 2M ′, and the decision
vector x are shown below. Notably, further to the
scenario-dependent product prices, the decision vector
x includes all production, transportation, sales quanti-
ties and inventory levels during considered periods.

max
x∈Ω

(J1(x), . . . , JM(x))

= (Zp, Zd, Zr; SILp,SILd,SILr; CSLr; RIm′ ;
∀p ∈ P, d ∈ D, r ∈ R,m′ ∈M′) (34)

x = {αipts, β
i
pts, γ

i
pts, o

i
pts; SQi∗ts; USPi∗s; TQk

′
pdts,TQkdrts,

Yk
′

pdts, Y
k
drts; Iipts, I

i
dts, I

i
rts;Birts;Dipts,D

i
dts,D

i
rts;

∗ ∈ {pd,dr, rc}; i ∈ I, p ∈ P, d ∈ D, r ∈ R,
c ∈ C, k′ ∈ K′, k ∈ K, t ∈ T, s ∈ S} (35)

5. Supply chain optimization with uncertain demands
and prices

By considering the uncertain property of human thinking,
it is quite intuitive to assume that the DM has a fuzzy goal,
Jm, to describe the maximizing objectiveJm with an ac-
ceptable interval [J0

m, J
1
m]. It would be quite satisfactory as

the objective value is greater thanJ1
m, and unacceptable as

the profit is less thanJ0
m, the minimum acceptable objective

value such that the company would like to enter to negotia-
tion for a fair deal in the multi-enterprise network. A strictly
monotonic increasing membership function,µJm(Jm(x)) ∈
[0,1], can be used to characterize such a transition from nu-
merical objective valueJm(x) to degree-of-satisfaction for
Jm. Without loss of generality, we will adopt the linear
membership function since it has been proved in providing
qualified solutions for many applications (Liu & Sahinidis,
1997).

µJm(Jm(x))

=




1; for Jm(x) ≥ J1
m

Jm(x)− J0
m

J1
m − J0

m

; for J0
m ≤ Jm(x) ≤ J1

m ∀m ∈M

0; for J0
m ≥ Jm(x)

(36)

Here,x denotes the argument vector as shown inEq. (35).
The effective range of the membership function, [J0

m, J
1
m],

can sometimes be subjectively defined by company’s deci-
sion makers. Some procedures can also follow for providing
reasonable limiting values for the objective. For those ob-
jectives such as profits and inventory levels and customer
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service levels,Jm′ , m′ ∈ M′, one can use the most op-
timistic expectation as the upper limit,̄J1

m′ = Jm′(x∗
m′),

where x∗
m′ is the optimal solution of the single objective

maximizing problem, maxx∈Ω Jm′(x). And choose the most
pessimistic expectation,J

¯
0
m′ , as the lower limiting value

(Zimmermann, 1978; Sakawa, 1993), where

J
¯

0
m′ = min{Jm′(x∗

i ), i ∈M′}, ∀m′ ∈M′ (37)

As for objectives measuring robustness to uncertainties, the
reasonable upper limit is zero (i.e., absolute robustness),
J̄1
M′+m′ = 0, and the lower limiting value can be found

similar toEq. (37).

J
¯

0
M′+m′ = min{JM′+m′(x∗

i ), i ∈M′}, ∀m′ ∈M′ (38)

One can thus subjectively determine the effective range for
membership functions with the restriction ofJ

¯
0
m ≤ J0

m <

J1
m ≤ J̄1

m. The original multi-objective optimization prob-
lem is now equivalent to look for a suitable decision vector
that can provide the maximal degree-of-satisfaction for the
aggregated fuzzy objectives,J1 ∩ . . .∩JM . When simulta-
neously considering the incompatible fuzzy preference on
product prices from sellers and buyers viewpoints, the final
fuzzy decision,FD, can be interpreted as the fuzzy intersec-
tion between all fuzzy objectives and fuzzy product prices.

