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Abstract

A multi-criteria synthesis strategy for heat-exchanger networks (HENs) simultaneously considering minimum utility consumption, max-
imum source-stream temperature flexibility, and even minimum number of matches is proposed. The flexible HEN synthesis problem is
formulated as a multi-objective mixed-integer linear programming (MO-MILP). For handling the multiple conflict design targets, a two-phase
fuzzy multi-criteria decision-making method is presented to attain a best compromised solution. Two numerical examples with flexibility pref-
erences in source-stream temperatures are supplied, demonstrating that the proposed strategy can provide definite and feasible compensatory
solutions for multi-criteria HEN synthesis problems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A heat exchanger network (HEN) synthesis problem can
be described as the one that synthesize a HEN configura-
tion to reach some assigned targets such as minimum util-
ity consumption, minimum total number of heat exchangers,
etc., with given heating/cooling utilities and hot/cold process
streams be cooled/heated from nominal inlet temperatures
to specified target temperatures[1].

Most of the existing HEN synthesis methods rely on ei-
ther heuristic rules (for example, pinch analysis method[2])
or mathematical programming (for example, simultaneous
optimization approach[3–6]). And further, to some typical
objectives considered in the HEN synthesis such as utility
consumption, total number of matches, and total exchanger
area, the flexibility of the HENs for feasible operation un-
der possible variation of source-stream temperatures and/or
heat-capacity flow rates has been emphasized in some re-
cent articles[6–10]. For HEN synthesis, the analysis of this
flexibility, defined as the size of the region of feasible oper-
ation in the space of desired or undesired deviations of pa-
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rameters from their nominal values[10], however, attracts
attention usually indirectly as test examples basing on math-
ematical programming synthesis. Therein,[10] explored the
HEN synthesis problem with simultaneous flexibility target-
ing and minimum-utility objective based on an MILP for-
mulation. The optimal solution is examined on the basis of
the vertices of the polyhedral uncertainty region in the space
of source-stream temperatures. It is found, however, that the
resulting HEN structures with increasing flexibility require-
ments are prone to variation, and the true maximum flexi-
bilities of resulting HEN structures are usually greater than
the assigned targets. Thus, for a given flexibility target, it is
very often to obtain a more conservative HEN design by the
method of simultaneous flexibility targeting and synthesis
of minimum-utility HENs proposed in[10].

In this paper, we extend the work of[10] by simultane-
ously considering minimization of the total utility consump-
tion, maximization of operational flexibility to source-stream
temperatures, and even minimum number of matches as
multiple design objectives. The flexible HEN synthesis
problem is thus formulated as the one of multi-objective
mixed-integer linear programming (MO-MILP). This for-
mulation also assumes that the feasible region in the space
of uncertain input parameters is convex, so that the optimal
solution can thus be explored on the basis of the vertices
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of the polyhedral region of uncertainty[10]. Under the as-
sumption of convexity, only the source-stream temperatures
of the HENs are considered to be the uncertain input pa-
rameters. With this formulation, the standard definition of
the HEN synthesis problem with minimal total utility con-
sumption and even minimum number of units is extended
to include a flexibility specification for the potential HEN
structure and can be stated as: “given hot/cold streams to be
cooled/heated from nominal supply temperatures to speci-
fied target temperatures and hot/cold utility specifications,
synthesize a HEN such that it has minimal utility consump-
tion (considering nominal case or average of all vertical
operating points), minimal number of matches if desired,
and maximal flexibility for feasible operation.”

For handling the multiple and conflict design objectives,
a fuzzy decision-making method is adopted to attain the
compromised solution among all conflict objectives[11].
Therein each design objective is treated as a fuzzy goal,
and a specific membership function is used to characterize
the transition from the numerical objective value to the de-
gree of satisfaction for the fuzzy objective. The final deci-
sion, therefore, is interpreted as a fuzzy aggregation of these
multiple objectives and measured by the overall degree of
satisfaction. And the best compromised solution is finally
reached by maximizing the overall degree of satisfaction for
the decision. In the course of finding the solution, two pop-
ular operators, the minimum and the average, are applied as
the fuzzy intersection operators, the effects of which are ex-
amined as well. We also proposed an interactive two-phase
fuzzy decision-making method by combining these two op-
erators to take advantages of the both[11,12]. The minimum
operator is used in phase I to maximize the degree of satis-
faction for the worst objective, and the average operator is

Fig. 1. The two-stage superstructure.

then applied in phase II to simultaneously promote satisfac-
tion levels of all objectives with guaranteed least satisfaction
value.

Two numerical examples with flexibility preference in
source-stream temperatures is presented here to demonstrate
that the proposed interactive two-phase fuzzy optimization
method can provide a feasible and better compensatory so-
lution for multi-objective HEN synthesis.

