
Downloa
Journal of
Vibration

and Acoustics Technical Briefs
Stability Analysis of a Single-Ball
Automatic Balancer

Chung-Jen Lu
Associate Professor
Department of Mechanical Engineering,
National Taiwan University,
No. 1 Roosevelt Rd. Sec. 4,
Taipei 10617, Taiwan, R.O.C.
e-mail: cjlu@ntu.edu.tw

Under proper working conditions, a ball-type automatic balancer
can effectively reduce the imbalance vibrations of an optical disk
drive. The proper working conditions can be determined by a
stability analysis of the equilibrium states of the nonlinear system
formed by the rotating disk, balancer, and suspension system. Sev-
eral attempts have been made to study the stability of the equilib-
rium states numerically in some finite regions of the relevant pa-
rameter space. This paper in contrast analytically investigates the
stability characteristics of the equilibrium states. A theoretical
model of an optical disk drive packed with an automatic balancer
is constructed first. The governing equations of the theoretical
model are derived using Lagrange’s equations and closed-form
formulas for the equilibrium positions are presented. Finally, gen-
eral guidelines on the stability of the equilibrium states are
proposed. �DOI: 10.1115/1.2149398�
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1 Introduction
The eccentric mass of an optical disk can cause serious vibra-

tions at high rotating speeds. Since the amount of eccentricity
changes from disk to disk, it is desirable to equip an optical disk
drive with an automatic balancer system �ABS� that can automati-
cally eliminate the unbalance associated with each disk. The most
popular type of ABS’s in use in the optical disk drive industry is
the ball-type that is characterized by having several balls moving
freely on a single or several circular orbits. Under proper working
conditions, the balls will move to the equilibrium positions or
states where vibrations due to unbalance are totally suppressed.
These equilibrium positions are called the perfect balancing posi-
tions. The stability characteristics of the perfect balancing posi-
tions are closely related to the proper working conditions �1–4�
and have been investigated numerically �5–7�. Specifically, �5–7�
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employed two design parameters, which formed a parameter
plane, and numerically determined the stable region of each equi-
librium state on the parameter plane. Such numerical analyses
make it difficult to draw general guidelines on the stability of the
equilibrium states.

In this paper we analytically study the stability of each equilib-
rium state of a rotating disk equipped with a single-ball ABS. First
the nonlinear equations of motion are derived with respect to a
co-rotating coordinates system. Then equilibrium states and the
associated linearized equations are obtained. Finally the condi-
tions under which each equilibrium state is unstable are
determined analytically by Routh’s criterion and the results
summarized.

2 Mathematical Model and Governing Equations
Figure 1 depicts schematically the system considered, which

consists of the following components:

• A rotating unbalanced disk with mass md and a constant
angular speed �. The mass center G of the disk is located at
a distance e from the geometric center C.

• An ABS, which is composed of an annular groove contain-
ing one or more balls and a damping fluid. The balls can
move freely along the groove and their movements are sub-
ject to viscous damping only. For the sake of simplicity, we
consider here only a single ball and treat the ball as a point
mass. Let d denote the radius of the groove, cb the viscous
damping factor of the damping fluid, and mb the mass of the
ball.

• A suspension system. The flexibility of the suspension sys-
tem is characterized by equivalent linear springs and viscous
dampers, denoted by �kx ,ky� and �cx ,cy�, respectively. For
simplicity, we assume that kx=ky =k, and cx=cy =c.

The coordinates system used is shown in Fig. 2. The
xy-reference frame rotates about a fixed point O with the same
angular speed � as the disk. When the disk is at rest, the center of
the disk C coincides with O at which the suspension springs are
undeformed. The rotating xy-frame is used because the equations
of motion expressed in this frame are autonomous. The rotating
disk undergoes a translational motion in the xy-frame and its po-
sition is indicated by the coordinates �x̂ , ŷ� of the geometric center
C. The position of the ball is given by the angle � relative to the
mass center G.