FD = Jm ∩ SPipd ∩ SPidr ∩ SPirc ∩ BPipd ∩ BPidr ∩ BPirc
∀m ∈M, i ∈ I, p ∈ P, d ∈ D, r ∈ R, c ∈ C (39)

Noted that the expected product prices, USPi∗ = ∑
∀s∈S

PPDsUSPi∗s, ∗ ∈ {pd,dr, rc}, should be used in evaluating
the degree-of-acceptability of various fuzzy preferences.
The final overall satisfactory level,µFD(x), can be de-
termined by aggregating the degree-of-satisfaction for all
objectives,µJm(Jm(x)), and sellers’ and buyers’ prefer-
ence on product prices,µSPi∗(USPi∗) andµBPi∗(USPi∗), via
specifict-norm,T.

µFD(x)= T(µJm;µSPipd
, µSPidr

, µSPirc
;

µBPipd
, µBPidr

, µBPirc
| ∀m, i, p, d, r, c) (40)

The best solutionx∗ with the maximal firing level,µFD(x∗),
should be selected.

µFD(x
∗) = max

x∈Ω
µFD(x) (41)

Several t-norms can be chosen forT, therein two most
popular selections are shown below(Klir & Yuan, 1995).

T(µJm;µSPipd
, µSPidr

, µSPirc
;µBPipd

, µBPidr
, µBPirc

) (42)

=




min(µJm;µSPipd
, µSPidr

, µSPirc
;

µBPipd
, µBPidr

, µBPirc
),

T = minimum

µJm × µSPipd
× µSPidr

× µSPirc
×µBPipd

× µBPidr
× µBPirc

,
T = product

(43)

The minimum operator concerns the worst situation
only, and the product operator results in a Nash-type objec-
tive. Maximizing the single worst scenario may end in a
non-compensatory solution, and maximizing the Nash-type
objective can guarantee a compensatory solution (Li & Lee,
1993). But the drawback is that product operator may cause
an unbalanced solution between all fuzzy terms by the in-
herent character of product. We thus propose a two-phase
method to combine advantages of these two operators, as
summarized in the following (Chen et al., 2003).

Step 1. Determining membership function for each fuzzy
objective based on expected upper/lower bounds for the ob-
jective value, as shown inEq. (36), where

J
¯

0
m ≤ J0

m ≤ J1
m ≤ J̄1

m, ∀m ∈M.

Step 2 (Phase I). Considering all fuzzy objectives and fuzzy
product prices and using the minimum operator, maximizing
the degree of satisfaction for the worst situation.

max
x∈Ω

µFD = max
x∈Ω

min(µJm;µSPipd
, µSPidr

, µSPirc
;

µBPipd
, µBPidr

, µBPirc
) ≡ µmin (44)

Step 3 (Phase II). Applying the product operator, maximiz-
ing the overall Nash-type satisfactory level with guaranteed
minimal fulfillment for all fuzzy objectives and sales pref-
erences.

Table 1
Scenarios (s = 1,2,3,4,5,6 and 7) of forecasting product demands and
probabilities of illustrative example

i r t FCDirts

0.15a 0.2a 0.12a 0.24a 0.09a 0.13a 0.07a

1 1 1 160 160 160 160 160 160 160
1 1 2 170 170 170 160 150 150 150
1 1 3 180 180 180 160 140 140 140
1 1 4 190 180 170 160 150 140 130
1 1 5 200 180 160 160 160 140 120

1 2 1 180 180 180 180 180 180 180
1 2 2 200 200 180 200 160 160 160
1 2 3 220 220 180 220 140 140 140
1 2 4 220 240 180 200 140 120 160
1 2 5 220 260 180 180 140 100 180

2 1 1 240 240 240 240 240 240 240
2 1 2 240 270 210 210 270 270 210
2 1 3 240 300 180 180 300 300 180
2 1 4 240 270 210 150 330 300 180
2 1 5 240 240 240 120 360 300 180

2 2 1 280 280 280 280 280 280 280
2 2 2 320 240 320 320 240 240 280
2 2 3 360 200 360 360 200 200 280
2 2 4 320 200 400 360 160 240 280
2 2 5 280 200 400 360 120 280 280

a PPDs.
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max
x∈Ω+

µFD(x)= max
x∈Ω+

(µJm × µSPipd
× µSPidr

× µSPirc

×µBPipd
× µBPidr

× µBPirc
) (45)

where

Ω+ =Ω ∩ {µJm, µSPi∗ , µBPi∗ ≥ µmin|∗ ∈ {pd,dr, rc};
∀m, i, p, d, r, c} (46)