2. Model formulation

Consider the standard HEN synthesis problem withNH
hot andNC cold process streams along with hot and cold
utilities. Since it is suitable for formulating the simultaneous
solution which involving the consideration of both utility
consumption and operational flexibility, the HEN superstruc-
ture proposed by[3,4] is applied for modeling the structure.
Therein, the isothermal mixing assumption in the simplified
superstructure eliminates the need for nonlinear/nonconvex
energy balance. The minimum number of superstructure
stages,NT , corresponds to max{NH, NC}, as suggested by
[3]. Fig. 1 illustrates a 2-hot/2-cold/2-stage superstructure.
The mathematical programming formulation for minimizing
utility consumption with specified uncertain source-stream
temperature ranges can be summarized as follows:[3,4,10]:

min
x∈�

J(0) =
∑
i∈ HP

qcu(0)
i +

∑
j∈ CP

qhu(0)
j (1)

x ≡



zijk, zcui, zhuj; tik, tjk; dtijk, dtcui, dthuj;
qijk, qcui, qhuj;

i ∈ HP, j ∈ CP, k ∈ ST


 (2)
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Ω =




x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(T in
i − T out

i )FCpi =
∑
k∈ST

∑
j∈CP

qijk + qcui

(T out
j − T in

j )FCpj =
∑
k∈ST

∑
i∈HP

qijk + qhuj




overall heat balances

(tik − ti,k+1)FCpi =
∑
j∈CP

qijk

(tjk − tj,k+1)FCpj =
∑
i∈HP

qijk




stage heat balances

ti,1 = T in
i ∈ {T in(0)

i − δ, T
in(0)
i + δ}

tj,NT +1 = T in
j ∈ {T in(0)

j − δ, T
in(0)
j + δ}


 uncertain inlet temperatures

tik ≥ ti,k+1

tjk ≥ tj,k+1

T out
i ≤ ti,NT +1

T out
j ≥ tj,1




feasibility of temperatures

(ti,NT +1 − T out
i )FCpi = qcui

(T out
j − tj,1)FCpj = qhuj


 utility loads

qijk − Λzijk ≤ 0

qcui − Λzcui ≤ 0

qhuj − Λzhuj ≤ 0


 logical constraints

dtijk ≤ tik − tjk + Γ(1 − zijk)

dtij,k+1 ≤ ti,k+1 − tj,k+1 + Γ(1 − zijk)

dtcui ≤ ti,NT +1 − T out
CU + Γ(1 − zcui)

dthuj ≤ T out
HU − tj,1 + Γ(1 − zhuj)




approach temperatures

dt
(0)
ijk ≥ �Tmin

dtcu(0)
i ≥ �Tmin

dthu(0)
j ≥ �Tmin


 nominal approach temp. bounds

∑
i∈ HP,j∈ CP,k∈ ST

zijk +
∑
i∈ HP

zcui +
∑
j∈ CP

zhuj ≤ MEUmax


 maximum exchanger units

zijk, zcui, zhuj ∈ {0, 1}
tik, tjk, dtijk, dtcui, dthuj, qijk, qcui, qhuj; ≥ 0
i ∈ HP, j ∈ CP, k ∈ ST




(3)

wherex andΩ denote variables for design and the feasible
searching space, respectively;δ is the targeted flexibility for
source-stream temperatures[10]; the superscript(0) denotes
the nominal condition; and the upper bound for unit num-
bers is MEUmax. The searching space is comprised of all
heat balances constraints and relevant logical constraints. As
pointed out in[6–10], this problem is difficult to solve di-
rectly since it involves a max-min-max constraint that leads
to a non-differentiable global optimization problem. For the
HEN synthesis problem with uncertain source-stream tem-

peratures, the feasible region defined by the reduced inequal-
ity constraints is convex[6], so the critical point that limits
the solution lies at a vertex of the polyhedral region of un-
certainty. For the problem ofEq. (7)with N (≤ NH + NC)
uncertain source-stream temperatures, the vertex-based for-
mulation is given as follows[10]:

min
xV∈ΩV

J(0) =
∑
i∈HP

qcu(0)
i +

∑
j∈CP

qhu(0)
j (4)
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or

min
xV∈ΩV

J(ave)

= 1

NV + 1

∑
n∈{0}∪VT


∑

i∈HP

qcu(n)
i +

∑
j∈CP

qhu(n)
j


 (5)

xV =




zijk, zcui, zhuj; dt
(n)
ijk , dtcu(n)

i , dthu(n)
j ;

t
(n)
ik , t

(n)
jk ; q

(n)
ijk , qcu(n)

i , qhu(n)
j ;

i ∈ HP, j ∈ CP, k ∈ ST, n ∈ {0} ∪ VT


 (6)

