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Abstract: Forecasting future epidemics helps inform policy decisions regarding interventions. 

During the early coronavirus disease 2019 epidemic period in January–February 2020, limited 

information was available, and it was too challenging to build detailed mechanistic models reflecting 

population behavior. This study compared the performance of phenomenological and mechanistic 

models for forecasting epidemics. For the former, we employed the Richards model and the 

approximate solution of the susceptible–infected–recovered (SIR) model. For the latter, we examined 

the exponential growth (with lockdown) model and SIR model with lockdown. The 

phenomenological models yielded higher root mean square error (RMSE) values than the 

mechanistic models. When using the numbers from reported data for February 1 and 5, the Richards 

model had the highest RMSE, whereas when using the February 9 data, the SIR approximation 

model was the highest. The exponential model with a lockdown effect had the lowest RMSE, except 

when using the February 9 data. Once interventions or other factors that influence transmission 

patterns are identified, they should be additionally taken into account to improve forecasting. 
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1. Introduction  

In December 2019, clusters of atypical pneumonia cases driven by a novel coronavirus 

(SARS-CoV-2) emerged in Wuhan, China [1]. A rapid surge of coronavirus disease 2019 (COVID-19) 

cases was identified initially in Hubei Province, and by January 23, 2020, it involved a total of 25 

provinces in China, with 571 cases and 17 deaths [2]. The Chinese government responded by 

implementing intensive control measures now referred to as a “lockdown.” This started with Wuhan 

on January 23, 2020, and the rest of Hubei Province in the following days, by shutting down 

domestic and international flights, as well as trains, buses, subways, and ferries across the affected 

areas [3–5]. Newly reported cases in China reduced greatly soon after the lockdown’s 

implementation and it was lifted on April 8, 2020 [6]. By then, the number of cumulative cases and 

deaths had reached 83,161 and 3,342, respectively [7]. 

Real-time forecasts of future incidence can provide valuable insights into the scale and control 

of an epidemic, and can help assess the effects of possible interventions [8,9]. Mechanistic [10,11] 

and phenomenological [12–16] mathematical models have been used for forecasting epidemics. 

Phenomenological models can efficiently capture epidemic trajectory by simply fitting the model to 

the incidence data as a function of time [17–19]. A frequently used forecasting methodology is the 

Richards model [20], which expresses a flexible S-shaped curve with a single inflection point; i.e., 

the epidemic peak. Forecasting with this model tends to be certain when the data contain the 

epidemic peak [18]. Mechanistic models such as the susceptible–infected–recovered (SIR) 

compartment model [21] can capture mechanisms of transmission dynamics, incorporating 

heterogeneities such as age dependence and spatial variations, and can be useful for evaluating 

interventions’ effectiveness. During the early COVID-19 epidemic period, however, limited 

information was available; building detailed mechanistic models that reflected population behavior 

was, thus, too challenging. However, forecasting without an intervention effect could yield extremely 

different results from those acquired through observation [11].  

An important question is whether mechanistic models should proactively be employed for 

short-time forecasting, during the very early stage of an epidemic, even if the mechanisms 

considered in the models are limited/simple (i.e., homogeneously mixing population is assumed and 

mechanistic details of public health countermeasures yet remain completely unknown). For the 

COVID-19 epidemic, the lockdown policy was a severe and intense countermeasure. In line with this, 

the present study aimed to compare the forecasting performance of phenomenological models and 

mechanistic models, the latter of which can incorporate the lockdown effect. 

2. Materials and methods 

2.1. Epidemiological data 

We retrieved daily incidence data of confirmed COVID-19 cases in China by reporting date 

from January 4 (the first case reported through surveillance) through February 18 from the World 

Health Organization (WHO) website [7]. This time frame encompassed the start of the epidemic to 

roughly 2 weeks after the epidemic’s peak. 

From February 13, the definitions in the reporting criteria in China were revised, which was 

followed by an abrupt increase in the number of cases for February 13 and 14. These numbers were 

considered outliers, and we therefore excluded these 2 days of data from the analysis. In total, we 
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analyzed incidence data of 53,330 confirmed cases. 

2.2. Models 

We used four different models for forecasting in this study. The first two were 

phenomenological: the Richards model [20] and the approximate solution of the basic SIR 

differential equations (SIR approximation model) [22]. The latter two were the exponential growth 

(exponential with lockdown) model and the SIR (SIR with lockdown) model, incorporating the 

lockdown effect by changing the growth rate/transmission parameter before and after the lockdown. 

In these models, we assumed the start of the lockdown was January 28, 2020, the date that all 

prefecture-, county- level cities, and an autonomous prefecture, except for the Shennongjia Forestry 

District, in Hubei Province were subject to it [3]. 

