JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 11 15 SEPTEMBER 2003

Short-range order in linear systems
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For linear systems in the continuum in which the particles interact with nearest-neighbor forces, the
pair distribution function at short distances can be expressed exactly in a simple form. Results are
given for various hard-core interaction potentials, in which the attractive potential is either constant
(square-well potentia| linear, or V-shaped. The second form is related to the depletion interaction.
© 2003 American Institute of Physic§DOI: 10.1063/1.1599272

I. INTRODUCTION forms (the case of pure hard rods in the absence of any
attraction has been solved a long time Bg®hese forms are

One-dimensional continuous systems of hard rods withderived and used in this work to derive the exact analytic
(or without nearest-neighbor attractive interactions haveexpression of the pair distribution function at short distances
been investigated for a long tine’ The main importance of for three different attractive potentials: the square-well, lin-
these systems lies in the fact that in contrast to two- or threeear, and V-shaped potentials. The second potential is shown
dimensional continuous systems, exact analytic results caio be related to the depletion interaction in linear systems.
be obtained for most quantities of interest, in particular, dis-
tribution (correlation functions®=** Moreover, one-
dimensional systems provide valuable insight into the com-
plex static and dynamic properties of higher dimensional
systems, and enable approximate methods to be tested and Consider a system df identical particles of lengtdi-
deVelOped fOI’ the |attéP._17 Particularly |”Um|nat|ng i”us- amete)‘ a, |0cated at the pointgl'_ .. ’RN on a |ine Of |ength
trations of this role played by linear systems are the manifold = Assuming that the potential energ, is the sum
pioneering investigations of Perctis?°the study of Fisher  of pair potentials between nearest-neighboring particles, and
and Widont* of the long-range behavior of the pair distribu- choosing
tion function, and the recent analysis of Lekkerkerker and
widon? of the depletion interaction in hard sphere mix-  O<Ri<Rp<"-"<Ry<L,
tures. we have

Lattice systems are well-known to be much more ame-
nable to exact analytic analysis than their continuous ana-
logs. However, an extended hard core is needed in lattice Py=2 Z’, CD(RH):;I P(R;+1—Ry), @
systems to propagate the effect of the repulsive part of the
potential on the distribution functiorfd,and this then makes Where ®(R) is the interaction potential between nearest-
the theoretical analysis no simpler than that for systems if€ighbor particleg andj+1 respectively located &; and
the continuunt? Rj+1-

In this work, a system of one-dimensional hard rods in  |f one assumes that the walls act as particles identical to
the continuum interacting with nearest-neighbor attractivehose of the system, fixed &=0 andR=L, the total po-
potentials of finite range is considered. While exact exprestential energy becomes
sions of the pair distribution function for these syste(aisd N-1
hence, since the Kirkwood superposition approximation is & =®(R;)+ 2 D(Ri+1—R)+P(L—Ry). 2)
exact for these models, for aitbody distribution functions =1
was derived 50 years ago by Salsbetcal,? it hgs appar- g (R) is further assumed to satisfy
ently not been noted that the short-range behavior of the pair

distribution function can be expressed analytically in simple (&) lim ®(R)=c°,
R—0