ΩV =




xV

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(T
in(n)
i − T out

i )FCpi =
∑
k∈ ST

∑
j∈CP

q
(n)
ijk + qcu(n)

i

(T out
j − T

in(n)
j )FCpj =

∑
k∈ ST

∑
i∈HP

q
(n)
ijk + qhu(n)

j

(t
(n)
ik − t

(n)
i,k+1)FCpi =

∑
j∈CP

q
(n)
ijk

(t
(n)
jk − t

(n)
j,k+1)FCpj =

∑
i∈HP

q
(n)
ijk

T
in(n)
i = (T

in(0)
i + r

(n)
i δ) = t

(n)
i,1

T
in(n)
j = (T

in(0)
j + r

(n)
j δ) = t

(n)
j,NT +1

t
(n)
ik ≥ t

(n)
i,k+1

t
(n)
jk ≥ t

(n)
j,k+1

T out
i ≤ t

(n)
i,NT +1

T out
j ≥ t

(n)
j,1

(t
(n)
i,NT +1 − T out

i )FCpi = qcu(n)
i

(T
out(n)
j − t

(n)
j,1 )FCpj = qhu(n)

j

q
(n)
ijk − Λzijk ≤ 0

qcu(n)
i − Λzcui ≤ 0

qhu(n)
j − Λzhuj ≤ 0

dt
(n)
ijk ≤ t

(n)
ik − t

(n)
jk + Γ(1 − zijk)

dt
(n)
ij,k+1 ≤ t

(n)
i,k+1 − t

(n)
j,k+1 + Γ(1 − zijk)

dtcu(n)
i ≤ t

(n)
i,NT +1 − T out

CU + Γ(1 − zcui)

dthu(n)
j ≤ T out

HU − t
(n)
j,1 + Γ(1 − zhuj)

dt
(0)
ijk ≥ �Tmin

dtcu(0)
i ≥ �Tmin

dthu(0)
j ≥ �Tmin∑

i∈HP,j∈CP,k∈ ST

zijk +
∑
i∈HP

zcui +
∑
j∈CP

zhuj ≤ MEUmax

zijk, zcui, zhuj ∈ {0, 1}
t
(n)
ik , t

(n)
jk , dt

(n)
ijk , dtcu(n)

i , dthu(n)
j , q

(n)
ijk , qcu(n)

i , qhu(n)
j ≥ 0

i ∈ HP, j ∈ CP, k ∈ ST, n ∈ {0} ∪ VT




(7)

Here,r(n)
i andr

(n)
j are the vertex identifiers which take val-

ues ofNV = 2(NH+NC) combinations of+1 and−1, see
Table 1in [10]. Therein,Eq. (4)considers nominal utilities
andEq. (5)takes into account the average of all vertical op-
erating points.

For the benchmark example mentioned in[10], a
2-hot/2-cold streams problem along with heating steam and
cooling water, the maximal allowable variation of various
possible minimum-utility HEN structures is examined by
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Table 1
Problem data of example 1

Process streams and utilities Heat-capacity flow rate FCp (kW/K) Input temperatureT in (K) Output temperatureT out (K)

Hot stream 1 (H1) 10 650 370
Hot stream 2 (H2) 20 590 370
Cold stream 1 (C1) 15 410 650
Cold stream 2 (C) 13 350 500
Hot utility (HU) – 680 680
Cold utility (CU) – 300 320

�Tmin = 10 K.

Table 2
The resulting HEN structure of example 1 with increasing flexibility target
(ε → 0, seeTable 2of [10] for labeling HEN structures)

Specifiedδ value Resulting HEN structure Maximum flexibilityδ∗

0 ∼ 36.95 A 36.95
36.95+ ε B1a 70.63
40 B7a 90.00
50 B6 90.00
60 B1a 70.63
70 B7a 90.00
80 B7a 90.00
90 B7a 90.00
90+ ε C2 120.0
120–150 D 150.0

increasing theδ value overδ ∈ [0, 150] and solvingEq. (4)
or Eq. (5). There are 18 sets of structure-determining bi-
nary variables and 11 of them possess unique structures
(seeTable 2of [10]). However, we found that the resulting
HEN structures with increasing flexibility targets are prone
to variation, and the true maximal flexibilities of these HEN
structures are usually greater than the required targets, as
illustrated in Table 2. Similar results can also be found
should restricted heat-load constraints on vertices, as shown
in Eqs. (8) and (9), be taken into consideration in the HEN
synthesis.

min
xV∈�V∩�load

J(0) =
∑
i∈HP

qcu(0)
i +

∑
j∈CP

qhu(0)
j (8)

or

min
xV∈�V∩�load

J(ave) = 1

NV + 1
×

∑
n∈{0}∪VT

×

∑

i∈HP

qcu(n)
i +

∑
j∈CP

qhu(n)
j


 (9)