6. Numerical example

Considering a small-scale but typical supply chain con-
sists of one plant, two DCs, two retailers, and two prod-
ucts. The first DC, a smaller scale but faster delivery service
distributor, can rapidly respond to the suddenly increasing
customer demand to keep retailer’s customer service level,
but this also implies a higher operational cost; the second
one, a large scale but slower delivery service distributor, on
the other hand, can use the economies of scale to transport
goods at lower operational cost, but the prompt delivery is
not available, however. We assume one period of transport
lead time between each level for the second DC. So, the
distribution channel between plants to retailers is comple-
mentary with the faster, smaller shipment and slower, larger
shipment. And in order to simplify the problem, we neglect

Table 2
Cost parameters of illustrative example

Table 3
Parameters for defining fuzzy product prices in illustrative example

• i p d r Seller Buyer

(•)0S (•)1S (•)1B (•)0B
USPidr 1 1 1 1350 1450 1400 1500

1 1 2 1400 1500 1450 1550
1 2 1 1250 1350 1300 1400
1 2 2 1200 1300 1250 1350
2 1 1 650 750 700 800
2 1 2 700 800 750 850
2 2 1 600 700 650 750
2 2 2 550 650 600 700

USPipd 1 1 1 850 950 900 1000
1 1 2 750 850 800 900
2 1 1 400 500 450 550
2 1 2 300 400 350 450

USPirc 1 1 1650 1750 1700 1800
1 2 1600 1700 1650 1750
2 1 1000 1100 1050 1150
2 2 950 1050 1000 1100

the fluctuating rate for cost parameters. The whole schedul-
ing horizon is five periods. The product demand scenarios
and the assigned probabilities are shown inTable 1for the
case study. Other indices and sets are [N] = 3, [K] = 3, and
[K′] = 3. Values of all cost parameters are listed inTables 2
and 3, and other parameters,Table 4. Notably,Table 3gives
the required parameters for defining fuzzy product prices

Table 4
Other parameters of illustrative example
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Table 5
Parameters for defining membership functions for objectives

m Jm J
¯

0
m J0

m J1
m J̄1

m

1 Zp=1 2, 273, 758 2, 273, 758 2, 664, 123 4, 623, 672
2 Zd=1 −290,481 37, 429 570, 869 1, 104, 309
3 Zd=2 −467,993 762, 862 1, 109, 662 3, 155, 891
4 Zr=1 −797,333 28, 323 639, 630 1, 345, 449
5 Zr=2 −755,271 276, 206 648, 639 1, 553, 022
6 SILp=1 0.09 0.09 0.92 0.92
7 SILd=1 0.07 0.07 0.97 0.97
8 SILd=2 0.02 0.02 0.95 0.95
9 SILr=1 0.06 0.06 0.94 0.94

10 SILr=2 0.04 0.04 0.93 0.93
11 CSLr=1 0.80 0.80 1.00 1.00
12 CSLr=2 0.77 0.77 0.96 0.96
13 RIZp=1 −204,289 −129,519
14 RIZd=1 −101,687 −75,487
15 RIZd=2 −193,525 −159,639
16 RIZr=1 −200,097 −117,435
17 RIZr=2 −244,216 −139,514
18 RISILp=1 −0.066 −0.048
19 RISILd=1 −0.073 −0.060
20 RISILd=2 −0.057 −0.039
21 RISILr=1 −0.086 −0.034
22 RISILr=2 −0.085 −0.066
23 RICSLr=1 −0.036 −0.017
24 RICSLr=2 −0.026 −0.019

for sellers and buyers, respectively. Membership functions
shown inFig. 3 are respectively adopted for all aggregated
fuzzy product prices.

The problem includes 5702 equations, 4079 contin-
uous variables, and 910 binary variables. To solve this
mixed-integer nonlinear programming problem for the sup-
ply chain model, the Generalized Algebraic Modeling Sys-
tem (GAMS,Brooke et al., 1998), a well-known high-level
modeling system for mathematical programming problems,

Fig. 5. Radar plots by using minimum or productt-norms (single-phase optimization) and proposed two-phase optimization method. (a) Objectives such
as profits, inventory levels, and service levels; (b) robustness measures.

