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Abstract
This study considers the planning of a multi-product, multi-period, and multi-echelon supply chain network that consists of several existing plants

at fixed places, some warehouses and distribution centers at undetermined locations, and a number of given customer zones. Unsure market demands

are taken into account and modeled as a number of discrete scenarios with known probabilities. The supply chain planning model is constructed as a

multi-objective mixed-integer linear program (MILP) to satisfy several conflict objectives, such as minimizing the total cost, raising the decision

robustness in various product demand scenarios, lifting the local incentives, and reducing the total transport time. For the purpose of creating a

compensatory solution among all participants of the supply chain, a two-phase fuzzy decision-making method is presented and, by means of

application of it to a numerical example, is proven effective in providing a compromised solution in an uncertain multi-echelon supply chain network.

# 2007 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The supply chain is an integrated process wherein a number

of business entities (suppliers, manufacturers, distributors and

retailers) work together in an effort to acquire raw materials,

convert them into specified final products and deliver these final

products to retailers (Beamon, 1998). The supply chain further

fosters a new concept in management: the concept of supply

chain management.

Over the past decade the world has changed from a

marketplace with some large independent markets to an

extremely integrated global market. The increase in compe-

titive pressures in the global marketplace coupled with the rapid

advances in information technology have brought supply chain

planning into the forefront of the business practices of most

manufacturing and service organizations (Gupta and Maranas,

2003). A great variety of companies, those in chemical industry

included, can also benefit from this novel management scheme.

Therefore, many researchers in the process systems engineering
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(PSE) society devote themselves to this interesting field

(Applequist et al., 2000; Bose and Pekny, 2000; Chen et al.,

2003; Cheng et al., 2003; Garcia-Flores et al., 2000; Gupta and

Maranas, 2000; Gupta et al., 2000; Perea-Lopez et al., 2000;

Pinto et al., 2000; Zhou et al., 2000, etc.).

Traditionally, the integration of supply chain networks is

usually based on deterministic parameters. In practice, however,

this is rarely the case as it is usually difficult to foretell prices of

chemicals, market demands, availabilities of raw materials, etc.,

in a precise fashion (Liu and Sahinidis, 1997). A number of works

are devoted to studying supply chain management under uncer-

tain environments. For example, Gupta and Maranas (2000)

incorporate uncertain demand via a normal probability function

and propose a two-stage solution framework. A generalization to

handle multi-period and multi-customer problems was recently

proposed by Gupta and Maranas (2003). Tsiakis et al. (2001) use

a scenario planning approach to describe demand uncertainties.

Therein a number of demand scenarios with assigned non-zero

probabilities is used as discrete stochastic demand quantities. All

scenarios are simultaneously taken into account in the supply

chain network design. However, the robustness of decision for

uncertain product demands is not considered in these studies. In

this paper, one of the major concerns is market demand

uncertainty. The scenario-based approach will be adopted for

modeling the uncertain market demands.
Published by Elsevier B.V. All rights reserved.
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The location of manufacturing and warehousing facilities

has received considerable attention from academics and

practitioners alike over the past four decades. Location models

have been developed to answer questions such as how many

facilities to establish, where to locate them, and how to

distribute the products to the customers in order to satisfy

demand and minimize total cost (Melachrinoudis et al., 2000).

However, when making location decisions, in addition to the

total cost, one should also consider some other conditions such

as the influence of local incentives and transport time.

In this article, the mid-term planning problem of locating

warehouses and distribution centers in a supply chain network

will be addressed, where multiple conflict objectives will be

considered simultaneously including minimizing the total cost,

raising the decision robustness to various product demand
Index/set Dimension

c2C ½C� ¼ C

d 2D ½D� ¼ D

i2I ½I� ¼ I

k2K ½K� ¼ K

m2M ½M� ¼ M

n2N ½N � ¼ N

p2P ½P� ¼ P

s2S ½S� ¼ S

t2T ½T � ¼ T

w2W ½W� ¼ W

Parameters *2

FCDi
�ts {c}

FTCk
� f pw;wd; dcg

LI� fw; dg
PPDs

PQ�i ps {max, min}

Qmax
�s f pw;wd; dcg

Qmin
�s f pw;wd; dcg

R*nts {p}

SQþ� fw; dg
TCLk

� f pw;wd; dcg
TT� f pw;wd; dcg
UEC� fw; dg
UHCi

� fw; dg
UPCi

� {p}

UTCk
� f pw;wd; dcg

ai
� fwg

bi
� {d}

ri
�nts {p}

Real var. *2

J* {m}

OTT

PQi
�ts {p}

Qi
�ts f pw;wd; dcg

SQ� fw; dg
TCO

TEC

THCts

TLI, LD

TPCts

TTCts
scenarios, lifting the local incentives, and reducing the total

transport time. This problem can be further formulated as a

multi-objective mixed-integer linear program. So the two-

phase fuzzy optimization solution strategy proposed by Chen

and Lee (2004a,b) can be adopted directly.

In the rest of this article, the problem statement and

assumptions are outlined in Section 2. The considered uncertain

issues in supply chain planning are also described. The

formulation of a production and distribution–planning model is

set out in Section 3. The procedure for grouping the scenario-

dependent multiple conflict objectives into a scalar objective

using the fuzzy sets concept is presented in Section 4. The

contents of a numerical example, used to demonstrate the

usefulness of the proposed method, are given in Section 5.

Finally, some concluding remarks are given in Section 6.
Physical meaning

Customer zones

Distribution centers

Products

Transport capacity level

All objectives

Resources

Plants

Scenarios

Periods

Warehouses

Physical meaning

Forecasting customer demand of i for customer c

kth level fix transport cost, p to w;w to d, d to c

Local incentive of w, d

Probability of product scenario s

Maximum, minimum manufacturing quantity of product i

Maximum transport quantity of p to w;w to d, d to c

Minimum transport quantity of p to w;w to d, d to c

Total resource n at p

Maximum, minimum capacity of w, d, + 2 {max, min}

kth transport capacity level, p to w;w to d, d to c

Transport time of p to w;w to d, d to c

Unit establishing cost of w, d

Unit handling cost of product i for w, d

Unit production cost of product i for plant p

kth level unit transport cost, p to w;w to d, d to c

Coefficient relating the capacity of d to flow of product i handled

Coefficient relating the capacity of w to flow of product i handled

Coefficient for resource m used in plant p for product i

Physical meaning

Objectives

Total transportation time

Manufacture quantity of i

Total transport quantity, p to w;w to d, d to c

Capacity of w, d

Total cost

Total establishment cost of all warehouses and distribution centers

Total handling cost of scenario s in period t

Total local incentive and an overall index on distribution centers

Total production cost of scenario s in period t

Total transportation cost for scenario s in period t



TTC�ts f pw;wd; dcg Total transportation cost of * for scenario s in period t

TTQk
�ts f pw;wd; dcg kth level transport quantity, p to w;w to d, d to c

mJmðJmðxÞÞ The membership function of fuzzy objective J m

Binary var. *2 Meaning when having value of 1

X� f pw;wd; dcg A link between p and w;w and d, d and c exists

Y� fw; dg Warehouse w or distribution center d is to be established

Zk
�ts f pw;wd; dcg kth transport capacity level, p to w;w to d, d to c

Fuzzy var. Physical meaning

FD Fuzzy set for final decision

J m Fuzzy set for objective m
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2. Problem description for locating warehouses and

