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Short-range order in linear systems
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For linear systems in the continuum in which the particles interact with nearest-neighbor forces, the
pair distribution function at short distances can be expressed exactly in a simple form. Results are
given for various hard-core interaction potentials, in which the attractive potential is either constant
~square-well potential!, linear, or V-shaped. The second form is related to the depletion interaction.
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I. INTRODUCTION

One-dimensional continuous systems of hard rods w
~or without! nearest-neighbor attractive interactions ha
been investigated for a long time.1–7 The main importance o
these systems lies in the fact that in contrast to two- or th
dimensional continuous systems, exact analytic results
be obtained for most quantities of interest, in particular, d
tribution ~correlation! functions.8–14 Moreover, one-
dimensional systems provide valuable insight into the co
plex static and dynamic properties of higher dimensio
systems, and enable approximate methods to be tested
developed for the latter.15–17 Particularly illuminating illus-
trations of this role played by linear systems are the manif
pioneering investigations of Percus,18–20 the study of Fisher
and Widom21 of the long-range behavior of the pair distrib
tion function, and the recent analysis of Lekkerkerker a
Widom22 of the depletion interaction in hard sphere mi
tures.

Lattice systems are well-known to be much more am
nable to exact analytic analysis than their continuous a
logs. However, an extended hard core is needed in la
systems to propagate the effect of the repulsive part of
potential on the distribution functions,23 and this then makes
the theoretical analysis no simpler than that for system
the continuum.21

In this work, a system of one-dimensional hard rods
the continuum interacting with nearest-neighbor attract
potentials of finite range is considered. While exact expr
sions of the pair distribution function for these systems~and
hence, since the Kirkwood superposition approximation
exact for these models, for alln-body distribution functions!
was derived 50 years ago by Salsburget al.,24 it has appar-
ently not been noted that the short-range behavior of the
distribution function can be expressed analytically in sim
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forms ~the case of pure hard rods in the absence of
attraction has been solved a long time ago1!. These forms are
derived and used in this work to derive the exact analy
expression of the pair distribution function at short distan
for three different attractive potentials: the square-well, l
ear, and V-shaped potentials. The second potential is sh
to be related to the depletion interaction in linear system

II. DERIVATION OF RESULTS

Consider a system ofN identical particles of length~di-
ameter! a, located at the pointsR1 ,...,RN on a line of length
L. Assuming that the potential energyFN is the sum
of pair potentials between nearest-neighboring particles,
choosing

0,R1,R2,¯,RN,L,

we have

FN5( (
i , j

F~Ri j !5 (
j 51

N21

F~Rj 112Rj !, ~1!

where F(R) is the interaction potential between neare
neighbor particlesj and j 11 respectively located atRj and
Rj 11 .

If one assumes that the walls act as particles identica
those of the system, fixed atR50 andR5L, the total po-
tential energy becomes

FN5F~R1!1 (
j 51

N21

F~Rj 112Rj !1F~L2RN!. ~2!

F(R) is further assumed to satisfy

~a! lim
R→0

F~R!5`,

~b! lim
R→`

F~R!50.il:
7 © 2003 American Institute of Physics
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The average number density, i.e., the probability per u
length that any molecule will be at pointr, is defined as24

r~1!~r !5 (
k51

N

^d~Rk2r !&Av5K (
k51

N

d~Rk2r !L
Av

. ~3!

Similarly, the average density of ordered pairs is given b24

r~2!~r ,r 8!5K (
k51

N

(
j 51Þk

N

d~Rk2r !d~Rj2r 8!L
Av

; ~4!

herer (2) is the probability per~unit length!2 that one mol-
ecule will be atr and another will be atr 8. For hard-core
models with a hard-core diameter~length! a and an attraction
of rangel, the interaction potential takes the form,

F~R!5H ` R,a

F~R! a<R<l

0 R.l

. ~5!