Table 6
The compromised product prices of the illustrative example

i p d r USP µBP µSP

USPidr 1 1 1 1425 0.75 0.75
1 1 2 1475 0.75 0.75
1 2 1 1326 0.74 0.76
1 2 2 1276 0.75 0.75
2 1 1 725 0.75 0.75
2 1 2 775 0.75 0.75
2 2 1 676 0.74 0.76
2 2 2 626 0.74 0.76

USPipd 1 1 1 926 0.74 0.76
1 1 2 826 0.75 0.75
2 1 1 476 0.74 0.76
2 1 2 375 0.75 0.75

USPirc 1 1 1728 0.72 0.78
1 2 1678 0.72 0.78
2 1 1079 0.72 0.78
2 2 1031 0.69 0.81

is used as the solution environment. The MINLP solver
used is DICOPT and the NLP solver, CONOPT.

According to the problem description, mathematical for-
mulation, and parameter design mentioned previously, we
solve the multi-objective mixed-integer non-linear program-
ming problem for a production and distribution scheduling
by using the fuzzy procedure discussed inSection 5.

Step 1. Select suitable ranges for defining membership
functions. Relevant lower/upper limits,J

¯
0
m and J̄1

m, and
selected effective ranges, [J0

m, J
1
m], for membership func-

tions are shown inTable 5. As mentioned previously, one
can subjectively select values forJ0

m andJ1
m for each ob-

jective if meaningful lower/upper bounds can be expected.
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Table 7
Variability of scenario-dependent objective values

Scenario Profit Safe inventory level Service level

p = 1 d = 1 d = 2 r = 1 r = 2 p = 1 d = 1 d = 2 r = 1 r = 2 r = 1 r = 2

RI not included 1 2709353 353342 1300455 657240 288886 0.60 0.64 0.43 0.60 0.53 1.00 1.00
2 2036686 413862 821158 852790 917316 0.47 0.82 0.50 0.74 0.53 1.00 1.00
3 2806934 250369 1196849 79628 736006 0.49 0.71 0.57 0.50 0.62 0.99 1.00
4 2447388 375178 936194 234508 756312 0.61 0.97 0.57 0.59 0.75 0.99 0.85
5 2648390 421579 1159809 210789 −271410 0.65 0.84 0.55 0.68 0.74 1.00 1.00
6 2760923 123027 1053518 229115 46819 0.64 0.91 0.57 0.62 0.67 1.00 1.00
7 2387742 318640 772951 −253262 853122 0.69 0.95 0.60 0.63 0.75 1.00 0.99

Expected 2502362 332101 1023055 366009 538010 0.58 0.84 0.53 0.62 0.65 1.00 0.96

RI −114353 −37930 −78733 −141041 −152013 −0.033 −0.050 −0.021 −0.025 −0.046 −0.004 −0.026

RI included 1 2627463 327660 987458 396451 637799 0.53 0.65 0.51 0.52 0.55 0.95 0.96
2 2580353 327660 1034208 350482 595791 0.53 0.65 0.51 0.52 0.55 0.95 0.96
3 2502549 327660 1151319 350482 565329 0.53 0.65 0.51 0.52 0.55 0.95 0.96
4 2502549 327660 1050643 350482 565329 0.53 0.65 0.51 0.52 0.55 0.95 0.96
5 2485710 327660 817240 299611 452736 0.53 0.65 0.51 0.52 0.55 0.95 0.96
6 2451158 327660 765471 332659 528373 0.53 0.65 0.51 0.52 0.55 0.95 0.96
7 2129671 327660 987458 350482 536394 0.53 0.65 0.51 0.52 0.55 0.95 0.96

Expected 2502549 327660 987458 350482 565329 0.53 0.65 0.51 0.52 0.55 0.95 0.96

RI −34298 0 −44178 −6895 −16963 0.00 0.00 0.00 0.00 0.00 0.00 0.00

We thus directly use [J
¯

0
m, J̄

1
m] as the effective range for

defining fuzzy objectives such as inventory levels and
customer service levels. Due to the wide variability of
scenario-dependent profits, it is suggested using the lowest
positive profit as the lower bound, and the second largest
value as the upper bound. For emphasizing robustness mea-
sures, we suggest adopting the second lower value as the
lower bound, and the zero as the upper bound.