distribution centers in a supply chain network

The researchers consider a typical multi-product, multi-

echelon and multi-period supply chain network originally

studied by Tsiakis et al. (2001). The revised supply chain

network consists of several existing multi-product plants at

fixed places, some candidate warehouses and distribution

centers at specific but undermined locations, and a number of

known customer zones, as showed in Fig. 1. In this mid-term

supply chain-planning problem, each customer zone places

demands for one or more products. The candidate warehouses

and distribution centers are described by the upper and lower

bounds on their handling capacity. The establishment of

warehouses and distribution centers will result in a fixed

infrastructure cost. Operational costs include those associated

with production, handling of material at warehouses and

distribution centers, and transportation. The numbers and the

locations of selected warehouses and distribution centers are

left to be determined for establishment of a cost–effective

supply chain network. The following assumptions are made for

subsequent modeling and optimization: the whole system is

operated steadily; therefore, there is no stock accumulation or

depletion, and inventory can be ignored; the production

capacity of each plant is related linearly to resources; the
Fig. 1. The studied sup
capacities of warehouses and distribution centers are related

linearly to the materials that they handle; the transportation

costs are piecewise linear functions of the actual flow of the

product from the source stage to the destination podium; several

scenarios of product demands with known probabilities are

forecast over the entire planning periods. The overall problem

can thus be stated as follows. Given are the manufacturing data,

such as product capacity and resource constraints; the basic

data for candidate warehouses and distribution centers, such as

capacities and local incentives; the transportation data, such as

transport time and transport capacity; all cost parameters, such

as manufacturing and handling costs; and several scenarios of

forecasted product demands with known probabilities. The

authors are going to determine the production plan of each

plant; the number, location, and the capacity of warehouses and

distribution centers to be set up; the transportation plan of each

warehouse and distribution center; and all types of costs. The

target is to integrate the multi-echelon decisions simultaneously

to minimize the total cost and the transport time, and to elevate

local incentives and the robustness of all considered design

objectives to product demand uncertainties as much as possible.

In the market, the participants of a supply chain not only

faces the uncertainties of product demands and raw material

supplies but also faces the uncertainties of commodity prices

and costs (Liu and Sahinidis, 1997). The authors will also
ply chain network.
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address issues of demand uncertainty in the mid-term planning

problem. The first concern in incorporating uncertainties into

supply chain modeling and optimization is the determination of

suitable representation of the uncertain parameters (Gupta and

Maranas, 2003). Several distinct methods are frequently

mentioned for representing uncertainty. For example, the

fuzzy-based approach (Giannoccaro et al., 2003; Liu and

Sahinidis, 1997; Petrovic et al., 1998, 1999), wherein the

forecast parameters are considered as fuzzy numbers with

accompanied membership functions; the scenario-based

approach (Gupta and Maranas, 2003), in which several discrete

scenarios with associated probability levels are used to describe

expected occurrence of particular outcomes. To simplify the

subsequent mathematical calculations, the discrete scenario-

based approach for modeling uncertain mid-term product

demands is adopted. Previous experience concerning uncertain

product demands in short-term supply chain management

problems (Chen and Lee, 2004a,b) gives strong support for

applying the scenario-based approach. The mid-term planning

problem considering multiple conflict objectives, including

uncertain product demands, will be addressed in this article.

For applying the discrete cases representation for modeling

uncertain demands, several possible outcomes for demand

forecasting, FCDs; s2S, with known probabilities, PPDs,

should be determined at first with the restriction ofP
8 s2SPPDs ¼ 1. Then, all variables will become scenario-

dependent, and the expected value of any variable will be the

weighted average of those scenario-dependent values. That is,

for any variable n, one has to solve for several scenario-

dependent values, vs; s2S, and the expected value of n can be

taken as
P
8 s2SPPDsns. In such a case the deterministic supply

chain model can be easily extended to cope with the uncertain

demand conditions (Chen and Lee, 2004a,b).

3. Supply chain modeling with demand uncertainty

A general supply chain that consists of three different levels

of enterprises is considered. The first level enterprise is the

retailer from which the products are sold to customers. The

second level enterprise is the distribution center (DC) and/or

warehouse using different types of transport capacity to deliver

products from the plant side to the retailer side. The third level

enterprise is the plant or the manufacturer that batch-

manufactures one product over one period. In the following,

the integrated multi-echelon supply chain model of Tsiakis

et al. (2001) is extended for optimal decisions. The scenario-

based representation for uncertain product demands is

considered in the modeling. The indices, sets and parameters

designed for modeling the supply chain network with product

demand uncertainty are given in the nomenclature. Therein,

parameters are divided into two categories: the cost parameters,

including product cost, handling cost and transport cost; and

other parameters describing the system information, such as

handling and transport capacity or forecasting customer

demand. Two kinds of variables are used: the binary variables

that act as policy decisions to establish warehouses and

distribution centers, along with using economies of scale for
manufacturing or transportation, and the continuous variables

that include manufacturing quantities, handling capacity and

transport quantities.

3.1. Network structure constraints

All relevant network structural constraints between all

plants, warehouses, DCs and customer zones can be

summarized as follows.

X pw � Yw; Xwd � Yw (1)

Xwd � Yd; Xdc � Yd (2)
X
8w2W

Xwd ¼ Yd;
X
8 d 2D

Xdc ¼ 1

8 p2P;w2W; d2D; c2C
Eq. (1) denotes that a link between a plant p and a warehouse

w or between a warehouse w and a DC d can exist only if

warehouse w exists. Similar constraints can apply to the link

between DCs and customer zones, as shown in Eq. (2). To

simplify the problem, it is assumed that a DC can only be served

by a single warehouse, and a customer zone can only be served

by a single DC, as shown in Eq. (3).

3.2. Transport constraints

The transportation constraints at considered periods, t2T ,

in different economic scales are given below.

TCLk�1
� Zk

�ts <TTOk
�ts � TCLk

�Z
k
�ts (4)

X
8 k2K

Zk
�ts � 1 (5)

X
8 i2I

Qi
�ts ¼

X
8 k2K

Qk
�ts (6)

Qmin
�s X� �

X
8 i2I

Qi
�ts � Qmax

�s X� (7)

Qi
�ts� 0 (8)

where � 2 f pw;wd; dcg;
8 p2P;w2W; d2D; c2C; i2I ; t2T ; s2S

Eqs. (4) and (5) imply that several transport capacity levels

with various unit transport costs can be used, as depicted in

Fig. 2 for a three-level case, and at most one transport capacity

can be chosen at each period. In Eq. (6), the transport quantities

from plants to warehouses, from warehouses to DCs, or from

DCs to customer zones at each period are respectively

translated into total transport quantities. Eq. (7) says that the

total transport quantities have lower/upper bonds, for all the

existing links.