Ωload =




q
(n)
ijk , qcu(n)

i , qhu(n)
j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q
(0)
ijk (1 − α) ≤ q

(n)
ijk ≤ q

(0)
ijk (1 + β)

qcu(0)
i (1 − α) ≤ qcu(n)

i ≤ qcu(0)
i (1 + β)

qhu(0)
j (1 − α) ≤ qhu(n)

j ≤ qhu(0)
j (1 + β)

i ∈ HP, j ∈ CP, k ∈ ST, n ∈ VT




(10)

In this paper, the targeted source-stream temperatures
are directly treated as individual design objective, and the
multi-criteria optimization approach is adopted for HEN
synthesis. The minimizing utility and the maximizing oper-
ational flexibility can be simultaneously considered as two
conflict objectives for synthesis of the network structure.
Furthermore, other targets such as minimizing number of
matches can also be considered, such as,

min
xV∈ΩV

J
(0)
1 = ∑

i∈HP qcu(0)
i + ∑

j∈CPqhu(0)
j or

min
xV∈ΩV

J
(ave)
1 = 1

NV + 1
×

∑
n∈{0}∪VT

×

∑

i∈HP

qcu(n)
i +

∑
j∈CP

qhu(n)
j


 and

max
xV∈ΩV

J2 = δ and

min
xV∈ΩV

J3 =
∑
i∈HP

∑
j∈CP

∑
k∈ST

zijk

+
∑
i∈HP

zcui +
∑
j∈CP

zhuj

(11)

In such a case, a unique HEN structure with satisfactory
levels in nominal or average utility consumption and opera-
tional flexibility as well as unit numbers will be obtained. A
two-phase fuzzy optimization method is proposed to find a
best compromised solution for the multi-criteria HEN syn-
thesis problem, as discussed in the next section. The basic
number of constraints and variables for the multi-objective
MILP formulation are summarized in the following.

1. The number of constraints:
(a) for linear equality constraints:(NV + 1)[NT (NH +

NC) + 4(NH + NC)];
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(b) for linear inequality constraints:(NV + 1)[(NH +
NC)(NT +3)+3NT NHNC] +NT NHNC+NH +NC.

2. The number of variables:

(a) binary variables:NHNCNT + NH + NC;
(b) positive continuous variables:(NV+1)[NT (2NHNC+

NH + NC) + 2(NH + NC)] + 1.

3. Fuzzy multi-criteria optimization

Consider the multi-criteria optimization problem de-
fined in Eq. (11). Because of the fact that these objective
functions usually conflict with each other in practice, the
optimization of one objective implies the sacrifice of other
targets; it is thus impossible to attain their own optima,Js,
s ∈ S = [1, . . . , S], simultaneously. Therefore, the decision
maker (DM) must make some compromise among these
goals. In contrast to the optimality used in single objec-
tive optimization problems, Pareto optimality characterizes
the solutions in a multi-objective optimization problem
[13].

The weighting-sum method, among methods found in lit-
eratures for solving multi-objective optimization problems,
is the one that is used most often. Basing on the subjective
comprehension for each objective, the DM of this method
can weigh and sum up these objectives into a scalar form,
and then find the solution by any existing single-objective
optimization method. However, as the situation of combin-
ing weighting factors becomes more complex, this method
becomes more tedious and the solution could be still in-
valid. Moreover, it is difficult for the DM to attribute a set
of incompatible objectives, such as utility consumption,
operational flexibility, or number of matches in a heat ex-
changer network, without knowledge of the possible level
of attainment for these objectives. The physical mean-
ing of the final scalar objective function is thus usually
vague.

In this work, we adopt the fuzzy set theory[14] to deal
with the multi-objective optimization problem. By consid-
ering the uncertain property of human thinking, it is quite
natural to assume that the DM has a fuzzy goal,Js, to
describe the objectiveJs with an interval [J1

s , J0
s ]. For the

sth objective to be minimized, it is quite satisfied as the
objective valueJs ≤ J1

s , and is unacceptable asJs ≥ J0
s .

The degree of satisfaction decreases as the objective value
increases fromJ1

s to J0
s . A strictly monotonic decreas-

ing membership function,µJs (Js(xV)) ∈ [0, 1], can be
used to characterize such a transition from the objective
value to the degree of satisfaction, therein value of 1 de-
notes absolutely satisfactory, and 0 means unacceptable.
Notably, an interval of [J0

s , J1
s ] and a monotonic increas-

ing membership function should be used for defining a
fuzzy objective to be maximized. Without loss of gener-
ality, we will adopt linear membership functions in the
following.