Step 2 (Phase I). To maximize the degree of satisfaction
for the worst objective by using the minimum operator. The
result isµmin = 0.53.

Step 3 (Phase II). Re-optimize the problem with new con-
straints of guaranteed minimum satisfaction for all fuzzy ob-
jectives and fuzzy product prices. The results will be shown
and discussed in the following.

The radar plots for profits, safe inventory levels, customer
service levels, and the robustness measures are shown in
Fig. 5, and the resulting compromised sales prices are listed
in Table 6.

Form the results obtained by selecting minimum as
t-norm, we can get a more balanced satisfaction among all
objectives where the degrees of satisfaction are all around
0.53. By using product operator to guarantee a unique solu-
tion, however, the results are unbalanced with lower degree
of satisfaction for profits ofr = 1 andd = 1, and the safe
inventory level ofd = 2. On the other hand, the high profit
of r = 2 and service levels ofr = 1 andr = 2 are given very
high emphasis. Obviously this is not desirable for obtaining
a compromise solution. Overcoming the drawbacks of the

single phase method, the proposed two-phase method can
incorporate advantages of these twot-norms. The minimum
operator is used in phase I to find the maximal satisfaction
for worst situation, and the product operator is applied in
phase II to maximize the overall satisfaction with guaran-
teed minimal fulfillment for all fuzzy objectives and fuzzy
product prices.

Resulting objective values for all scenarios either consid-
ering robustness measures or not are listed inTable 7. It can
be found that the variability of scenario-dependent objec-
tive values is quite high if the robustness measures are not
included as objectives. In such a case, some profit realiza-
tions are unacceptably low for certain scenarios especially
for retailersr = 1 andr = 2. When simultaneously consid-
ering the robustness measures as objectives, i.e., objective
values less than the expectation are penalized, the vari-
ability of scenario-related objective values is significantly
reduced.

7. Conclusion

This paper investigates the simultaneous optimization of
multiple conflict objectives and the uncertain product prices
problem in a typical supply chain network with market
demand uncertainties. The demand uncertainty is modeled
as discrete scenarios with given probabilities for different
expected outcomes, and the uncertain product prices are
described as fuzzy variables. The problem is formulated as
a MINLP model to achieve fair profit distribution among
whole network’s participants, safe inventory levels, max-
imum customer service levels, maximum robustness to
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demand uncertainties, and to guarantee maximum accept-
ability levels of sellers’ and buyers’ preference on product
prices. Considering the robustness measures as part of
multiple objectives can significantly reduce the variability
of other objective values to product demand uncertainties.
To find the degree of satisfaction of the multiple objec-
tives, the linear increasing membership function is used;
the final decision is acquired by fuzzy aggregation of the

Nomenclature

Index/set Dimension Physical meaning
c ∈ C [C] = C customers
d ∈ D [D] = D distribution centers
i ∈ I [I] = I products
k ∈ K [K] = K transport capacity level, DC to retailer
k′ ∈ K′ [K′] = K′ transport capacity level, plant to DC
m ∈M [M] = M all objectives
m′ ∈M′ [M′] = M ′ objectives 1–3
n ∈ N [N] = N counter for overtime manufacturing
p ∈ P [P] = P plants
r ∈ R [R] = R retailers
t ∈ T [T] = T periods
s ∈ S [S] = S scenarios

Parameters ∗ ∈ Physical meaning
FCDi∗ts {r} forecast customer demand ofi
FICi∗ {p} fix idle cost to keepp idle
FMCi∗ {p} fix manufacture cost changed to makei
FMQi∗ {p} fix manufacture quantity ofi
FTCk∗ {dr} kth level fix transport cost,d to r
FTCk

′
∗ {pd} k′th level fix transport cost,p to d

MIC∗ {p, d, r} maximum inventory capacity ofp, d, r
MITC∗ {d} maximum input transport capacity ofd
MOTC∗ {d} maximum output transport capacity ofd
MTO∗ {p} maximum total overtime manufacture period
OMCi∗ {p} overtime unit manufacture cost ofi
OMQi∗ {p} overall fix manufacture quantity
PPD∗ {s} probability for scenarios
SIQi∗ {p, d, r} safe inventory quantity inp, d, r
SQLi∨∗ {p, d} sales quantity levels ofi, (∗,∨) ∈ {(p, %′), (d, %)}
UHCi∗ {p, d, r} unit handling cost ofi for p, d, r
UICi∗ {p, d, r} unit inventory cost ofi for p, d, r
UMCi∗ {p} unit manufacture cost ofi
(USPi∗)•+ {pd,dr, rc} parameters for defining piecewise unit sale prices,+ ∈ {S,B}, • ∈ {0,1}
UTCk∗ {dr} kth level unit transport cost,d to r
UTCk