Fig. 2. Piecewise linear relation (solid lines) between transport cost, TTC, and

shipment quantity, TTQ.
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3.3. Material balances constraints

For mid-term design, it is assumed that the operation is in a

constant state. Therefore, there is no stock accumulation or

depletion. All material balance constraints can thus be

summarized as follows.

PQi
pts ¼

X
8w2W

Qi
pwts (9)

X
8 p2P

Qi
pwts ¼

X
8 d 2D

Qi
wdts (10)

X
8w2W

Qi
wdts ¼

X
8 c2C

Qi
dcts (11)

X
8 d 2D

Qi
dcts ¼ FCDi

cts (12)
(13)
PQt
i ps� 0;

8 p2P; i2I ; t2T ; s2S
Eq. (9) says that the production of a product i by a plant p

must be equal to the total flow of the product i to all warehouses.

Eq. (10) states that the total flow of a product i from all plants to

a warehouse w must be equal to the total flow of the product i

from the warehouse w to all DCs.

Similarly, Eq. (11) means that the total flow of a product i

from all warehouses to a DC d must equal to the total flow of a

product i from the DC d to all customer zones. Eq. (10) denotes

that the total flow of a product i from all DCs to a customer zone

c must equal to the forecast customer demands.

3.4. Production resource constraints

An important issue in designing the network is the ability of

the plants to satisfy the demands of customers. The production of

each product at any plant thus has some limitations as follows.

PQmin
i ps � PQi

pts � PQmax
i ps (14)
X
8 i2I

ri
pntsPQi

pts � R pnts;

8 p2P; n2N ; i2I ; t2T ; s2S

Here, Eq. (14) states that each plant has its own maximum

and minimum product capacities. Many plants may apply the

same resources (equipment, utilities, manpower, etc.) to

produce different products at different production stages.

The limitations of resource utilization can be seen in Eq. (15).

3.5. Capacity constraints

All capacity constraints for warehouses and DCs are listed in

the following.

SQmin
w Yw � SQw � SQmax

w Yw (16)

SQmin
d Yd � SQd � SQmax

d Yd (17)

SQw�
X
8 i2I

X
8 d 2D

ai
wQi

wdts (18)

SQd �
X
8 i2I

X
8 c2C

bi
dQi

dcts;

8w2W; d 2D; c2C; i2I ; t2T ; s2S (19)

Eq. (16) means that the capacity of a warehouse w has its

lower bounds SQmin
w and upper bounds SQmax

w , if the warehouse

is established. Similar constraints apply to the capacities of the

distribution centers, as shown in Eq. (17). It is assumed that the

capacities of the warehouses and the distribution centers are

related linearly to the materials that they handle, as expressed in

Eqs. (18) and (19).

3.6. Costs

The establishment costs of warehouses and distribution

centers, production costs, all material handling costs, and

transportation costs are given below.

TEC ¼
X
8w2W

UECwYw þ
X
8 d 2D

UECdYd (20)

TPCts ¼
X
8 i2I

X
8 p2P

UPCi
pPQi

pts (21)

THCts ¼
X
8 i2I

X
8w2W

UHCi
w

� X
8 p2P

Qi
pwts

�

þ
X
8 i2I

X
8 d 2D

UHCi
d

� X
8w2W

Qi
wdts

�
(22)

TTC�ts ¼
X
8 k2K

ðFTCk
�Z

k
�ts þ UTCk

�TTQk
�tsÞ (23)

(15)
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TTCts ¼
X
8 p2P

X
8w2W

TTCt
pws þ

X
8w2W

X
8 d 2D

TTCt
wds

þ
X
8 d 2D

X
8 c2D

TTCt
dcs;

where � 2 f pw;wd; dcg; 8 p2P;w2W; 2D;
c2C; i2I ; t2T ; s2S

Eq. (20) gives the establishment costs of warehouses and

distribution centers at candidate locations. In Eq. (21), the total

production costs are the summations of the production quantity

of product i multiply the unit production cost UPCip. Eq. (22)

states that the total material handling costs can be expressed as a

linear function of each product being handled at warehouses and

distribution centers. Eq. (23) denotes transport costs for the plant

and DC, respectively. Here, the transport cost is a composite of

transport level-dependent fixed cost and a transport quantity-

dependent carrying cost. This would cause a discontinuous

piecewise linear transport cost, as illustrated in Fig. 2 with

skipped subscripts. Finally, Eq. (24) is the total transportation

cost (Gjerdrum et al., 2001).

3.7. Multiple objectives for optimal planning

Several conflicting objectives such as minimizing the total

cost, maximizing the robustness of selected objectives to

demand uncertainties, maximizing the local incentives, and

minimizing the total transport time can be considered

simultaneously for the supply chain network design, as stated

in the following.

3.7.1. Objective 1: minimizing the total cost

The total cost is a summation of the total establishment

costs, the total production costs, the total handling costs, and

the total transportation costs, such as

min
x2V0

TCO ¼ TEC

þ
X
8 t2T

X
8 s2S

PPDsðTPCts þ THCts þ TTCtsÞ

Where V0 is the feasible searching space which is a composite

of all constraints, Eqs. (1)–(24), and x denotes the decision

vector

x ¼ fYw; Yd;X�; Qi
�tsTTQk

�ts; Z
k
�ts; PQi

i ps; SQw; SQd;

� 2 f pw;wd; dcg; 8 i2I ; p2P;w2W;
d 2D; c2C; k2K; t2T ; s2Sg

3.7.2. Objective 2: maximizing the robustness to various

scenarios

It has been mentioned that all operating variables are

scenario-dependent when the explicit scenario-based approach

is applied to model the uncertain product demands. However,

the total cost realization might be unacceptably high for certain

scenarios with especially low probabilities (Suh and Lee,

2001). It is thus significant to reduce the variability of objective

values Js for any realization of scenarios. An important issue in

(24)
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enforcing the robustness to uncertainties is the choice of a

variability metric (Ahmed and Sahinidis, 1998). For the total

cost to be minimized, the decision maker usually does not care

if the objective value Js is lower than the expected mean value J.

Thus, the upper partial mean (UPM) is used as the measure of

robustness where only costs above the expectation are

penalized and are weighted by probabilities of related

scenarios, PPDs.