The equations of motion are derived from Lagrange’s equations
and can be expressed in dimensionless form as:

x� − ��b sin ���� − �b��� + ��2cos � + 2�x� − 2�y� + �1 − �2�x

− 2��y� − �b�2/� = 0

y� + ��b cos ���� − �b��� + ��2sin � + 2�x� + 2�y� + �1 − �2�y
+ 2��x = 0
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− ��b sin ��x� + ��b cos ��y� + �b�� + �2�b� cos ��x�

+ �2�b� sin ��y� + 2�b�b�� + �b�2�x sin � − y cos �� = 0

�1�
where

x = x̂/d, y = ŷ/d, � = �/�n,

M = md + mb, �n = �k/M ,

� = c/�2M�n�, �b = cb/�2mb�n� ,

�b = mb/M, � =
mbd

mde
�2�

In Eq. �1�, � �� indicates differentiation with respect to �=��n. It is
worth noting that � indicates the ratio of the rotational speed to
the natural frequency of the system and � the ratio of the eccen-
tricity of the ball to that of the disk.

3 Equilibrium Positions
The first step in analyzing a nonlinear system is to identify the

equilibrium positions. The equilibrium positions, denoted by x̃, ỹ,

and �̃, can be deduced from Eq. �1� by suppressing the time de-
rivatives and solving the resulting algebraic equations,

��1 − �2�x̃ − 2��ỹ − �b�2 cos �̃ − �b�2/� = 0

2��x̃ + �1 − �2�ỹ − �b�2 sin �̃ = 0

x̃ sin �̃ − ỹ cos �̃ = 0

�3�

To solve Eq. �3�, we introduce the polar coordinates

x̃ = r̃ cos �̃, ỹ = r̃ sin �̃ .

Here r̃ denotes the residual vibration of the rotating disk. Then Eq.
3.3 can be rewritten as

r̃ sin��̃ − �̃� = 0.

The above equation has three solutions: �̃= �̃, �̃= �̃+	, and r̃=0.
Equilibrium positions associated with these three cases are dis-
cussed separately below.

�i� �̃= �̃

Substitution of �̃= �̃ into Eqs. 3.1 and 3.2 yields two solutions
˜ ˜ ˜

Fig. 1 Schematic diagram of the ball-type automatic balancer,
rotating disk and equivalent suspension system
for r, which are referred to as r11 and r12 and expressed as
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� r̃11

r̃12
� = K���1 − �2� ± �D� �4�

where

K =
�b�2

���1 − �2�2 + 4�2�2�
and D = �1 − �2�2 + 4�1 − �2��2�2.

�5�

The corresponding �̃ is determined by

�̃ = tan−1 − 2��r̃

�1 − �2�r̃ − �b�2 . �6�

Note that r̃ should be non-negative. The conditions under which
r
0 are derived below for the cases ��1 and ��1, respec-
tively. When ��1, as can be seen from Eqs. �4� and �5�, r̃11�0
and r̃12�0. Therefore, r̃12 is not a possible equilibrium position
for ��1. Then consider the case ��1. In this case, Eq. �5� in-
dicates that

�D � 0 for �1 � � � �2

D � 0 otherwise,
�7�

where

�1 = �g − �g2 − 1, �2 = �g + �g2 − 1, and

g = 1 + 2��2 − 1��2. �8�

Note that �1�1��2 for ��1 and ��0. Equation �7� implies
that r̃11 and r̃12 are complex in the region �1����2. As can be
seen from Eq. �5�, �D� 	��1−�2�	 when D�0 and ��1. In
summary, for ��1,

�r̃11, r̃12 � 0 for 0 � � � �1

r̃11, r̃12 � C for �1 � � � �2

r̃11, r̃12 � 0 for �2 � �

The above results indicate that the ball cannot stay at the position
�=� when ��1 and ���1.