′
∗ {pd} k′th level unit transport cost,p to d

TCLk∗ {dr} kth transport capacity level,d to r
TCLk

′
∗ {pd} k′th transport capacity level,p to d

TLT∗ {pd,dr} transport lead time,p to d (d to r)

Binary variables ∗ ∈ Meaning when having value of1
Yk∗ts {dr} kth transport capacity level,d to r
Yk

′
∗ts {pd} k′th transport capacity level,p to d
αi∗ts {p} manufacture with regular time workforce
βi∗ts {p} setup plantp to manufacturei

fuzzy goals and the fuzzy product prices, and the best com-
promised solution can be derived by maximizing the overall
degree of satisfaction for the decision. The implementation
of the proposed fuzzy decision-making method, as one can
see in the case study, demonstrates that the method can pro-
vide a compensatory solution for the multiple conflict ob-
jectives and the fuzzy product prices problem in a supply
chain network with demand uncertainties.
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γi∗ts {p} p changeover to manufacturei
oi∗ts {p} manufacture with overtime workforce

Real variables ∗ ∈ Physical meaning
Bi∗ts {r} backlog level ofi in r at end oft
Di∗ts {p, d, r} short safe inventory level inp, d, r
Ii∗ts {p, d, r} inventory level ofi in p, d, r
J∗ {m} objectives
PSP∗ts {p, d, r} product sales ofp, d, r
RI∗ {m′} robustness index of objectives
SQi∗ts {pd,dr, rc} sales quantity ofi from p to d, d to r, r to c
TIC∗ts {p, d, r} total inventory cost ofp, d, r
THC∗ts {p, d, r} total handling cost ofp, d, r
TMC∗ts {p} total manufacture cost ofp
TPC∗ts {d, r} total purchase cost ofd, r
TQk∗ts {dr} kth level transport quantity,d to r
TQk

′
∗ts {pd} k′th level transport quantity,p to d

TQ∗ts {pd,dr} total transport quantity,p to d or d to r
TTC∗ts {d; pd,dr} total transport cost ofd; p to d or d to r
USPi∗s {pd,dr, rc} unit product price ofi, p to d, d to r, andr to c
SIL∗t {p, d, r} expected safe inventory level ofp, d, r
CSL∗t {r} expected customer service level ofr
Z∗t {p, d, r} expected net profit ofp, d, r

Fuzzy variables ∗ ∈ Physical meaning
BPi∗ {pd,dr, rc} fuzzy sets to measure buyer’s preference for product price
FD fuzzy set for final decision
Jm fuzzy set for objectivem, m ∈M
SPi∗ {pd,dr, rc} fuzzy sets to measure seller’s preference for product price

Acknowledgements

This work was supported by the National Science Council
(ROC) under Contract NSC91-2214-E-002-001.

References

Ahmed, S., & Sahinidis, N. V. (1998). Robust process planning under
uncertainty.Industrial Engineering in Chemical Research, 37, 1883.

Applequist, G. E., Pekny, J. F., & Reklaitis, G. V. (2000). Risk and uncer-
tainty in managing chemical manufacturing supply chains.Computer
and Chemical Engineering, 24, 2211.

Bose, S., & Pekny, J. F. (2000). A model predictive framework for
planning and scheduling problems: A case study of customer goods
supply chain.Computer and Chemical Engineering, 24, 329.

Brooke, A., Kendrick, D., Meeraus, A., Raman, R., & Rosenthal, R. E.
(1988).GMAS: A user’s guide. GAMS Development Corporation.

Chen, C. L., Wang, B. W., & Lee, W. C. (2003). Multi-objective opti-
mization for a multi-enterprise supply chain network.Industrial En-
gineering in Chemical Research, 42, 1879.