UPM ¼
X
8 s2S

PPDsmaxf0; Js � Jg

As the upper partial mean decreases, the robustness of total

cost will increase, thus one can define the robustness index (RI)

as below, where the nonlinear objective function is further re-

formulated to equivalent linear form with additional constraint,

Eq. (25).

max
x2V00

RI ¼ �UPM ¼ �
X
8 s2S

PPDsUPMs

where

UPMs� 0; UPMs� Js � J; 8 s2S (25)

Notably, there is an additional constraint in the new feasible

searching space, V00 = V0\{Eq. (25)}.

3.7.3. Objective 3: maximizing the local incentives

When dealing with the location–allocation problem, there

are many factors worth being considered, such as traffic

facilities, labor quality, tax breaks, laws, etc. More traffic

facilities such as highways, railroads, harbors, airports, etc.,

will decrease transport risks. Higher labor quality will have

higher work efficiency. A meaningful local incentive can be

defined by first identifying all important factors which cause

great impact on the location–allocation problem, and second,

giving weight to each factor according to its importance, and

subjectively scoring the factors of each candidate location. The

weighted average of these scores can be defined as the local

incentive of each candidate location. Although the target is to

maximize the average local incentive of all chosen locations, it

will cause the nonlinear term as shown below.

max
x2V0

TLI ¼
P
8w2WLIwYwP
8w2WYw

þ
P
8 d 2DLIdYdP
8 d 2DYd

Thus the following model will be applied to simplify the

solution procedure.

max
x2V0

TLI ¼ minfLIw þ Uð1� YwÞj 8w2Wg

þminfLId þ Uð1� YdÞj 8 d 2Dg

The model raises the minimum local incentives of the

warehouses and the distribution centers as high as possible,

where U is a large positive value. For those candidate locations

of warehouses or distribution centers that are not chosen, their

local incentives will be ignored. The above nonlinear objective
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can be re-formulated as the following linear form.

max
x2V000

TLI

where V000 = V0 \ {Eq. (26)}.

TLI � LIw þ Uð1� YwÞ þ LD 8w2W
LD � LId þ Uð1� YdÞ 8 d 2D (26)

3.7.4. Objective 4: minimizing the total transport time

Decreasing the transport time cannot only reduce the

inventory levels, but can also increase the customer service

levels. So, reduction of transport time is an important topic when

coping with allocation–location problems. One can set the total

transport time as the objective to be minimized, as shown below.

min
x2V0

OTT ¼
X
8 p2P

X
8w2W

TT pwX pw þ
X
8w2W

X
8 d 2D

TTwdXwd

þ
X
8 d 2D

X
8 c2C

TTdcXdc

In summary, the mid-term supply chain-planning model can

be constructed as a multi-objective mixed-integer linear program

(MILP). Notably, all objectives expressed below are set to a

maximum for simplifying the discussion. The feasible searching
Table 1

Scenarios of forecasting product demands and probabilities of an illustrative exam

FCDi
cts

i c t s i c t s

1 2 3 1 2 3

1 1 1 10 18 28 2 3 1 105 145 105

1 1 2 8 18 30 2 3 2 82 143 125

1 1 3 5 19 46 2 3 3 55 143 145

1 2 1 0 0 0 2 4 1 0 0 0

1 2 2 0 0 0 2 4 2 0 0 0

1 2 3 0 0 0 2 4 3 0 0 0

1 3 1 0 0 0 2 5 1 0 0 0

1 3 2 0 0 0 2 5 2 0 0 0

1 3 3 0 0 0 2 5 3 0 0 0

1 4 1 9 13 15 2 6 1 0 0 0

1 4 2 5 15 17 2 6 2 0 0 0

1 4 3 4 17 20 2 6 3 0 0 0

1 5 1 0 0 0 2 7 1 9 14 17

1 5 2 0 0 0 2 7 2 8 14 27

1 5 3 0 0 0 2 7 3 8 16 37

1 6 1 45 50 60 2 8 1 0 0 0

1 6 2 40 51 70 2 8 2 0 0 0

1 6 3 32 52 80 2 8 3 0 0 0

1 7 1 0 0 0 3 1 1 0 0 0

1 7 2 0 0 0 3 1 2 0 0 0

1 7 3 0 0 0 3 1 3 0 0 0

1 8 1 0 0 0 3 2 1 55 105 155

1 8 2 0 0 0 3 2 2 40 101 125

1 8 3 0 0 0 3 2 3 20 100 215

2 1 1 0 0 0 3 3 1 0 0 50

2 1 2 0 0 0 3 3 2 0 0 71

2 1 3 0 0 0 3 3 3 0 0 83

2 2 1 199 399 499 3 4 1 126 141 150

2 2 2 150 398 519 3 4 2 100 142 161

2 2 3 120 397 549 3 4 3 76 144 182
space V is a composite of all constraints, Eqs. (1)–(26)

max
x2V
ðJ1ðxÞ; . . . ; JMðxÞÞ ¼ ð�TCO;RI;TLI;�OTTÞ (27)

4. Supply chain optimization with uncertain demands

The conventional approaches for solving the multi-objective

optimization problems are usually searching for efficient

(Pareto-optimal) solutions that can best attain the prioritized

objectives. Users, on the whole, have to provide a subjective

account of each objective. The fuzzy optimization approach, on

the other hand, can supply a single, yet unprejudiced final

decision as stated in the following.

By considering the uncertain property of human thinking, it is

quite intuitive to assume that the decision maker has a fuzzy goal,

J m, to describe a maximizing objective Jm with an acceptable

interval ½J0
m; J

1
m�. It would be quite satisfactory as the objective

value is greater than J1
m, and unacceptable as the profit is less than

J0
m, the minimum acceptable objective value such that the

company would like to enter to negotiation for a fair deal in the

multi-enterprise network. A strictly monotonic increasing

membership function, mJmðJmðxÞÞ 2 ½0; 1�, can be used to

characterize such a transition from maximizing a numerical
ple

i c t s i c t s

1 2 3 1 2 3

3 5 1 32 72 82 4 7 1 40 80 88

3 5 2 22 73 92 4 7 2 35 82 92

3 5 3 12 72 98 4 7 3 24 82 98

3 6 1 0 0 0 4 8 1 35 49 55

3 6 2 0 0 0 4 8 2 31 50 75

3 6 3 0 0 0 4 8 3 25 49 81

3 7 1 0 0 0 5 1 1 0 0 0

3 7 2 0 0 0 5 1 2 0 0 0

3 7 3 0 0 0 5 1 3 0 0 0

3 8 1 0 0 0 5 2 1 51 70 76

3 8 2 0 0 0 5 2 2 41 71 86

3 8 3 0 0 0 5 2 3 23 72 96

4 1 1 226 276 283 5 3 1 0 0 0

4 1 2 180 277 293 5 3 2 0 0 0

4 1 3 150 277 316 5 3 3 0 0 0

4 2 1 103 173 203 5 4 1 0 0 0

4 2 2 80 174 223 5 4 2 0 0 0

4 2 3 50 174 233 5 4 3 0 0 0

4 3 1 80 236 266 5 5 1 0 0 0

4 3 2 54 231 282 5 5 2 0 0 0

4 3 3 38 231 298 5 5 3 0 0 0

4 4 1 0 0 0 5 6 1 0 0 0

4 4 2 0 0 0 5 6 2 0 0 0

4 4 3 0 0 0 5 6 3 0 0 0

4 5 1 0 0 0 5 7 1 0 0 0

4 5 2 0 0 0 5 7 2 0 0 0

4 5 3 0 0 0 5 7 3 0 0 0

4 6 1 0 0 0 5 8 1 0 0 0

4 6 2 0 0 0 5 8 2 0 0 0

4 6 3 0 0 0 5 8 3 0 0 0



C.-L. Chen et al. / Journal of the Chinese Institute of Chemical Engineers 38 (2007) 393–407400
objective value JmðxÞ to degree-of-satisfaction for J m (Zadeh,