2.2.1. Phenomenological models 

2.2.1.1. Richards model 

First, we used the Richards model [18,20] to fit the observed data and predict the epidemic. This 

model is known for real-time prediction of outbreak and real-time detection of turning points. The 

model’s basic premise is that the incidence curve consists of a single peak of high incidence, 

resulting in an S-shaped epidemic curve and a single turning point of the outbreak [18]. The 

cumulative incidence was expressed as the following formula: 

( ) (1/ )/ [1 ] ,m

t

r t t a

cumC K e
− −

= +  (1)  

where 
tcumC  is the cumulative number of infected cases at time t in days; K is the carrying capacity 

or total number of cases in the outbreak; r is the per capita growth rate of the infected population; 

and a is the exponent of deviation from the standard logistic curve. ti is the inflection point of the 

S-shaped epidemic curve obtained from this model, while ( )ln /m it t a r= +  is equal to the inflection 

point ti when a equals 1. From this model, the basic reproduction number R0, or the average number 

of infections one infectious individual causes in an entirely susceptible population, is said to be 

computed as ( )0 /R exp r =  for a constant generation time [18], where 1/γ is the mean generation 

time. Throughout this study, the mean generation time was assumed to be the identical to the mean 

serial interval, at 4.8 days [23]. 

2.2.1.2. Approximate solution of the basic SIR differential equations 

Second, the basic differential equations of the SIR model (
dS

SI
dt

= − , 
dI

SI I
dt

 = − , 

dR
I

dt
= ) have an approximate solution for the epidemic curve, 

tnewC : the number of new cases 
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reported each day. 
tnewC  is expressed as follows [24]: 
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which is generally a symmetrical, bell-shaped curve, where β and γ are the transmission parameter 

and recovery rate, respectively, and S0 and I0 are the initial number of susceptible and infected 

individuals, respectively. /  =  is the relative recovery rate; thus, the basic reproduction 

number R0, can be calculated as follows 
0 0 /R S = . 

2.2.2. Mechanistic models with a lockdown effect 

2.2.2.1. Exponential with lockdown model 

We employed the intervention, lockdown, effect in mechanistic models. First, we used an 

exponential model by dividing newly infected people before and after the lockdown. We modeled the 

number of newly infected people per day as: 

( )

( ) ( )( )
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t t




 (5)  

where i0 is the initial number of infected people, r1 and r2 are the growth rate before and after 

implementation of the lockdown, tlockdown. R0, can be calculated using the formula 

22 1/

0 1(1 / ) vR rv = +  [10,25], where v is the coefficient of variation of the generation time [26], for 

which we adopted 0.5. 

2.2.2.2. SIR with lockdown model 

We then applied the time discrete SIR model for newly infected cases per day. The following 

equation was used for the model: 
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where St, It, and Rt are, respectively, the numbers of populations in the susceptible, infected, and 

recovered compartments on day t. γ is the recovery rate. N indicates the population size of 

China—1.4 billion—and is equal to the total population of the S, I, and R compartments. We 

expressed newly infected cases (inew) at time t+1 as the following equation: 
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where β1 and β2 are transmission parameters before and after the start of the lockdown. Not all 

infected carriers were reported, but the ascertainment rate, p, can be seen as about 10% [27], and the 

carrying capacity of reported cases would be approximately 10% of all infected carriers. We treated 

the number of inew×p individuals as the observed data, considering the ascertainment rate. In the SIR 

model, R0, was calculated using the formula 
0 1 /R  = . 

 Note that for the estimation of R0, we did not differentiate the impact of various interventions, 

i.e., different effectiveness of lockdown policy and other countermeasures such as contact tracing, 

isolation and mask waring. Because the estimation of intrinsic R0 without any impact of interventions 

cannot be attained, here it should be noted that our estimate reflects underlying interventions. 

2.2.2.3. Convolution for the mechanistic models 

As the number of reported cases in China were the observed data, the probability density 

function of time delay from infection to reporting was convoluted with ( )newi t  to acquire the 

expected number of reported cases, ( )newC t , which is modeled as: 

( ) ( )
0

( )
t

new newC i t u f ut du= − , (10)  

( ) ( )( ) tf t g h=  , (11) 

where g(t) and h(t) are the probability density functions of the incubation period (mean: 5.6 days, 
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standard deviation: 3.9 days [28]) and the onset-report delay (mean: 4.9 days, standard deviation: 3.3 

days [29]). 

2.3. Calibration 

Using the above formulae, we fitted the observational reported data to Ccum(t) of the Richards 

model and Cnew(t) of the SIR approximation model and the two mechanistic models (i.e., exponential 

and SIR with lockdown models) using maximum likelihood estimations with Poisson errors. We 

performed a bootstrapping method [30] with 10,000 iterations to have 95% confidence intervals (CIs) 

for the parameters estimated; this produced epidemic curves with 95% CIs. We used R statistical 

software (R Foundation for Statistical Computing, Vienna, Austria) [31] to perform these analyses. 