µJs(Js(xV ))

=




1; for J1
s ≥ Js

J0
s − Js

J0
s − J1

s

for J1
s ≤ Js ≤ J0

s

0; for Js ≥ J0
s

for Js to be minimized

(12)

µJs(Js(xV ))

=




1; for Js ≥ J1
s

J1
s − Js

J1
s − J0

s

for J0
s ≤ Js ≤ J1

s

0; for J0
s ≥ Js

for Js to be maximized

(13)

The original multi-criteria optimization problem is now con-
verted to the one that looks for a suitable decision variable
vector that can provide the maximal degree-of-satisfaction
for the multiple fuzzy objectives.

max
xV∈�V

(µJ1(xV), . . . , µJS
(xV)) (14)

Under incompatible objective circumstances, a DM must
make a compromise decision that provides a maximal
degree-of-satisfaction for all these conflict objectives. The
new optimization problem,Eq. (14), can be interpreted as
the synthetic notation of a conjunction statement (maximize
jointly all objectives). The result of this aggregation can be
viewed as a fuzzy intersection of all fuzzy goals,Js, s ∈ S,
and is still a fuzzy set,D.

D = J1 ∩ . . . ∩ JS (15)

The final degree-of-satisfaction resulting from certain vari-
able set,µD(xV) can be determined by aggregating the
degree-of-satisfaction for all objectives,µJs (xV), s ∈ S, via
specific fuzzy intersection operator,T.

µD(xV) = T
(
µJ1(xV), . . . , µJS

(xV)
)

(16)

The fundamental properties for a fuzzy set and the related
operators can be found in[15]. As the firing level for each
policy is determined by the above procedure, the best so-
lution, x∗

V, with the maximal firing level,µD(x∗
V), can be

selected.

max
xV∈ΩV

µD(xV) = max
xV∈ΩV

T(µJ1(xV), . . . , µJS
(xV)) (17)

Using the fuzzy intersection operator, the original multi-
objective optimization problem,Eq. (11), is converted into a
single objective problem,Eq. (17). Several operators for im-
plementing fuzzy intersection can be selected forT, therein
two most popular ones are shown below.

T(µJ1, . . . , µJS
)

=
{

min(µJ1, . . . , µJS
) T = minimum

(µJ1 + . . . + µJS
)

S
T = average

(18)

The average operator simultaneously takes all membership
values into account. But, no guarantee can be made for any
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single objective. The minimum operator concentrates on im-
proving the worst scenario. However, the minimum operator
may result in multiple solutions since contribution of those
objectives with membership values greater than the mini-
mum one would not be cared. We thus combine these two
fuzzy intersection operators to take advantages of both and
propose a two-phase optimization procedure[11,12]. The
minimum operator is first used in phase I to find the least
degree of satisfaction for the worst objective, then the aver-
age operator is applied in phase II to promote satisfaction
levels of all objectives with guaranteed least membership
value. The merit of this method is that we can not only ob-
tain the unique optimal solution by using average operator
but also guarantee each objective to go after their own max-
imum on the basis of taking the least degree of satisfaction
as the lower-bound constraint. So, now we can summarize
the procedure of the two-phase fuzzy satisfying approach
for the multi-criteria optimization problem.

Step 1. For a function to be minimized, determine its ideal
solution and anti-ideal solutions by directly mini-
mizing and maximizing the objective function.

min
xV∈ΩV

Js = J
¯

1
s

(ideal solution ofJs, totally acceptable

value) (19)
max

xV∈ΩV
Js = J̄0

s

(anti− ideal solution ofJs,

unacceptable value) (20)
Notably, direct maximization and minimization
should be taken for a maximizing objective to
obtain the ideal and anti-ideal solutions.

Step 2. Based on the importance of different objective func-
tions and the acceptable ranges for objective val-
ues, subjectively select suitable lower/upper bounds,
J
¯

1
s ≤ J1

s ≤ J0
s ≤ J̄0

s for minimizing objective and
J
¯

0
s ≤ J0

s ≤ J1
s ≤ J̄1

s for maximizing objective. De-
fine membership functions for multiple fuzzy ob-
jectives as given inEqs. (12) and (13).

Step 3. (Phase I). Use the minimum operator to find the
maximal degree of satisfaction for the worst objec-
tive, µmin.

max
xV∈ΩV

µD = max
xV∈ΩV

min(µJ1, . . . , µJS
) = µmin

(21)

Step 4. (Phase II). Use the average operator to simultane-
ously promote satisfaction levels of all objectives
with new constraints of guaranteed minimal degree
of satisfaction.

max
xV∈�+

V

µD = max
xV∈�+

V

µJ1 + · · · + µJS

S
(22)

where

Ω+
V = ΩV ∩ {µJs ≥ µmin, ∀s ∈ S} (23)

The new feasible space guarantees the least degree
of satisfaction for each fuzzy objective.