1965). It is noted that the design performance of the fuzzy method

completely depends on the membership function. Different

membership functions will have different outcomes. For prac-

tical consideration, a reasonable unprejudiced procedure is

expected for providing reasonable limiting values for the objec-

tive. Without loss of generality, the authors first adopt the linear

membership function since it has been proven in providing

qualified solutions for many applications (Liu and Sahinidis,

1997).

mJm
ðxÞ ¼

1; for JmðxÞ� J1
m

JmðxÞ � J0
m

J1
m � J0

m

for J0
m � JmðxÞ � J1

m 8m2M

0; for J0
m� JmðxÞ

8>><
>>:

(28)

Here, x denotes the argument vector. The effective range of

the membership function ½J0
m; J

1
m�, can be determined dis-

passionately as follows. For those objectives, Jm;m2M, one

can use the most optimistic expectation as the upper limit,
Table 2

Fixed transport costs of an illustrative example

FTCk
pw; FTCk

wd

k p w d $ k p w d $

1 1 1 100 1 1 2 700

2 1 1 200 2 1 2 1400

3 1 1 300 3 1 2 2100

4 1 1 400 4 1 2 2800

1 1 2 700 1 1 3 700

2 1 2 1400 2 1 3 1400

3 1 2 2100 3 1 3 2100

4 1 2 2800 4 1 3 2800

1 1 3 700 1 1 4 200

2 1 3 1400 2 1 4 400

3 1 3 2100 3 1 4 600

4 1 3 2800 4 1 4 800

1 1 4 300 1 1 5 600

2 1 4 600 2 1 5 1200

3 1 4 900 3 1 5 1800

4 1 4 1200 4 1 5 2400

1 2 1 800 1 1 6 300

2 2 1 1600 2 1 6 600

3 2 1 2400 3 1 6 900

4 2 1 3200 4 1 6 1200

1 2 2 100 1 1 7 150

2 2 2 200 2 1 7 300

3 2 2 300 3 1 7 450

4 2 2 400 4 1 7 600

1 2 3 900 1 2 1 700

2 2 3 1800 2 2 1 1400

3 2 3 2700 3 2 1 2100

4 2 3 3600 4 2 1 2800

1 2 4 600 1 2 2 100

2 2 4 1200 2 2 2 200

3 2 4 1800 3 2 2 300

4 2 4 2400 4 2 2 400

1 1 1 100 1 2 3 750

2 1 1 200 2 2 3 1500

3 1 1 300 3 2 3 2250

4 1 1 400 4 2 3 3000
J1
m ¼ Jmðx�mÞ, where x�m is the optimal solution of the single

objective maximizing problem, maxx2V JmðxÞ, and choose the

most pessimistic expectation, J0
m, as the lower limiting value

(Zimmermann, 1978; Sakawa, 1993), where

J0
m ¼ minfJmðx�i Þ; i2Mg; 8m2M (29)

One can, thus, impersonally determine the effective range of

membership functions with the restriction of J0
m � J0

m <
J1

m � J1
m. The original multi-objective optimization problem

is now equivalent to looking for a suitable decision vector that

can provide the maximal degree-of-satisfaction for the

aggregated fuzzy objectives, J 1ðxÞ \ . . . \J mðxÞ. When

simultaneously considering all fuzzy objectives, the final fuzzy

decision, FDðxÞ, can be interpreted as the fuzzy intersection

between all fuzzy objectives.

FDðxÞ ¼ J 1ðxÞ \ . . . \J MðxÞ (30)

The final overall satisfactory level, mFDðxÞ, can be

determined by aggregating the degree-of-satisfaction for all
k p w d $ k p w d $

1 2 4 550 1 3 6 1250

2 2 4 1100 2 3 6 2500

3 2 4 1650 3 3 6 3750

4 2 4 2200 4 3 6 5000

1 2 5 1300 1 3 7 800

2 2 5 2600 2 3 7 1600

3 2 5 3900 3 3 7 2400

4 2 5 5200 4 3 7 3200

1 2 6 800 1 4 1 250

2 2 6 1600 2 4 1 500

3 2 6 2400 3 4 1 750

4 2 6 3200 4 4 1 1000

1 2 7 800 1 4 2 600

2 2 7 1600 2 4 2 1200

3 2 7 2400 3 4 2 1800

4 2 7 3200 4 4 2 2400

1 3 1 900 1 4 3 500

2 3 1 1800 2 4 3 1000

3 3 1 2700 3 4 3 1500

4 3 1 3600 4 4 3 2000

1 3 2 950 1 4 4 100

2 3 2 1900 2 4 4 200

3 3 2 2850 3 4 4 300

4 3 2 3800 4 4 4 400

1 3 3 100 1 4 5 800

2 3 3 200 2 4 5 1600

3 3 3 300 3 4 5 2400

4 3 3 400 4 4 5 3200

1 3 4 600 1 4 6 550

2 3 4 1200 2 4 6 1100

3 3 4 1800 3 4 6 1650

4 3 4 2400 4 4 6 2200

1 3 5 1200 1 4 7 300

2 3 5 2400 2 4 7 600

3 3 5 3600 3 4 7 900

4 3 5 4800 4 4 7 1200
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objectives, mJm
ðxÞ, via specific t-norm, T .

mFDðxÞ ¼ TðmJ 1
ðxÞ; . . . ;mJ m

ðxÞÞ (31)

The best solution x� with the maximal firing level, mFDðx�Þ,
should be selected.

mFDðx�Þ ¼ max
x2V

mFDðxÞ (32)

Several t-norms can be chosen for T, wherein the three most

popular selections are shown below (Klir and Yuan, 1995).