2.4. Prediction assessment 

We generated a 7-day forecast from each model for calibrating three different data cutoff points 

to evaluate the forecasting capability during the course of infection. The cutoff points were: February 

1 (before the epidemic peak), 5 (peak), and 9 (after the peak). We compared root mean squared errors 

(RMSEs) and relative RMSEs for the forecasting among models calibrated using three different data 

periodseach cutoff datum. We defined RMSE as follows: 

( )( )( )2

t̂ tRMSE mean median c c= − , (12)  

while we defined relative RMSE as [32]: 

Relative
( )

2

ˆ
log

t

t

median c
RMSE mean

c

   
 =        

, (13)  

where ˆ
tc  is the number of newly reported cases forecasted and ct is those observed. As the reporting 

definition in China was changed after February 13 and the reporting rate changed, 1/α is unknown, 

and we consequently performed a sensitivity analysis assuming α of 1, 0.9, 0.8, and 0.7. To calculate 

RMSE and relative RMSE, we used ct multiplied by α for the changed reporting rate period. We 

omitted the reported number of cases on February 13 and 14 from the analysis, with the assumption 

they were outliers. 

3. Results 

Table 1 shows the R0 estimated from the four models above (Richards, SIR approximation, 

exponential with lockdown, and SIR with lockdown) using three different data periods (cutoff dates 

of February 1, 5, and 9). The R0s of the phenomenological models (Richards and SIR approximation 

models) decline, as the data points used for the calibration vary from before the epidemic peak to 

after (R0: 2.6–7.7), while those for the mechanistic models (exponential with lockdown and SIR with 

lockdown) are relatively stable (R0: 2.4–3.3), irrespective of the data period used. Table S1 shows all 
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results of the other parameters estimated. 

Table 1. Basic reproduction numbers, R0, estimated from the model calibrations using 

COVID-19 reported cases in China. Three different data periods (cutoff dates of 

February 1, 5, and 9) were used for the calibrations. 

Cutoff date Richards SIR 

approximation 

Exponential with 

lockdown 

SIR with 

lockdown 

1-Feb 7.66 (5.43, 157.00) 4.63 (4.37, 4.85) 3.33 (3.25, 3.39) 2.45 (2.41, 2.47) 

5-Feb 4.16 (3.36, 5.03) 3.01 (2.92, 3.09) 3.07 (3.01, 3.12) 2.44 (2.41, 2.47) 

9-Feb 2.85 (2.59, 3.09) 2.56 (2.51, 2.61) 3.05 (3.00, 3.10) 2.49 (2.46, 2.52) 

The 95% confidence interval derived from profile likelihood is given in parentheses. The 

estimated incidence represents infection, inclusive of mild and asymptomatic cases. SIR: 

susceptible–infected–recovered. 

 

Figure 1. Estimated number of cases from calibration and 7 days forecasting from the 

Richards, susceptible–infected–recovered (SIR) approximation, exponential with 

lockdown, and SIR with lockdown models in China by date of reporting. Calibrations 

were conducted using three different data cutoff points: February 1 (red), 5 (green), and 9 

(blue). Solid lines with shaded areas show medians and 95% confidence intervals for 

calibration, while dashed lines with light-shaded areas show medians and 95% prediction 

intervals for forecasting. Gray bars show the number of cases by reporting date, and 

those on February 13 and 14 were omitted for the forecasting period, with the assumption 

they were outliers. 

Figure 1 shows the model fit to the observed data and 7 days of forecasting. Table 2 shows 

RMSEs and relative RMSEs calculated for the forecasting. When we used the reported data by 



2050 

Mathematical Biosciences and Engineering  Volume 19, Issue 2, 2043–2055. 

February 1 (before the epidemic curve peak) and February 5 (peak), the Richards model had the 

highest RMSE value (15362 and 1375), whereas when we used the data by February 9 (after the 

peak), the SIR approximation model had the highest RMSE value. This trend was stable throughout 

the different reporting rates used for the sensitivity analysis (1529, 1402, 1259, and 1121 with α of 1, 

0.9, 0.8, and 0.7, respectively). The exponential with lockdown model had the lowest RMSE, except 

for when we used the data by February 9 without the reporting rate adjustment, in which the SIR 

with lockdown model had the lowest RMSE (627). The results of relative RMSE had almost the 

same trend as for RMSE, except when the data by February 9 were used with a reporting rate 

adjustment of α = 0.9. Throughout the data cutoff points, the mechanistic models tended to have 

lower RMSE/relative RMSE values than the phenomenological models except for the following: the 

RMSE of the phenomenological Richards model (652, 500) was lower than that of the mechanistic 

SIR with lockdown model (882, 1025) when αs were 0.8 and 0.7 from the sensitivity analysis; and 

the relative RMSE of the Richards model (0.41) was lower than that of the SIR with lockdown model 

(0.49) when α was 0.7. 