4. Numerical example

Two numerical examples adapted from[4,10]are supplied
to demonstrate the efficacy of proposed HEN synthesis strat-
egy. To solve this MO-MILP for the HEN model, GAMS
[16] and CPLEX are used as the modeling environment and
the MIP solver, respectively. The computing machine is a
personal computer with an Intel Pentium IV 2.26 GHz CPU.

Example 1. The 2-hot/2-cold streams example studied by
[10], with problem data presented inTable 1, is illustrated.
With these parameters, the multi-objective MILP formula-
tion has 408 linear equality constraints, 760 linear inequal-
ity constraints, 12 binary variables, and 545 positive con-
tinuous variables. Notably, the restriction of MEUmax = 6
in Eq. (7)will be removed should the minimum number of
matches be simultaneously taken into account as one of the
design objectives.

According to the model formulation and the problem data,
we solve the multi-criteria MILP synthesis problem by us-
ing the fuzzy optimization procedure discussed inSection
3. The ideal and anti-ideal solutions, obtained by sequen-
tially minimizing and maximizing each objective function,
are shown inTable 3. Within these lower/upper limiting val-
ues, several preference intervals are subjectively selected to
establish linear membership functions for the fuzzy objec-
tives. In implementing the two-phase fuzzy optimization, we
firstly use the minimum operator to maximize the degree of
satisfaction for the worst target,µmin. The average operator
is then applied to optimize the aggregated objectives with
guaranteed level of satisfaction.

At first, only two conflict objectives are considered: the
minimal utility consumption and the maximal flexibility to
all source-stream temperatures. And then the third objective,
the minimal number of matches, would be appended. Results
of two-phase fuzzy optimization with preference intervals of
[2550, 12750] or [2550, 8850] for utility, [0, 150], [40, 90]
or [40, 70] for flexibility, and [4, 7] for unit numbers, along
with either or not considering restrictions on heat loads at
extreme operating points, are listed inTable 4. The resulting
HEN structures are also depicted inFig. 2. Notably, the re-
duced range of flexibility, [40, 90], implies that the required
minimum tolerance for temperature deviation is at least 40 K
and a tolerance of maximum temperature deviation for 90 K

Table 3
The ideal/anti-ideal solutions of various objectives of example 1

Objective function Ideal solutionJ
¯

1
i Anti-ideal solutionJ̄0

i

J
(0)
1 utility (kW) 2550 12750

J2 flexibility (K) 150 0
J3 units 4 12
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Table 4
Results of HEN synthesis for example 1 using two-phase optimization when simultaneously considering minimal utility and maximal flexibility (cases
I–IV), and additional objective of minimal units (cases V and VI) with different preference intervals, and with or without considering restriction on heat
loads at vertices (α = β = 0.6)

Case Preference intervals Heat load Phase Minimum utility Maximum flexibility Minimum units

Hot Cold Total Satisfaction Flexibility Satisfaction Units Satisfaction

I [2550, 12750] No I 1300 2950 4250 0.833 120.0 0.800 6 –

(C2) [0, 150], [−, 6] II 1300 2950 4250 0.833 120.0 0.800 6 –

II [2550, 8850] No I 1050 2700 3750 0.810 80.5 0.810 6 –

(B7) [40, 90], [−, 6] II 1050 2700 3750 0.810 90.0 1.00 6 –

III [2550, 8850] Yes I 2190 3840 6030 0.448 62.4 0.448 6 –
[40, 90], [−, 6] II 2190 3840 6030 0.448 62.4 0.448 6 –

IV [2550, 8850] Yes I 1893 3543 5436 0.542 56.3 0.542 6 –
[40, 70], [−, 6] II 1893 3543 5436 0.542 56.3 0.542 6 –

V [2550, 8850] No I 1300 2950 4250 0.730 73.3 0.667 5 0.667
[40, 90], [4, 7] II 1300 2950 4250 0.730 74.2 0.685 5 0.667

VI [2550, 8850] Yes I 2550 4200 6750 0.333 56.7 0.333 6 0.333
[40, 90], [4, 7] II 2550 4200 6750 0.333 69.8 0.597 6 0.333

Fig. 2. The HEN structures for cases I–VI of example 1.
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Table 5
Problem data of example 2

Process streams
and utilities

Heat-capacity
flow rate FCp
(kW/K)

Input
temperature
T in (K)

Output
temperature
T out (K)

Hot stream 1 (H1) 6 500 320
Hot stream 2 (H2) 4 480 380
Hot stream 3 (H3) 6 460 360
Hot stream 4 (H4) 20 380 360
Hot stream 5 (H5) 12 380 320
Cold stream 1 (C1) 18 290 660
Hot utility (HU) – 700 700
Cold utility (CU) – 300 320

�Tmin = 10 K.