TðmJ 1
ðxÞ; . . . ;mJM

ðxÞÞ (33)

¼
minðmJ 1

ðxÞ; . . . ;mJM
ðxÞÞ T ¼ minimum

mJ 1
ðxÞ � . . .� mJM

ðxÞ T ¼ product
1

M
ðmJ l
ðxÞ þ . . .þ mJM

ðxÞÞ T ¼ 00average00

8><
>: (34)

Therein the minimum t-norm concerns the worst scenario

only, but it may result in a non-compensatory solution (Li and

Lee, 1993). On the other hand, both the product t-norm and the

average operator can provide a compensatory result; however,

they may cause an unbalanced solution between all fuzzy terms

due to their inherent character. In order to avoid numerical

difficulties caused by a highly nonlinear property of product t-

norm, Chen and Lee (2004a,b) adopt the average operator,
Fig. 3. Radar plots using single objective (a), or minimum (b) and average operator (
although it is not a t-norm. The successful application

experience of combining the advantages of minimum and

average operators for calculating the satisfactory level of fuzzy

decisions in a short-term supply chain problem (Chen and Lee,

2004a,b) is thus applied to solving multi-objective mid-term

planning problems.
Step 1. D
c) (single-
etermining the membership function for each fuzzy

objective based on the expected upper/lower bounds for

the objective value, as shown in Eq. (28), where

J0
m � J0

m � J1
m � J1

m; 8m2M.
Step 2. (
Phase I) Considering all fuzzy objectives and using the

minimum operator, maximizing the degree of satisfac-

tion for the worst situation.

max
x2V

mFD ¼ max
x2V

minðmJ 1
;mJ 2

; . . . ;mJM
Þ�mmin

(35)
Step 3. (
Phase II) Applying the average operator, maximizing

the overall satisfactory level with guaranteed minimal

fulfillment for all fuzzy objectives.

max
x2Vþ

mFDðxÞ ¼ max
x2Vþ

1

M
ðmJ 1

ðxÞ þ . . .þ mJM
ðxÞÞ

(36)
phase optimization) and proposed two-phase optimization method (d).



Table 3

Fixed tran

FTCk
dc

k d

1 1

2 1

3 1

4 1

1 1

2 1

3 1

4 1

1 1

2 1

3 1

4 1

1 1

2 1

3 1

4 1

1 1

2 1

3 1

4 1

1 1

2 1

3 1

4 1

1 1

2 1

3 1

4 1

1 1

2 1

3 1

4 1
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where

Vþ ¼ V\fmJ m
�mminj 8mg (37)
It is noted that, in the proposed two-phase optimization

approach, parameters in these objective functions are not usually

independent and they cannot be completely separated. Though a

global solution is not guaranteed, the proposed strategy can

provide a definite procedure to reach a single compensatory

solution among all participants of the supply chain.

5. Numerical example

Consider a typical supply chain consisting of 2 plants, 4

candidate warehouses, 7 candidate distribution centers, 8

customer zones, and 5 products. Two plants manufacture 5

different types of products and are located in two different

locations. Each plant produces several products using a number

of shared production resources. There are 4 candidate locations

of warehouses and 7 candidate locations of distribution centers.

Each candidate warehouse and distribution center has its own

establishing cost, capacity, and local incentive. The whole

planning horizon is 3 periods. The product demand scenarios

are shown in Table 1 and the assigned probabilities are
sport costs of an illustrative example

c $ k d c $ k d c $ k d c

1 100 1 2 1 700 1 3 1 700 1 4 1

1 200 2 2 1 1400 2 3 1 1400 2 4 1

1 300 3 2 1 2100 3 3 1 2100 3 4 1

1 400 4 2 1 2800 4 3 1 2800 4 4 1

2 700 1 2 2 100 1 3 2 800 1 4 2

2 1400 2 2 2 200 2 3 2 1600 2 4 2

2 2100 3 2 2 300 3 3 2 2400 3 4 2

2 2800 4 2 2 400 4 3 2 3200 4 4 2

3 500 1 2 3 700 1 3 3 200 1 4 3

3 1000 2 2 3 1400 2 3 3 400 2 4 3

3 1500 3 2 3 2100 3 3 3 600 3 4 3

3 2000 4 2 3 2800 4 3 3 800 4 4 3

4 100 1 2 4 700 1 3 4 500 1 4 4

4 200 2 2 4 1400 2 3 4 1000 2 4 4

4 300 3 2 4 2100 3 3 4 1500 3 4 4

4 400 4 2 4 2800 4 3 4 2000 4 4 4

5 700 1 2 5 1200 1 3 5 1000 1 4 5

5 1400 2 2 5 2400 2 3 5 2000 2 4 5

5 2100 3 2 5 3600 3 3 5 3000 3 4 5

5 2800 4 2 5 4800 4 3 5 4000 4 4 5

6 300 1 2 6 800 1 3 6 1000 1 4 6

6 600 2 2 6 1600 2 3 6 2000 2 4 6

6 900 3 2 6 2400 3 3 6 3000 3 4 6

6 1200 4 2 6 3200 4 3 6 4000 4 4 6

7 200 1 2 7 800 1 3 7 600 1 4 7

7 400 2 2 7 1600 2 3 7 1200 2 4 7

7 600 3 2 7 2400 3 3 7 1800 3 4 7

7 800 4 2 7 3200 4 3 7 2400 4 4 7

8 1100 1 2 8 1100 1 3 8 400 1 4 8

8 2200 2 2 8 2200 2 3 8 800 2 4 8

8 3300 3 2 8 3300 3 3 8 1200 3 4 8

8 4400 4 2 8 4400 4 3 8 1600 4 4 8
PPDs=1 = 0.4, PPDs=2 = 0.3 and PPDs=3 = 0.3, for the case

study. Also, in order to simplify the problem, the fluctuating

rate for cost parameters is neglected. Other indices and sets are

½K� ¼ 4 and ½N � ¼ 6.

Values of all fixed transport cost parameters are listed in

Tables 2 and 3, unit transportation cost and transportation time

are shown in Table 4, resource coefficients are listed in Table 5,

and other parameters in Table 6.

The problem includes 11,478 equations, 7,622 continuous

variables, and 3,415 binary variables. To solve this mixed-

integer linear programming problem for the supply chain

model, the Generalized Algebraic Modeling System (GAMS,

Brooke et al., 2003), a well-known high-level modeling

system for mathematical programming problems, is used

as the solution environment. The MILP solver used is

CPLEX 7.5.