If the length of the systemL and the number of particlesN
are allowed to become infinite in such a manner thatr –r 8
5R remains fixed~thermodynamic limit!, the following ex-
pressions are obtained24

r~1!51/la, with l 5L/@~N11!a#, ~6a!

r~2!~R!5 (
n51

N21
A~R2na!

la

1

2p i Ec2` i

c1` i

ds

3FV~s!

V~c!G
n

exp@R~s2c!#,

~6b!
r~2!~R!5r~2!~2R!,

whereA is the step function

A~x!5H 0 x,0

1 x>0,
~7!

V(s) is the Laplace transform

V~s!5E
0

`

dRexp@2sR2bF~R!#5L@e2bF~R!# ~8!

and c is determined by solving the stationary condition f
the saddle point24

S ] f

]sD
s5c

50, ~9a!

where

f ~s!5
Ls

N11
1 ln V~s!. ~9b!

For example, for a system of rigid spheres~rods! with no
attraction, one readily findsc51/@a( l 21)#.

Consider next the short-range behavior of the pair dis
bution functiong(R), i.e.,n51 andn52 in Eq.~6b!, where
0<R<3a. For n51, the first term of the sum in Eq.~6b!
can be rewritten as
Downloaded 12 Nov 2008 to 140.112.113.225. Redistribution subject to A
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T1~R!5
A~R2a!

la

1

2p i Ec2 i`

c1 i`

dseRsV~s!
e2Rc

V~c!

5
A~R2a!

la

e2Rc

V~c!
L21$L@e2bF~R!#%

5
A~R2a!

la

e2Rc

V~c!
e2bF~R!

5
A~R2a!

la

e2Rc

V~c!
I 1~R!, ~10a!

where

I 1~R!5e2bF~R!. ~10b!

Let

I n~R!5
1

2p i Ec2 i`

c1 i`

dseRs@V~s!#n, ~11!

so that

I 2~R!5
1

2p i Ec2 i`

c1 i`

dseRs@V~s!#2. ~12!

This integral is evaluated by using the relation6

E
0

`

e2stf ~m!~ t !dt5F E
0

`

e2stf ~ t !dtGm

, ~13!

where

f ~N11!~u!5E
0

u

dxNE
0

xN
dxN21¯E

0

x2
f ~u2xN!

3 f N,N21¯ f 21f ~x1!dx1 , ~14!

with

f N,N215 f ~xN2xN21!

and

f ~u!5e2bF~u!. ~15!

The integral in Eq.~12! then reads

I 2~R!5
1

2p i Ec2 i`

c1 i`

dseRsF E
0

`

dRe2sRe2bF~R!G2

5
1

2p i Ec2 i`

c1 i`

dseRsF E
0

`

dRe2sRf ~2!~R!G
5E

O

R

dR8 exp$2b@F~R2R8!1F~R8!#%, ~16!
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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and the second term in Eq.~6b! thus becomes

T2~R!5
A~R22a!

la

e2Rc

@V~c!#2 E0

R

dR8

3exp$2b@F~R2R8!1F~R8!#%.
~17!

5
A~R22a!

la

e2Rc

@V~c!#2
I 2~R!.

The average densities~3! and ~4! in terms of T1(R) and
T2(R) thus have the simple forms

r~2!~R!5T1~R! for R<2a, ~18a!

and

r~2!~R!5T1~R!1T2~R! for R<3a, ~18b!

with T1 andT2 given by Eqs.~10a! and ~17!, respectively.
The pair distribution functiong(2) is related tor (2) by

g~2!~R!5r~2!~R!~ la !2. ~19!

We next apply the above results to derive the short-ra
behavior of the pair distribution function of the hard sphe
~rod! model for three different attractive potentials: squa
well, linear, and V-shaped.

A. Square-well potential

The square-well potential is defined by

F~R!5H 1` R,a

2e a<R<l

0 R.l

.