|. DERIVATION OF RESULTS
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The average number density, i.e., the probability per unit A(R—a) 1 [c+i= e
length that any molecule will be at pointis defined & TW(R)=——5~ fc_iw ds€f¥)(s) e
N N
_ —Rc
PN = (SR-Na={ D sR-1)) . © _AR~a) e LYol BRI
k=1 k=1 A la Q(c)
Similarly, the average density of ordered pairs is givef{'by _A(R-a) e ~Re o BOR)
 la Q(c)
p(2)(r,r’):<21 Z O(Ry—r)o(Rj—r )> (4 A(R—a) e Re
=1 Av T Q(C) 11(R), (103
herep(® is the probability perunit length? that one mol-
ecule will be atr and another will be at’. For hard-core \ypere
models with a hard-core diametgength a and an attraction
of range\, the interaction potential takes the form, | (Ry=e AOR), (10b)
» R<a
®(R)={ ®(R) a<R=\, ) et
0 R>\ i
If the length of the systerh and the number of particles In(R)= 2 L_im ds€'10(s)]" 1D
are allowed to become infinite in such a manner that’
=R remains fixedthermodynamic limit, the following ex- so that
pressions are obtain&d
W=1/a, with I=L/[(N+1)a], 6 E
g (e LRy [Masetaer 12
— C—lw
A(R—na) 1 (c+=i
p@(R)= E ( )2 f “ds
n= la i Jo—oi This integral is evaluated by using the relafion
< 2O errs- o)) m
—| ex s—¢c)], o *
Q(c) f e S (t)dt= f e‘“f(t)dt} , (13
(2) (2) (6b) ° °
p 7 (R)=p“(=R),
whereA is the step function where
0 X<0 u XN X2
AX)= 1 x=0, @) f(N+1>(U):f0 dXNjO dXN—l"‘fO flu=xn)
Q(s) is the Laplace transform X fane 1 Faaf (X)) dxy, (14)
Q(s):f dRexgd —sR—B®(R)]=L[e P*®] (8  with
0
andc is determined by solving the stationary condition for fan—1=T(XN—Xn=1)
the saddle poiRf
(ﬁf) . (ga) and
sl . f(u)=e AW, (1)
where The integral in Eq(12) then reads
s
f(s)= ——=+InQ(s). (9b) 1 [o+ie o 2
N+1 Iz(R):ﬁf _ dséﬁf dRe SRe AR
For example, for a system of rigid spher@sds with no e 0
attraction, one readily finds=1[a(l —1)]. 1 [c+io o
. . . s =5 dSéR f dReﬁSRf(z)(R)
Consider next the short-range behavior of the pair distri- 27 ) e—iw 0
bution functiong(R), i.e.,n=1 andn=2 in Eq.(6b), where
0<R=3a. Forn=1, the first term of the sum in Eq6b) _ fRdR’ exp{— B[®(R—R')+D(R)]} (16)
can be rewritten as o '
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and the second term in E¢Gb) thus becomes

T,(R)=

A(R—2a) e R¢ fR
la  [Q(c)]?

Xexp{—B[P(R—R')+D(R")]}.

A(R—2a) e Re 1L(R) @n
FRETTSTCA

The average densitie®) and (4) in terms of T,(R) and
T,(R) thus have the simple forms

p P (R)=T(R)
and
pP(R)=T(R)+T,R) for R<3a, (18b)

with T, and T, given by Eqs.(10a and(17), respectively.
The pair distribution functioy(® is related top® by

g?(R=p?(R)(la)?. (19

0

for R=2a,

(18a

We next apply the above results to derive the short-range
behavior of the pair distribution function of the hard sphere
(rod) model for three different attractive potentials: square-

well, linear, and V-shaped.

A. Square-well potential

The square-well potential is defined by

+o R<a
®(R)={ —€ asRs\.
0 R>\

For n=1, the first term in Eq(6b) becomes

0 R<a

1 e—RC+B€

————— asR=s\
Ti(R)=¢ la Q(c)

1 eRe

Forn=2, Eq.(16) can be rewritten as

|2(R)=f0adR’ exp{— B[®(R—R)+®(R)]}
A
+f dR’ exp{— B[®(R-R')+®(R")]}
R
+f dR’ exp{— B[®(R—R")+®(R)]}. (20)
A

Two different interaction ranges are considerke: 2a and
N=3a/2.

(i) \=2a: Because of the nature of the square-well po-
tential, the first and last terms in EO) vanish, re-

sulting in

Io(R)= J:adR’ exf Be— BO(R-R)]=yes,
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wherey+2a=R with O=y=<a, and

I,(R)=(R—2a)e?’¢ for 2a<R<3a. (21)
(i) A=3a/2: ForR=5a/2, |,(R) can be expressed as

3al2
12(R)= fa dR’ exp{—B[(—€)+P(R-R")]}

5a/2
+ f dR exd — BP(R—R')]
3al2

+ fR dR exd — BP(R—-R')].
5al2

For the same reason as (in above, the last two terms van-
ish.