One can first apply the single objective programming method

to minimize the total cost, the most common method in the

traditional supply chain planning. Then, the result is projected,

caused by single objective programming, to the membership

functions, such as shown in Fig. 3 and Table 8. Obviously, the

satisfaction levels are extremely unbalanced, since the objective

function is only taking the total cost into consideration. So,

one should consider all objectives simultaneously, and use
$ k d c $ k d c $ k d c $

300 1 5 1 600 1 6 1 300 1 7 1 200

600 2 5 1 1200 2 6 1 600 2 7 1 400

900 3 5 1 1800 3 6 1 900 3 7 1 600

1200 4 5 1 2400 4 6 1 1200 4 7 1 800

600 1 5 2 1300 1 6 2 1000 1 7 2 900

1200 2 5 2 2600 2 6 2 2000 2 7 2 1800

1800 3 5 2 3900 3 6 2 3000 3 7 2 2700

2400 4 5 2 5200 4 6 2 4000 4 7 2 3600

600 1 5 3 1000 1 6 3 900 1 7 3 700

1200 2 5 3 2000 2 6 3 1800 2 7 3 1400

1800 3 5 3 3000 3 6 3 2700 3 7 3 2100

2400 4 5 3 4000 4 6 3 3600 4 7 3 2800

200 1 5 4 700 1 6 4 400 1 7 4 300

400 2 5 4 1400 2 6 4 800 2 7 4 600

600 3 5 4 2100 3 6 4 1200 3 7 4 900

800 4 5 4 2800 4 6 4 1600 4 7 4 1200

800 1 5 5 100 1 6 5 100 1 7 5 600

1600 2 5 5 200 2 6 5 200 2 7 5 1200

2400 3 5 5 300 3 6 5 300 3 7 5 1800

3200 4 5 5 400 4 6 5 400 4 7 5 2400

600 1 5 6 700 1 6 6 100 1 7 6 500

1200 2 5 6 1400 2 6 6 200 2 7 6 1000

1800 3 5 6 2100 3 6 6 300 3 7 6 1500

2400 4 5 6 2800 4 6 6 400 4 7 6 2000

300 1 5 7 500 1 6 7 500 1 7 7 100

600 2 5 7 1000 2 6 7 1000 2 7 7 200

900 3 5 7 1500 3 6 7 1500 3 7 7 300

1200 4 5 7 2000 4 6 7 2000 4 7 7 400

1000 1 5 8 1200 1 6 8 1600 1 7 8 1200

2000 2 5 8 2400 2 6 8 3200 2 7 8 2400

3000 3 5 8 3600 3 6 8 4800 3 7 8 3600

4000 4 5 8 4800 4 6 8 6400 4 7 8 4800



Table 4

Unit transportation costs and transportation times of an illustrative example

UTCk
pw;UTCk

wd;UTCk
dcð$Þ and TT pw;TTwd;TTdcðhÞ

p w d $ h w d c $ h d c $ h d c $ h

1 1 5 40 3 1 45 30 2 1 32.5 50 5 1 30 40

1 2 35 70 3 2 47.5 20 2 2 42.5 60 5 2 65 80

1 3 35 30 3 3 5 60 2 3 30 70 5 3 50 70

1 4 15 40 3 4 30 30 2 4 35 80 5 4 35 60

2 1 40 10 3 5 60 10 2 5 60 40 5 5 42.5 10

2 2 5 60 3 6 62.5 30 2 6 40 50 5 6 35 30

2 3 45 20 3 7 40 30 2 7 40 50 5 7 25 40

2 4 30 30 4 1 12.5 40 2 8 55 10 5 8 60 20

1 1 5 20 4 2 30 50 3 1 35 20 6 1 35 30

1 2 35 10 4 3 25 50 3 2 40 40 6 2 50 30

1 3 35 30 4 4 5 70 3 3 30 60 6 3 45 70

1 4 10 20 4 5 40 20 3 4 25 40 6 4 20 30

1 5 30 40 4 6 27.5 10 3 5 50 60 6 5 30 10

1 6 15 50 4 7 15 30 3 6 50 60 6 6 30 60

1 7 7.5 80 1 1 50 40 3 7 30 20 6 7 25 20

2 1 35 40 1 2 35 30 3 8 52.5 60 6 8 52.5 20

2 2 5 70 1 3 25 10 4 1 37.5 30 7 1 35 20

2 3 37.5 40 1 4 37.5 30 4 2 30 20 7 2 45 50

2 4 27.5 50 1 5 35 70 4 3 30 10 7 3 35 20

2 5 65 30 1 6 30 50 4 4 37.5 50 7 4 25 30

2 6 40 80 1 7 25 70 4 5 40 70 7 5 30 70

2 7 40 20 1 8 50 20 4 6 30 40 7 6 25 10

4 7 25 50 7 7 40 60

4 8 50 60 7 8 60 40
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multi-objective programming methods to elevate satisfaction

level of individual objectives.

According to the problem description, mathematical

formulation, and parameter design mentioned previously,

one can solve the multi-objective mixed-integer linear program

by using the fuzzy procedure discussed in Section 4.
Step 1. S
Table 5

Resource

Resource

i p

1 1

1 1

1 1

1 1

1 1

1 1

1 2

1 2

1 2

1 2

1 2

1 2
elect suitable ranges for defining membership func-

tions. Relevant lower/upper limits, J0
m and J1

m, and

selected effective ranges, ½J0
m; J

1
m�, for membership

functions are shown in Table 7. As mentioned

previously, one can subjectively select values for
coefficients of an illustrative example

coefficient ri
pnts

n i p n i p n

1 0.0 2 1 1 0.4 3 1 1 0.

2 0.0 2 1 2 0.4 3 1 2 0.

3 0.2 2 1 3 0.0 3 1 3 0.

4 0.3 2 1 4 0.0 3 1 4 0.

5 0.4 2 1 5 0.2 3 1 5 0.

6 0.5 2 1 6 0.3 3 1 6 0.

1 0.6 2 2 1 0.4 3 2 1 0.

2 0.0 2 2 2 0.1 3 2 2 0.

3 0.0 2 2 3 0.7 3 2 3 0.

4 0.2 2 2 4 0.0 3 2 4 0.

5 0.1 2 2 5 0.0 3 2 5 0.

6 0.4 2 2 6 0.2 3 2 6 0.
J0
m and J1

m for each objective if meaningful lower/

upper bounds can be expected. One can, thus, directly

use ½J0
m; J

1
m� as the effective range for defining fuzzy

objectives such as local incentives. Using J1
m as the

upper bound is suggested, and the second lower value

as the lower bound such as the total cost and transport

time. Apply the second largest value as the upper bound

and the second lower value as the lower bound for

robustness measurement.
Step 2. (
Phase I) To maximize the degree of satisfaction for the