For n51, the first term in Eq.~6b! becomes

T1~R!55
0 R,a

1

la

e2Rc1be

V~c!
a<R<l

1

la

e2Rc

V~c!
l,R

.

For n52, Eq. ~16! can be rewritten as

I 2~R!5E
0

a

dR8 exp$2b@F~R2R8!1F~R8!#%

1E
a

l

dR8 exp$2b@F~R2R8!1F~R8!#%

1E
l

R

dR8 exp$2b@F~R2R8!1F~R8!#%. ~20!

Two different interaction ranges are considered:l52a and
l53a/2.

~i! l52a: Because of the nature of the square-well p
tential, the first and last terms in Eq.~20! vanish, re-
sulting in

I2~R!5E
a

2a

dR8 exp@be2bF~R2R8!#5ye2be,
Downloaded 12 Nov 2008 to 140.112.113.225. Redistribution subject to A
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wherey12a5R with 0<y<a, and
I2~R!5~R22a!e2be for 2a<R<3a. ~21!

~ii ! l53a/2: For R>5a/2, I 2(R) can be expressed as

I 2~R!5E
a

3a/2

dR8 exp$2b@~2e!1F~R2R8!#%

1E
3a/2

5a/2

dR8 exp@2bF~R2R8!#

1E
5a/2

R

dR8 exp@2bF~R2R8!#.

For the same reason as in~i! above, the last two terms van
ish.

Let x5R2R8 and R55a/21y, with 0<y<a/2. One
then finds

I 2~R!5E
3a/21y

a1y

2dx exp$2b@~2e!1F~x!#%

2E
a1y

y

dx exp@2bF~x!#

5e2be~3a2R!12ebe~R2 5
2a!. ~22a!

For 2a<R<5a/2, letting x5R2R8 and R52a1y, with
0<y<a/2, we get

I 2~R!5E
a

3a/2

dR8 exp$2b@~2e!1F~R2R8!#%

1E
3a/2

R

dR8 exp@2bF~R2R8!#

5E
a

a1y

dx exp~2be!5~R22a!e2be. ~22b!

There remains to determineV(s). We have

V~s!5E
0

`

dRexp@2sR2bF~R!#

5E
0

a

dRexp@2sR2bF~R!#

1E
a

l

dRexp@2sR2bF~R!#

1E
l

`

dRexp@2sR2bF~R!#

5
exp~2ls!

s
@12exp~be!#1

1

s
exp~be2sa!.

~23!

V(c) is determined by solving Eqs.~9a!, ~9b!, and~23!.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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B. Linear potential

The linear potential has the form

F~R!5H S e

l2aD x2
le

l2a
5hx2j a<x<l

1` x,a

0 x.l

, ~24!

where

h5
e

l2a
and j5

le

l2a
.

The expression ofV(s) then takes the form,

V~s!5E
a

l

dRexp@2sR2b~hR2j!#

1E
l

`

dRexp~2sR!

5
exp~bj!

~s1bh!
$exp@2~s1bh!a#

2exp@2~s1bh!l#%1
1

s
exp~2ls!. ~25!

The expressionI 1(R) is determined as above. We obtain

I 1~R!5expb2b~hR2j!c.
The first term in Eq.~6b! then becomes

T1~R!55
0 R,a

1

la

exp~2Rc!

V~c!
exp@2b~hR2j!# a<R<l

1

la

exp~2Rc!

V~c!
l,R

.

~26!

For n52, we again distinguish two cases:

~i! l52a: For 2a<R<3a,

I2~R!5E
a

2a

dR8 exp$2b@~hR82j!1F~R2R8!#%.

Let x5R2R8, and y12a5R, with 0<y<a. One
finds

I2~R!5E
y

a1y

dxexp$2b@~hR82j!1F~x!#%

5~R22a!exp@2b~hR22j!#. ~27!

~ii ! l53a/2: For 2a<R<5a/2, we have

I 2~R!5E
a

3a/2

dR8 exp$2b@hR82j1F~R2R8!#%.