Let x=R—R’ and R=5a/2+y, with O<y=a/2. One
then finds

LR [

—dxexp{—BL(—e)+P(X)]}
3a/2+y
—fy dxexd —BP(x)]
a+ty
=e?P¢(3a—R)+2eP(R—3a). (22a

For 2as<sR<05a/2, letting x=R—R’' and R=2a+y, with
O<y=al/2, we get

3al2
'Z(R):L AR’ exp{— Bl(~ )+ B(R-R)]}
R
+f dR" exg — BP(R—R')]
3a/2

aty
=f dxexp(2Be)=(R—2a)e?Pe, (22b)

There remains to determirfe(s). We have
Q(s)szdRexp{—sR—BCD(R)]
0
=fadRexp[—sR—,3<D(R)]
0
X
+f dRexd —sR—BP(R)]
+fwdRex;{—sR—,8<I>(R)]
A

exp(—\s) 1
= T[l—exp(ﬁe)]Jr gexp(ﬁe—sa).

(23

Q(c) is determined by solving Eq$9a), (9b), and(23).
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B. Linear potential

The linear potential has the form

€ Ne
()\—a x—)\_a=nx—§ asX=\
PRI=) 1o x<a (29
0 x>\
where
Ne
7=3"a AMMEETy
The expression of)(s) then takes the form,
A
Q(s)=fadRexq—sR—,8(77R—§)]
+foodRexp(—sR)
N
exp(B¢)
:m{exd—(5+ﬁ7/)a]
—exr[—(s+ﬁ77)>\]}+%exp(—)\s). (25

The expressioth{(R) is determined as above. We obtain

1 (R)=exg—B(nR—§)].
The first term in Eq(6b) then becomes

0 R<a

1 exp—Ro) B R_ —R=)
1 exp—Ro)

E—Q(C) A<R

(26)
Forn=2, we again distinguish two cases:

(i) N=2a: For 2a<R<3a,

1(R)= f 4R exp{— (7R &+ DR-R)]

Let x=R—R’, andy+2a=R, with O0<y=a. One
finds

I(R)= Jy " dxexpl— BL(7R — 5+ DT}

=(R—2a)exf — B(7R—2§)]. (27
(i)  N=3a/2: For 2asR=<5a/2, we have

3al2
|2(R):L dR exp[— B[ 7R’ — é+P(R—R")]}.
Let x=R—R’; then

R-3a/2
12(R)= fR_a (—dx)exp— B[ 7R' =+ D(x)]}.

Let nextR=2a+Yy, with 0<y=a/2, so that

V0, Chen, and Robert

1,(R)= f;fydxexm—ﬁ[nw—§+<b<x>]},

=(R—2a)exy — B(nR—2¢§)]. (28)
For 5a/2<R=3a, 1,(R) assumes the form,

3al2
'Z(R):Ja AR’ exp(— B 7R’ — £+ D(R-R)]}

2a
+|  dR exg—pBP(R-R)].
3al2

Let x=R—R’ andR=5a/2+y, with O<y=<a/2. We get

1(R)= f;;y(—dX)eXp{—B[nR’—§+<I>(X)]}

al2+
+f " (—dxexd — B(x)]

a+y
=(3a—R)exp{— B[ 7R—2£]}

exd B(— nR+¢£)]
+
B

_eXp(§ﬁ a)]_ exp(B¢)
277 Bn

x{ex—Bn(R- 3al—exp—Bna)l.  (29)

{eXF[Bﬂ(R—a)]

C. V-shaped potential
The V-shaped potential is defined as

2e 2ea _ <(a+)\)
. - (A_a)x+ oa A=
d(x)= e 2en . (30

1
()\_a)x— —a) E(a+)\)sxs)\

Substituting Eq(30) into Eq. (8) gives

(a+N\)/2 2eR 2ea
Q(s)=f dRex;{—sR—B(— +

a A—a \N—a
+J>\ dR F{ R 2eR  2el
exp —sR— —
(a+N)/2 P A—a A—a

+f dRexp —sR)
A

F{ (a+\)s
exp—sa)—exg — 5 + Be

)

2Be\ 71t
s A—a

s(a+N\)
e +

X

—(exp(—)\s)

2Be€
](S+>\—a

-1

€

N exp(—AsS) .

S (31)

Forn=1, we obtain
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FIG. 1. Pair distribution functiog(r)=g‘®(r) for the square-well potential
for various values of and identical values o and\. The units ofe are

kgT, and those of\ and| are a. The same units are used for the other

figures.