�ii� �̃= �̃+	
Through a procedure similar to that in the previous case, we

obtain two equilibrium positions, denoted by r̃21 and r̃22, as

� r̃21

r̃22
� = K�− ��1 − �2� ± �D� �9�

where K and D are defined by Eq. �5�. Then we proceed to de-
termine the conditions under which r̃ is non-negative. When �
�1, it is clear that r̃22�0 but r̃21�0. On the other hand, when

˜ ˜ ˜ ˜

Fig. 2 Rotating coordinates system
��1, r21, r22�0 for ���1; r21, r22�0 for ���2, where �1
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and �2 are defined by Eq. �8�. The position of the disk center C
relative to the x-axis is determined by

�̃ = tan−1 − 2��r̃

�1 − �2�r̃ + �b�2 . �10�

�iii� r̃=0
In this case the system is perfectly balanced and has no residual

vibration. Substituting r̃=0 into Eq. �3� gives that �=	 and �
=1. In other words, perfect balancing is possible when the ball has
the same eccentricity as the disk and is located on the opposite
side of the diameter passing through the mass center of the disk.

The above analysis indicates that � and � are two major factors
affecting the equilibrium positions of the system. Possible equi-
librium positions for the cases ��1, �=1, and ��1 are summa-
rized in Table 1.

4 Stability
The behavior of the system depends on the stability of the equi-

librium states. The stability of an equilibrium state can be deter-
mined by the eigenvalues of the linearized equation around the
equilibrium state. The eigenvalues are roots of the corresponding
characteristic equation as follows.

p�s� = a0s6 + a1s5 + a2s4 + a3s3 + a4s2 + a5s + a6 = 0, �11�

where the coefficients ai, which are functions of the equilibrium
positions, are given explicitly in the Appendix. According to
Routh’s criterion, information about stability can be obtained di-
rectly from the coefficients of the characteristic equation �8�. As
can be seen from Eq. �A1� in the Appendix, a0 is positive. In this
case, an equilibrium state is unstable if any coefficient from a1 to
a6 is negative. This result is used in the subsequent analysis to
show that some equilibrium states are unstable under certain con-
ditions. On the other hand, the necessary and sufficient condition
for an equilibrium state to be asymptotically stable is that all the
elements of the first column of the Routh array are of the same
sign. The first column of the Routh array is tabulated in the Ap-
pendix. By using Routh’s criterion we can investigate the stability
of the equilibrium states analytically. The results are listed below.

�S1� The equilibrium state r̃= r̃12��̃= �̃� is unstable.

Substitution of the value of r̃12 from Eq. �4� and �̃= �̃ into Eq.

�A7� gives a6=−��b�4�D� /��0. Therefore, r̃= r̃12��̃= �̃� is
unstable.

�S2� The equilibrium state r̃= r̃21��̃= �̃+	� is unstable.

Substituting the value of r̃21 from Eq. �9� and �̃= �̃+	 into Eq.

�A7� yields a6=−��b�4�D� /��0. Therefore r̃= r̃21��̃= �̃+	� is
unstable.

�S3� The equilibrium state r̃=0 is unstable for ��1.

Perfect balancing is possible only if �=1 and �̃=	. In this
case, Eq. �A7� reduces to a6=�4��2−1��b. Since a6�0 for �

�1, r̃=0 is unstable for ��1.
Then consider the special case �=0 but �b�0.

˜

Table 1 Equilibrium positions and their stability
�S4� The equilibrium state r=0 is unstable if �=0 and �b�0.
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Substitution of r̃=0 and �=0 into Eq. �A13� yields A6
=128�2�1−�4��b

5�b
3. It is obvious that, A6�0 for ��1, which in

turn implies that r̃=0 is unstable. Combination with �S3� leads to
the conclusion that r̃=0 is unstable.

�S5� When �=0 and �b�0, the equilibrium state r̃= r̃11��̃= �̃� is
stable for ��1, and unstable for ��1.