Let x5R2R8; then

I 2~R!5E
R2a

R23a/2

~2dx!exp$2b@hR82j1F~x!#%.

Let nextR52a1y, with 0<y<a/2, so that
Downloaded 12 Nov 2008 to 140.112.113.225. Redistribution subject to A
I 2~R!5E
a/21y

a1y

dx exp$2b@hR82j1F~x!#%,

5~R22a!expb2b~hR22j!c. ~28!

For 5a/2<R<3a, I 2(R) assumes the form,

I 2~R!5E
a

3a/2

dR8 exp$2b@hR82j1F~R2R8!#%

1E
3a/2

2a

dR8 exp@2bF~R2R8!#.

Let x5R2R8 andR55a/21y, with 0<y<a/2. We get

I 2~R!5E
3a/21y

a1y

~2dx!exp$2b@hR82j1F~x!#%

1E
a1y

a/21y

~2dx!exp@2bF~x!#

5~3a2R!exp$2b@hR22j#%

1
exp@b~2hR1j!#

bh H exp@bh~R2a!#

2expS 3

2
bhaD J 2

exp~bj!

bh

3$exp@2bh~R2 3
2 a#2exp~2bha!%. ~29!

C. V-shaped potential

The V-shaped potential is defined as

F~x!5H 2
2e

~l2a!
x1

2ea

~l2a!
a<x<

~a1l!

2

2e

~l2a!
x2

2el

~l2a!

1

2
~a1l!<x<l

. ~30!

Substituting Eq.~30! into Eq. ~8! gives

V~s!5E
a

~a1l!/2
dRexpF2sR2bS 2

2eR

l2a
1

2ea

l2aD G
1E

~a1l!/2

l

dRexpF2sR2bS 2eR

l2a
2

2el

l2aD G
1E

l

`

dRexp~2sR!

5H exp~2sa!2expF2
~a1l!s

2
1beG J

3S s2
2be

l2aD 21

2H exp~2ls!

2expF2
s~a1l!

2
1beG J S s1

2be

l2aD 21

1
exp~2ls!

s
. ~31!

For n51, we obtain
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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I 1~R!55
0 R,a

expF2bS 2
2eR

l2a
1

2ea

l2aD G a<R<
1

2
~a1l!

expF2bS 2eR

l2a
2

2el

l2aD G 1

2
~a1l!<R<l

1 R.2a

.

~32!

For n52, I 2(R) becomes

I 2~R!5E
a

3a/2

dR8 exp$2b@F~R8!1F~R2R8!#%

1E
3a/2

2a

dR8 exp$2b@F~R8!1F~R2R8!#%.

Let

a5
2e

l2a
5

2e

a
,

with l52a. We have

I 2~R!5E
a

3a/2

dR8 exp$2b@2aR812e1F~R2R8!#%

1E
3a/2

2a

dR8 exp$2b@aR824e1F~R2R8!#%.

For 2a<R<5a/2, let x5R2R8 andy12a5R, with 0<y
<a/2; then

FIG. 1. Pair distribution functiong(r )5g(2)(r ) for the square-well potentia
for various values ofl and identical values ofe and l. The units ofe are
kBT, and those ofl and l are a. The same units are used for the oth
figures.
Downloaded 12 Nov 2008 to 140.112.113.225. Redistribution subject to A
I 2~R!5E
R2a

R23a/2

~2dx!exp$2b@2aR812e1F~x!#%

1E
R23a/2

R22a

~2dx!exp$2b@aR824e1F~x!#%

5~R22a!expFbS 2eR

a
24e D G . ~33!

For 5a/2<R<3a, let x5R2R8 andy15a/25R, with
0<y<a/2; we have

FIG. 2. Pair distribution functiong(r ) for the square-well potential for
various values ofe, l, and l.