Table 6
The ideal/anti-ideal solutions of various objectives of example 2

Objective function Ideal solutionJ
¯

1
i Anti-ideal solution̄J0

i

J
(0)
1 utility (kW) 3780 9860

J2 flexibility (K) 20 0
J3 units 6 31

is absolutely satisfied. We choose 90 as the maximum de-
viation for most cases since it is the maximal tolerance for
the HEN with heat load restrictions on vertices.

As shown inTable 4and Fig. 2, the HEN structure in
case I is the same asC2 of [10], therein the maximum flex-
ibility to temperatures is explicitly given as 120. In case II,
the B7 structure of[10] can be obtained when the tolera-
ble upper bound for utility consumption is decreased from
12750 to 8850, and the preference interval for flexibility is
reduced from [0,150] to [40,90]. The resulting utility con-
sumption will be reduced from 4250 (Case I) to 3750 due

Table 7
Results of HEN synthesis for example 2 using two-phase optimization when simultaneously considering minimal utility, maximal flexibility and minimal
units with different preference intervals, and with or without considering restriction on heat loads (α = β = 0.6)

Case Preference intervals Heat load Phase Minimum utility Maximum flexibility Minimum units

Hot Cold Total Satisfaction Flexibility Satisfaction Units Satisfaction

I [3780, 9860] No I 3863 403 4266 0.920 18.4 0.920 8 0.920
[0, 20], [6, 31] II 3793 333 4126 0.943 20.0 1.00 8 0.920

II [3780, 4930] No I 3712 252 3964 0.840 16.8 0.840 10 0.840
[0, 20], [6, 31] II 3660 200 3860 0.930 20.0 1.00 10 0.840

III [3780, 4930] No I 3811 351 4162 0.667 13.3 0.667 8 0.667
[0, 20], [6, 12] II 3793 333 4126 0.699 20.0 1.00 8 0.667

IV [3780, 4930] No I 3811 351 4162 0.667 16.7 0.667 8 0.667
[10, 20], [6, 12] II 3793 333 4126 0.699 20.0 1.00 8 0.667

V [3780, 9860] Yes I 3980 520 4500 0.882 10.6 0.882 8 0.920
[0, 12], [6, 31] II 3980 520 4500 0.882 12.0 1.00 8 0.920

VI [3780, 4930] Yes I 3742 282 4024 0.787 9.4 0.787 11 0.800
[0, 12], [6, 31] II 3742 282 4024 0.787 9.4 0.787 11 0.800

VII [3780, 4930] Yes I 3860 400 4260 0.583 6.99 0.583 8 0.667
[0, 12], [6, 12] II 3860 400 4260 0.583 10.0 0.833 8 0.667

VIII [3780, 4930] Yes I 3860 400 4260 0.583 9.5 0.583 8 0.667
[6, 12], [6, 12] II 3860 400 4260 0.583 10.0 0.667 8 0.667

to the restriction of preference intervals, and the flexibility,
90, is equivalent to the maximum of theB7 structure.

All other conditions are equal to those in case II, case
III includes heat-load restrictions (α = β = 0.6) on vari-
ous vertical operating points as additional constraints. The
prices of such additional restrictions are increased utility
consumption from 3750 to 6030 and decreased flexibility to
temperature deviation from 90 to 62.4, which is still signifi-
cantly greater than the minimum targeted value, 40. In case
IV, the preference interval for temperature deviation is fur-
ther reduced to [40, 70]. It is found that the resulting HEN
has smaller utility consumption, 5438, with the expense of
further reduction on flexibility, 56.3, since our desideratum
for flexibility has been made lower.

Cases V and VI take into account the unit number as
the third design objective, where heat-load restrictions on
vertices are either included or not. In case V, it is found
that the unit number is only five, flexibility to temperature
deviation is 74.2, and the utility consumption is 4250, a little
more thanB4 andB5 of [10]. In case VI where heat-load
restrictions on vertices are further included, the total unit
number becomes six, the total utility is increased to 6750
with a reduced maximum temperature flexibility of 69.8.

From these results, it is found that the proposed
multi-criteria synthesis strategy can attain a definite and
compromised solution for a problem with assorted conflict
objectives. The preference intervals of various objectives
have significant effects on final HEN structures. Such ac-
ceptable and/or preference intervals can also reflect the
importance of different objective functions. Should one
specific objective is emphasized, a tighter restriction or
shrinking span should be placed on its acceptable ranges.
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Fig. 3. The HEN structures for cases I–VIII of example 2.