In this case, as can be seen from Eqs. �A8� to �A14�, all the
elements except A6 of the first column of the Routh array are
positive. In addition, A6 can be expressed as

A6 = 8�1 − �2��b�b/A5 = ��0 � � 1

�0 � � 1
�

Since Ai are of the same sign for ��1, r̃= r̃11 is stable for �
�1 according to Routh’s criterion. In contrast, there are two
changes in sign of Ai for ��1. Hence, r̃= r̃11 is unstable for �
�1.

�S6� When �=0 and �b�0, the equilibrium state r̃= r̃22��̃= �̃
+	� is unstable.

When �=0, r̃22�0 for ��1 and r̃22= ���−1� /����b�2 / ��2

−1�� for ��1. We only need to investigate the stability of r̃
= r̃22 in the region ��1 and ��1, where r̃22 is positive. Substi-

tuting �=0, r̃= r̃22 and �̃= �̃+	 into Eqs. �A12� and �A13� gives
that A5 ·A6=8�2�1−�2��b�b�0 for ��1. This result indicates
that there is at least one change in sign of Ai for ��1, which
proves �S6�.

Table 1 further summarizes the stability property of the equilib-
rium states. The unstable equilibrium states as shown in �S1�–�S3�
are enclosed by �; the unstable equilibrium states when �=0 but
�b�0, as shown in �S4�–�S6�, are enclosed by � �. It is worth
noting that there is at most one stable equilibrium position at a

rotating speed. The equilibrium state �r̃= r̃21 and �̃= �̃+	� is un-
stable. Furthermore, when �=0 but �b�0, r̃11 is stable for �
�1 while no stable equilibrium state exists for ��1.

5 Conclusion
Ball-type automatic balancers are used widely in the optical

disk drive industry to suppress the vibrations induced by an un-
balanced optical disk. We have investigated the stability property
of a system representative of an optical disk drive equipped with a
ball-type automatic balancer and a suspension system. The ana-
lytical nature of our investigation has yielded unique understand-
ing of the stability property of the system and insights into the
conditions under which perfect balancing can be achieved. Let �
denote the ratio of the rotational speed of the disk to the natural
frequency of the system. The results of the analysis can be sum-
marized as follows.

�1� There is at most one stable equilibrium position at a rotat-
ing speed.

�2� Perfect balancing cannot be achieved physically if the sus-
pension system is undamped.

�3� The perfect balancing position is unstable for ��1.
�4� No stable equilibrium position exists for ��1 if the sus-

pension system is undamped.
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Appendix
The coefficients of the characteristic polynomial are given

below:
a0 = 1 − �b � 0 �A1�
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a1 = 2��b + ��2 − �b�� �A2�

a2 = �1 + �2��2 − �b� + 8��b + r̃�2 cos��̃ − �̃� + 4�2 �A3�

a3 = 4��1 + 2�2 + �2��b + ��1 + �2 + r̃�2 cos��̃ − �̃� + �2�b��
�A4�

a4 = �1 − �2�2 + 4�2�2 + 2r̃�2 cos��̃ − �̃��1 + 2�2 + �2�

+ 8��1 + �2��b + �2�6 + �2��b �A5�

a5 = 2
��1 − �2�2 + 4�2�2��b + ��2�2r̃�1 + �2�cos��̃ − �̃�

+ 3�2�b�� �A6�

a6 = r̃�2��1 − �2�2 + 4�2�2�cos��̃ − �̃� + �4��2 − 1��b

�A7�

Let A1–A7 denote the elements of the first column of the Routh
array. Ai can be expressed as

A1 = a0 �A8�

A2 = a1 �A9�
A3 = �a1a2 − a0a3�/a1 �A10�
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A4 = �A3a3 − a1B�/A3 �A11�

A5 = �A4B − A3D�/A4 �A12�

A6 = �A5D − A4a6�/A5 �A13�

A7 = a6, �A14�

where B= �a1a4−a0a5� /a1 and D= �A3a5−a1a6� /A3.
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