FIG. 3. Pair distribution functiong(r ) for the linear potential for various
values ofe, l, and l.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



t t
if-
te
ar
ig

rk
l
th
n

e
is
in
f

pa-
c-
di-

i-
d 2.
ial
axi-
m
nn

is

t-

nd
a
ly-
ius

n-
tion

the
r-
se
ter-
n of
re
een
the

he
e
the

dis-
ng
ms,
of

er

ls-
56

of
rnal
k-
u-

i-

he

for
g.

s

5612 J. Chem. Phys., Vol. 119, No. 11, 15 September 2003 Võ, Chen, and Robert
I 2~R!5E
y1a

y13a/2

dx exp$2b@2aR812e1F~x!#%

1E
y1a/2

y1a

dx exp$2b@aR824e1F~x!#%

5~3a2R!expFbS 2eR

a
24e D G

1S R2
5

2
aDexpF2bS 2eR

a
22e D G

1
a

4eb H expFbS 2eR

a
24e D G

2expFbS 2
2eR

a
16e D G J . ~34!

III. APPLICATIONS AND DISCUSSION

The exact results derived above are used here to plo
short-range behavior of the pair distribution function for d
ferent values of the parameters of the intermolecular po
tials and of the density. Figures 1 and 2 pertain to the squ
well potential, Fig. 3 pertains to the linear potential, and F
4 to the V-shaped potential.

Noteworthy of these graphs is their apparently rema
able variety and occasionally surprising behavior. Severa
these features are readily accounted for: in particular,
discontinuities of the first derivative of the pair distributio
functions, clearly seen for example in Figs. 1, 2~a!–2~b!,
3~a!–3~b!, and 4~a!–4~c!, are direct manifestations of thos
of the intermolecular potentials themselves, while the d
continuities of the pair distribution function itself, seen
Figs. 1~a!–1~b! and 2~a!–2~b!, are direct manifestations o

FIG. 4. Pair distribution functiong(r ) for the V-shaped potential for variou
values ofe, l, and l.
Downloaded 12 Nov 2008 to 140.112.113.225. Redistribution subject to A
he

n-
e-
.

-
of
e

-

those of the potential itself~here the square-well potential!;
and for very dilute systems, i.e., for large values of the
rameterl, the density expansion of the pair distribution fun
tion yields a short-range behavior which by necessity
rectly mimics the potential, as seen in Figs. 2~c!, 3~c!, and
4~d!.

The pair distribution function generally attains its max
mum value at contact, as seen for example in Figs. 1 an
However, when the well of the attractive part of the potent
is deep and its minimum does not occur at contact, the m
mum of the pair distribution function may occur away fro
contact. This is in accord with intuition, since the Boltzma
factor is largest at the well minimum. Such an instance
seen for the V-shaped potential in Figs. 4~a! and 4~b!; it is
not seen in Fig. 4~c!, which corresponds to a shallower a
tractive potential minimum.

In its simplest approximation, i.e., that of Asakura a
Oosawa,25 the depletion force is evaluated for
d-dimensional system of colloidal particles and ideal po
mers, in which the polymer is modeled as a sphere of rad
equal to its radius of gyration, and the colloid–polymer i
teraction is assumed to be hard spherelike. The deple
force is found to be proportional to the (d21)-dimensional
volume of the projection, on the plane perpendicular to
line joining the centers of two neighboring spherical pa
ticles, of the intersection of the excluded volumes of the
particles. Therefore, for one-dimensional systems, the in
section reduces to a point, independently of the separatio
the two colloidal particles provided that their centers a
close enough to each other that no polymer can fit betw
them. Consequently, the depletion force is constant, and
depletion potential which is equal, up to the sign, to t
integral of the depletion force, is a linear function of th
separation between neighboring particles, precisely of
linear type studied here and in another recent study.26 In a
forthcoming paper, the present exact results for the pair
tribution functions will be compared to those of our ongoi
experiments on one-dimensional colloid–polymer syste
and a qualitative comparison will be attempted with those
our experiments on two-dimensional colloid–polym
systems.
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