worst objective by using the minimum operator. The

result is mmin = 0.55.
i p n i p n

3 4 1 1 0.2 5 1 1 0.3

4 4 1 2 0.5 5 1 2 0.2

4 4 1 3 0.1 5 1 3 0.0

0 4 1 4 0.1 5 1 4 0.4

0 4 1 5 0.0 5 1 5 0.3

2 4 1 6 0.0 5 1 6 0.0

3 4 2 1 0.2 5 2 1 0.0

1 4 2 2 0.7 5 2 2 0.2

1 4 2 3 0.0 5 2 3 0.1

3 4 2 4 0.0 5 2 4 0.3

0 4 2 5 0.0 5 2 5 0.1

0 4 2 6 0.2 5 2 6 0.4



Table 6

Other parameters of an illustrative example

Unit handling cost, UHCi
� Max prod. PQmax

i ps Unit estab. cost, UEC* Loc. Inc. LI*

I w d $ i w d $ i p w d $ w d

1 1 15 2 1 3 1 1 150 1 190000 1 1 30

1 2 15 2 2 3 2 1 600 2 80000 2 60

1 3 2 2 3 15 3 1 400 3 100000 3 70

1 4 2 2 4 15 4 1 1000 4 120000 4 40

2 1 15 2 5 8 5 1 100 1 80000 1 70

2 2 15 2 6 8 1 2 200 2 70000 2 30

2 3 2 2 7 8 2 2 700 3 80000 3 90

2 4 2 3 1 3 3 2 400 4 110000 4 50

3 1 15 3 2 3 4 2 700 5 110000 5 80

3 2 15 3 3 15 5 2 150 6 70000 6 40

3 3 2 3 4 15 7 110000 7 60

3 4 2 3 5 8 Max cap. SQmax
� Unit prod. cost, UPCi

p
Resource Rpnts

4 1 15 3 6 8 w d

4 2 15 3 7 8 1 2700 i p $ p n

4 3 2 4 1 3 2 1500 1 1 140 1 1 600

4 4 2 4 2 3 3 1800 2 1 140 11 2 800

5 1 15 4 3 15 4 2000 3 1 100 11 3 300

5 2 15 4 4 15 1 1200 4 1 60 11 4 150

5 3 5 4 5 8 2 1000 5 1 40 11 5 200

5 4 2 4 6 8 3 1000 1 2 130 11 6 340

1 1 3 4 7 8 4 1500 2 2 130 22 1 310

1 2 3 5 1 3 5 1400 3 2 100 22 2 300

1 3 15 5 2 3 6 1000 4 2 60 22 3 200

1 4 15 5 3 15 7 1400 5 2 40 22 4 150

1 5 8 5 4 15 k TCLk
� Qmax

�s 22 5 350

1 6 8 5 5 8 1 500 2000 22 6 200

1 7 8 5 6 8 2 1000 Qmin
�s ai

w

SQmin
w SQmin

d
3 1500 1 1

1 1 4 2000 Note : �2 f pw;wd; dcg b1
d

1

C.-L. Chen et al. / Journal of the Chinese Institute of Chemical Engineers 38 (2007) 393–407404
Step 3. (
Table 7

Paramete

m

1

2

3

4

Phase II) Re-optimize the problem with new con-

straints of guaranteed minimum satisfaction for all

fuzzy objectives. The results will be shown and

discussed in the following.
The radar plots for the total cost, robustness measure, local

incentives, and transport time are shown in Fig. 3, where the

numerical value of each objective indicates its satisfaction

level, and the resulting objective and membership function

values are listed in Table 8.

As shown in Fig. 3(a) and Table 8, when one make a decision

by considering a single objective such as minimizing the total

cost (J1), the satisfaction levels for other conflict objectives

would be quite low (0.39, 0.43, 0.39) though the satisfaction

level concerning total cost can be as high as 1. From the results

obtained by directly selecting ‘‘minimum’’ as the t-norm (see
rs for defining membership functions for objectives

Jm J0
m

–TCO �1,913, 513

RI �189, 103

TLI 60

–OTT �1270
Fig. 3(b)), one can get a more balanced level of satisfaction

among all objectives where the degrees of satisfaction are all

around 0.55. It means that the overall satisfaction levels are not

concerning, though one can maximize the minimum satisfac-

tion level of the worst objective. By using ‘‘average operator’’

to guarantee a unique solution, however, the results are

unbalanced with a lower degree of satisfaction for local

incentives (0.43, as shown in Fig. 3(c). On the other hand, the

high robustness measure is given very high emphasis.

Obviously this is not desirable for obtaining a compromise

solution. Overcoming the drawbacks of the single-phase

method, the proposed two-phase method can incorporate

advantages of these two t-norms. The minimum operator is

used in phase I to find the maximal satisfaction for the worst

situation (0.55), and the average operator is applied in phase II

to maximize the overall satisfaction with guaranteed minimal
J0
m J1

m J1
m

�1,584, 529 �1,219,554 �1,219,554

�163, 203 �124, 319 0

60 130 130

�800 �290 �290



Table 8

Resulting objective and membership function values

Operator TCO RI TLI OTT

Single objective (J1) Jm 1, 219, 554 �151, 557 90 610

mJm 1.00 0.39 0.43 0.37

Minimum Jm 1, 330, 728 �144, 736 100 510

mJm 0.55 0.55 0.57 0.57

Average Jm 1, 315, 214 �133, 465 90 450

mJm 0.74 0.80 0.43 0.69

Two-phase Jm 1, 323, 772 �143,685 100 460

mJm 0.71 0.57 0.57 0.67
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fulfillment for all fuzzy objectives. The average satisfaction

level is increased from 0.56 (by applying the minimum

operator) to 0.63, as shown in Fig. 3(d).

The optimal network structures are shown in Figs. 4 and 5,

where triangle means plant, square means warehouse, hexagon

means distribution center, and circle means customer zone. The
Fig. 4. Optimal network structure using single objective (a) and minimum

operator (b).
values in the network structures are the total transport quantities

through the whole planning horizon. Fig. 4(a) is the result of

considering total cost, where other objectives are not taken into

account. The transport time is quite large in this case, as shown
Fig. 5. Optimal network structure using average operator (a) and two-phase

optimization method (b).



C.-L. Chen et al. / Journal of the Chinese Institute of Chemical Engineers 38 (2007) 393–407406
in Table 8. The result of ‘‘average operator’’, Fig. 5(a), also

does not care about the worst objective, where the local

incentive is quite low. The results of ‘‘minimum operator’’ and

the two-phase method are quite similar, where customer zone 6

is serviced by distribution center 3 and 7, respectively. The

supply chain network designed by the two-phase method can

provide superior overall performance.

6. Conclusion

This paper investigates the simultaneous optimization of

multiple conflict objectives problem in a typical supply chain

network with market demand uncertainties. The demand

uncertainty is modeled as discrete scenarios with given

probabilities for different expected outcomes. In addition to

the total cost, the project considers the influence of local

incentives and transport time to location decision. The problem

is formulated as a mixed-integer linear programming (MILP)

model to achieve minimum total cost, maximum robustness to

demand uncertainties, maximum local incentives, and mini-

mum total transport time. To find the degree of satisfaction of

the multiple objectives, the linear increasing membership

function is used; the final decision is acquired by fuzzy

aggregation of the fuzzy goals, and the best compromised

solution can be derived by maximizing the overall degree of

satisfaction for the decision. The implementation of the

proposed fuzzy decision-making method, as one can see in the

case study, demonstrates that the method can provide a

compensatory solution for the multiple conflict objectives

problem in a supply chain network with demand uncertainties.
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