(0 R<a

2eR  2ea 1

exp{— _)\—a+)\—a asRsE(aH\)
W(R)= 2eR  2e\ 1

exp{—ﬂ\)\a—ka E(a+)\)sRs)\

|1 R>2a

(32)

Forn=2, I,(R) becomes
3al2
IZ(R):L dR exp[— B[P (R")+D(R-R")]}
2a

+ ] dR exp{=B[®(R)+®(R-R)]}.
3a/2

Let

with A=2a. We have

3a/2
1,(R)= f dR’ exp{— B[ — aR’ +2e+®(R—R")]}

a

+ ﬁ dR exp{— B[aR’ —4e+D(R—R')]}.
3al2

For 2asR=<b5a/2, letx=R—R’ andy+2a=R, with O<y
=<a/2; then
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FIG. 2. Pair distribution functiorg(r) for the square-well potential for
various values ok, \, andl.

R—3a/2
I2(R)=JR (—dx)exp[— B[ —aR’'+2e+d(x)]}

—a

R—2a
+f (—dx)exp[—B[aR' —4e+D(x)]}
R-3a/2

. (33

2eR
=(R- 2a)exp{,8( = 46)

For 5a/2<R<3a, letx=R—R’ andy+5a/2=R, with
O=y=a/2; we have

/A I I T S

O]lllll]lllIIlI!IIIIIIII’IIII

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r/a

FIG. 3. Pair distribution functiorg(r) for the linear potential for various
values ofe, \, andl.
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L o e e e e those of the potential itselhere the square-well potential
i 3 : and for very dilute systems, i.e., for large values of the pa-
" LT a) e=d0 A=2 122 ] . : R
ok £ memobyesl0 A2 122 ] rameterl, the density expansion of the pair distribution func-
C ) e=03 A=l 122 1 tion yields a short-range behavior which by necessity di-
- o= =) =10 A=2 12100 ] .. . X .
C i ] rectly mimics the potential, as seen in Fig$c)2 3(c), and
S i ]
- E H o 4(d).
[ ] The pair distribution function generally attains its maxi-
4 ] mum value at contact, as seen for example in Figs. 1 and 2.
= F ] However, when the well of the attractive part of the potential
c0 3 [ ] is deep and its minimum does not occur at contact, the maxi-
- . mum of the pair distribution function may occur away from
- 5//\\"-: 1 contact. This is in accord with intuition, since the Boltzmann
2F ,j/\_\'\:\ 7] factor is largest at the well minimum. Such an instance is
N "G ] seen for the V-shaped potential in Figgadand 4b); it is
1E X T not seen in Fig. &), which corresponds to a shallower at-
b A R tractive potential minimum.
0 C | | T ] In its simplest approximation, i.e., that of Asakura and

00 03 0 T3 20 55 S0  Oosawa’ the depletion force is evaluated for a
d-dimensional system of colloidal particles and ideal poly-
mers, in which the polymer is modeled as a sphere of radius
FIG. 4. Pair distribution functiog(r) for the V-shaped potential for various equal_to It.S radius of gyration, and the co!lmd—polymer m,_
values ofe, \, andl. teraction is assumed to be hard spherelike. The depletion
force is found to be proportional to thel { 1)-dimensional
volume of the projection, on the plane perpendicular to the
line joining the centers of two neighboring spherical par-
ticles, of the intersection of the excluded volumes of these
particles. Therefore, for one-dimensional systems, the inter-
section reduces to a point, independently of the separation of
+fy+a dxexp(— BlaR’ —de+®(x)]} the two colloidal particles provided that their centers are
ytan close enough to each other that no polymer can fit between
them. Consequently, the depletion force is constant, and the
depletion potential which is equal, up to the sign, to the
integral of the depletion force, is a linear function of the
2¢R separation between neighboring particles, precisely of the
ex;{ —ﬂ<——26) linear type studied here and in another recent stidy. a
a forthcoming paper, the present exact results for the pair dis-
a 2¢R tribution functions will be compared to those of our ongoing
+m[ex;{[3( a —4e> experiments on one-dimensional colloid—polymer systems,
and a qualitative comparison will be attempted with those of
] our experiments on two-dimensional colloid—polymer

r/a

y+3a/2
1,(R)= fy+a dxexp{— B[ — aR’+2e+®(x)]}

2¢eR
=(3a— R)eX[{ﬁ(T—A]vé)

5
R—=-a

RT3

(39 systems.