Cheng, L., Subrahmanian, E., & Westerberg, A. W. (2003). Design and
planning under uncertainty: Issues on problem formulation and solu-
tion. Computer and Chemical Engineering, 27, 781.

Delgado, M., Herrera, F., & Verdegay, J. L. (1993). Post-optimality anal-
ysis on the membership function of a fuzzy linear programming prob-
lem. Fuzzy Sets and Systems, 53, 289.

Garcia-Flores, R., Wang, X. Z., & Goltz, G. E. (2000). Agent-based infor-
mation flow for process industries’ supply chain modeling.Computer
and Chemical Engineering, 24, 1135.

Giannoccaro, I., Pontrandolfo, P., & Scozzi, B. (2003). A
fuzzy echelon approach for inventory management in sup-
ply chains. European Journal of Operational Research, 149,
185.

Gjerdrum, J., Shah, N., & Papageorgiou, L. G. (2001). Transfer price for
multi-enterprise supply chain optimization.Industrial Engineering in
Chemical Research, 40, 1650.

Gupta, A., & Maranas, C. D. (2000). A two-stage modeling and
solution framework for multi-site midterm planning under de-
mand uncertainty.Industrial Engineering in Chemical Research, 39,
3799.

Gupta, A., & Maranas, C. D. (2003). Managing demand uncertainty
in supply hain planning.Computer and Chemical Engineering, 27,
1219.

Gupta, A., Maranas, C. D., & McDonald, C. M. (2000). Mid-term supply
chain planning under demand uncertainty: Customer demand satisfac-
tion and inventory management.Computer and Chemical Engineering,
24, 2613.

Klir, G. L., & Yuan, B. (1995).Fuzzy sets and fuzzy logics: Theory and
application. New York: Prentice Hall.

Li, R. J., & Lee, E. S. (1993). Fuzzy Multiple objective programming
and compromise programming with Pareto optimum.Fuzzy Sets and
Systems, 53, 275.

Liu, M. L., & Sahinidis, N. V. (1997). Process planning in a
fuzzy environment.European Journal of Operational Research, 100,
142.



1144 C.-L. Chen, W.-C. Lee / Computers and Chemical Engineering 28 (2004) 1131–1144

Perea-Lopez, E., Grossmann, I. E., & Ydstie, B. E. (2000). Dynamic
modeling and decentralized control of supply chains.Industrial En-
gineering in Chemical Research, 39, 3369.

Petrovic, D., Roy, R., & Petrovic, R. (1998). Modeling and simulation
of a supply chain in an uncertain environment.European Journal of
Operational Research, 109, 299.

Petrovic, D., Roy, R., & Petrovic, R. (1999). Supply chain modeling using
fuzzy sets.International Journal of Production Economics, 59, 443.

Pinto, J. M., Joly, M., & Moro, L. F. L. (2000). Planning and scheduling
models for refinery operations.Computer and Chemical Engineering,
24, 2259.

Sakawa, M. (1993).Fuzzy sets and interactive multi-objective optimiza-
tion. New York: Plenum Press.

Suh, M. H., & Lee, T. Y. (2001). Robust optimization method for the
economic term in chemical process design and planning.Industrial
Engineering in Chemical Research, 40, 5950.

Tsiakis, P., Shah, N., & Pantelides, C. C. (2001). Design of multi-echelon
supply chain networks under demand uncertainty.Industrial Engineer-
ing in Chemical Research, 40, 3585.

Zadeh, L. A. (1965). Fuzzy sets.Information and Control, 8, 338.
Zhou, Z., Cheng, S., & Hua, B. (2000). Supply chain optimization of

continuous process industries with sustainability considerations.Com-
puter and Chemical Engineering, 24, 1151.

Zimmermann, H. J. (1978). Fuzzy programming and linear programming
with several objective functions.Fuzzy Sets and Systems, 1, 45.


	Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices
	Introduction
	Problem description
	Uncertainties in the supply chain scheduling
	Supply chain modeling with demand uncertainty
	Indices, sets, parameters, and variables
	Manufacture constraints
	Transportation constraints
	Inventory constraints
	Costs and revenues
	Multiple objectives

	Supply chain optimization with uncertain demands and prices
	Numerical example
	Conclusion
	Acknowledgements
	References