Observing the results shown inTable 4, we also discover
that the integrated two-phase method can bring the merits of
the minimum and average operators together. The minimum
operator maximize the degree of satisfaction for the worst
objective, and can result in a harmonious solution with
satisfaction levels for objective functions that are equal or
close to each other. The average operator, on the other hand,
can sometimes promote satisfaction levels for other objec-
tives with guaranteed minimum value, such as Cases II, V,
and VI. Owing to these advantages, the two-phase method
can thus provide the best compromised HEN configuration.

Example 2. This problem consists of five hot streams and
one cold stream, (NH = 5, NC = 1), along with steam and
cooling water as utilities[3]. The problem data are listed

in Table 5. The number of superstructure stages is set as
NT = 5. With these parameters, the MO-MILP formulation
has 3510 linear equality constraints, 8026 linear inequality
constraints, 31 binary variables, and 5981 positive continu-
ous variables. The ideal and anti-ideal solutions are shown
in Table 6. Various preference intervals are sequentially se-
lected for defining the membership functions, as shown in
Table 7.

We directly use the ideal/anti-ideal solutions as the pref-
erence intervals in Case I. The acceptable utility range is
reduced from [3780,9860] to [3780,4930] in Case II. With
such a smaller allowance interval, the resulting utility con-
sumption will be reduced slightly from 3793 to 3660 at the
expense of unit numbers increased from 8 to 10. In Case III,
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the maximum allowable unit number is changed from 31 to
12. The resulting HEN structure is slightly different to that
of Case I, but the required unit numbers, utilities, and flexi-
bility are the same as Case I. In Case IV, when the minimum
flexibility requirement is upgraded from 0 to 10, the same
HEN structure of Case I results with the same levels of util-
ity, flexibility and unit numbers. Cases V–VIII give similar
results with additional heat-load restrictions (α = β = 0.6)
on various vertical operating points. With such additional
constraints, the HEN structures use similar levels of utilities
and unit numbers, but the flexibility levels are dramatically
reduced. The resulting HEN structures are depicted inFig. 3.

5. Conclusion

In this paper, we use the fuzzy multi-criteria optimization
approach to synthesize the heat-exchanger network where
some conflict design objectives such as the total utility
consumption, the flexibilities to source-stream temperature
variations, and even the total number of heat exchange units
can be considered simultaneously. Such a flexible HEN
synthesis problem can be formulated as a multi-objective
mixed-integer linear programming (MO-MILP). For han-
dling the multiple conflict design objectives, a two-phase
fuzzy optimization method is proposed to attain the best
compromised solution. The attractive features of the pro-
posed MO-MILP model are that it not only considers the
trade-off among the utility consumption, the source-stream
temperature flexibility, and even the number of matches,
but also avoids the determination of structural boundaries,
as discussed in[10]. Two numerical examples with various
cases are studied, demonstrating that the proposed strat-
egy can provide a feasible compensatory solution for the
multi-criteria HEN synthesis problem.

Acknowledgements

This work is supported by the National Science Council
(ROC) under Contract NSC91-ET-7-002-004-ET. Partial fi-
nancial support of Ministry of Economic Affairs under grant
92-EC-17-A-09-S1-019 is also acknowledged.

Appendix A. Nomenclature

CP index set of cold process stream
dtijk temperature approach for matchi andj in stagek
dtcui temperature approach for matchi and cold utility
dthuj temperature approach for matchj and hot utility
FCp heat capacity flowrate
HP index set of hot process stream
J objective function
MEUmax maximum number of heat-exchange units
N number of uncertain parameters

NC number of cold streams
NH number of hot streams
NT number of superstructure stages
NV number of vertices,= 2N

qijk heat exchanged between streami andj in stagek
qcui heat exchanged between streami and cold utility
qhuj heat exchanged between streami and hot utility
r directional identifier for vertices
ST index set of superstructure stages
S number of objectives
�Tmin minimum approach temperature
tik temperature of streami at hot end of stagek
tjk temperature of streamj at hot end of stagek
T temperature
VT index set of vertices
x, xV vector of variables
zijk binary variable for existence of unit for matchi

andj in stagek
zcui binary variable for existence of unit for matchi

and cold utility in stagek
zhui binary variable for existence of unit for matchj

and hot utility in stagek

Greek letters
α, β parameters used for restriction of heat-load

deviations
δ flexibility index
δ∗ flexibility index (scalar)
µJs membership function forJs

Js a fuzzy goal
S index set of multiple objectives
D a fuzzy set
µD degree of satisfaction
Γ upper bound for temperature difference
Λ upper bound for heat exchange
Ω the feasible searching region

Superscripts
in inlet
(n) identifier for vertices
out outlet
(0) identifier for nominal operating condition

Subscripts
CU cold utility
HU hot utility
i index for hot process streams
j index for cold process streams
k index for superstructure stages
s index for objectives
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