IIl. APPLICATIONS AND DISCUSSION

The exact results derived above are used here to plot thgck NOWLEDGMENTS
short-range behavior of the pair distribution function for dif-
ferent values of the parameters of the intermolecular poten-  This paper is dedicated to the memory of Zevi W. Sals-
tials and of the density. Figures 1 and 2 pertain to the squardsurg, Professor of Chemistry at Rice University from 1956
well potential, Fig. 3 pertains to the linear potential, and Fig.until his untimely death at age 41 in 1970, on the occasion of
4 to the V-shaped potential. the exact 50th anniversary of the submission to the Journal

Noteworthy of these graphs is their apparently remark-of Chemical Physics of his seminal work with John G. Kirk-
able variety and occasionally surprising behavior. Several ofvood and Robert W. Zwanzig on one-dimensional distribu-
these features are readily accounted for: in particular, théon functions(Ref. 24. We are grateful to the National Sci-
discontinuities of the first derivative of the pair distribution ence FoundatiofiGrant No. CTS-97000147and the Welch
functions, clearly seen for example in Figs. 1a)22(b), Foundation(Houston, TX for financial support, and to the
3(a—3(b), and 4a)—4(c), are direct manifestations of those National Science Council of Taiwan for making possible the
of the intermolecular potentials themselves, while the disvisit of one of us(L.-J. C) to Rice University, where the
continuities of the pair distribution function itself, seen in present work was performed. We thank Professor R. Curl for
Figs. a@—1b) and 2a)—2(b), are direct manifestations of information on his former colleague Professor Z. Salsburg.

Downloaded 12 Nov 2008 to 140.112.113.225. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 119, No. 11, 15 September 2003

K. F. Herzfeld and M. Goeppert-Mayer, J. Chem. PH}s38 (1934.

2L. Tonks, Phys. Re\50, 955(1936.

3T. Nagamiya, Proc. Phys. Math. Soc. J®@2 705 (1940; 22, 1034
(1940.

4J. FrenkelKinetic Theory of Liquid$Oxford University Press, New York,
1940, p. 126.

5G. Rushbrooke and H. Ursell, Proc. Cambridge Philos. Sidc.263
(1948.

5F. Gursey, Proc. Cambridge Philos. S, 182 (1950.

R. Kikuchi, J. Chem. Physl9, 1230(1957).

8D. W. Jepsen, J. Math. Phy8, 405 (1965.

9J. L. Lebowitz and J. K. Percus, Phys. R&85, 122 (1967).

103, L. Lebowitz, J. K. Percus, and J. Sykes, Phys. R&{, 224 (1968.

1D, G. Levitt, J. Stat. Physz, 329 (1973.

12p, Kasperkovitz and J. Reisenberger, Phys. Re®1,A2639(1985.

13p, Kasperkovitz and J. Reisenberger, J. Math. PR§s2601(1985.

Short-range order in linear systems 5613

0. J. Eder and T. Lackner, Phys. Rev28, 952 (1983.

150. J. Eder and T. Lackner, Phys. Rev28, 799 (1984.

16M. Robert and R. Viswanathan, J. Chem. P186.4657(1987; M. Rob-
ert, J. F. Jeng, and R. Viswanathdinid. 88, 1983(1988.

17C. Foidi, J. Chem. Phys5, 410(1986.

18T, K. Vanderlick, H. T. Davis, and J. K. Percus, J. Chem. PByls.7136
(1989.

19See, for example, J. K. Percus, J. Stat. PAs 505 (1976.

2gee, for example, J. K. Percus, J. Chem. Ph$s1316(1981).

21M. E. Fisher and B. Widom, J. Chem. Phy), 3756(1969.

22H, N. W. Lekkerkerker and B. Widom, Physica285, 483 (2000).

23B. Widom, Sciencel57, 375(1965.

247, W. Salsburg, R. W. Zwanzig, and J. G. Kirkwood, J. Chem. PBgs.
1098(1953.

253, Asakura and F. Oosawa, J. Chem. PI#%5.1255(1954.

263, M. Brader and R. Evans, Physical86, 287 (2002.

Downloaded 12 Nov 2008 to 140.112.113.225. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