Table 2. Root mean square errors (RMSEs) and relative RMSEs for the 7 days of 

forecasting from the models calibrated using three different periods (cutoff dates of 

February 1, 5, and 9) of reported COVID-19 cases in China. 

Cutoff date Richards SIR approximation Exponential 

with lockdown 

SIR with lockdown 

RMSE     

1-Feb 15362 1858 1585 1604 

5-Feb 1375 1244 457 934 

9-Feb 968 1549 823 627 

α*=0.9 809 1402 665 747 

α=0.8 652 1259 510 882 

α=0.7 500 1121 364 1025 

Relative RMSE     

1-Feb 1.49 0.89 0.71 0.72 

5-Feb 0.73 0.69 0.18 0.32 

9-Feb 0.67 1.59 0.52 0.26 

α=0.9 0.60 1.51 0.44 0.32 

α=0.8 0.51 1.43 0.35 0.40 

α=0.7 0.41 1.33 0.26 0.49 

*For RMSE and relative RMSE calculations from February 15, the numbers of reported cases 

observed were adjusted by multiplying α because of the definition change of reported cases for 

the sensitivity analysis (i.e., the reporting rate changed was assumed as 1/α). The reported case 

data for February 13 and 14 were omitted for the RMSE and relative RMSE calculations, with the 

assumption they were outliers. SIR: susceptible–infected–recovered. 

4. Discussion 

In this study, simple mechanistic models that account for the lockdown effect forecasted the 
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short-term future incidence of COVID-19 better than the phenomenological models. This finding 

was consistent irrespective of the epidemic phases (i.e., data points used for the calibration). In the 

data-limited setting, such as in the early phase of the epidemic in China, phenomenological models 

were useful because they required only the incidence data of the infectious disease and they captured 

the overall epidemic trajectory. Once interventions or other factors that may influence the 

transmission patterns (e.g., the lockdown), occurred, however, the epidemic dynamics changed 

considerably and it became essential to account for the change in the forecasting models. 

The Richards model forecasted the epidemic better than the SIR approximation (other 

phenomenological) model when data were available until after the epidemic peak. The Richards 

model, also known as the generalized logistic model, has been used to predict the spread of 

infectious diseases during previous epidemics, such as with foot-and-mouth disease in the United 

Kingdom [33] and the Ebola outbreak in West Africa [15,19,34,35]. It was also applied to forecast 

the incidence of the ongoing COVID-19 epidemic (now pandemic) [12,13]. The Richards model is 

well known for its ability to express flexibility of epidemic curves, meaning a deviation from the 

standard logistic curve can be captured [18] and fluctuations in data at hand before the epidemic peak 

greatly affect the final size (i.e., data can dramatically alter the final size). In this study, however, 

once the epidemic passed its peak, the Richards model forecast was comparable with the SIR with 

lockdown model.  

The SIR approximation model forecasted the epidemic better than the Richards model when 

epidemic data used for the calibration preceded the epidemic peak. Although the SIR approximation 

model has less interpretive ability compared with the Richards model, and generally is simply a 

symmetrical bell-shaped curve, there is potential merit in having this modeling option to evaluate the 

forecasting especially in the epidemic’s early phase (i.e., before the peak). 

In the sensitivity analysis considering the reporting rate change (1/α) from February 13, the 

trend of forecasting ability was not consistent between the SIR with lockdown and Richards models 

(see Table 2). The RMSEs/relative RMSEs of the SIR with lockdown model were smaller than those 

of the Richards model when αs were 0.9/0.9–0.8, but the result was reversed when αs were 

0.8–0.7/0.7, although the RMSE/relative RMSE differences between the two models were small. 

This was because the SIR with lockdown model overestimated the number of reported cases while 

the Richards model underestimated it. Overestimation from the SIR with lockdown model could be 

due to the great number of individuals in the susceptible compartment, assuming that S0 is equal to 

the total population in China and homogeneous mixing. The exponential with lockdown model did 

not need these assumptions (homogeneous/heterogeneous mixing or the number of susceptible 

individuals in China’s total population), and most effectively forecasted the future incidence. This 

model had both mechanistic and phenomenological model aspects, as the intervention mechanism 

was incorporated into the exponential curve. Note that the data used for the analyses were the 

reported numbers of cases in China, and an under-ascertainment rate may influence data. We 

assumed the constant under-ascertainment rate, which might be in reality time dependent, although, 

due to the relatively short time horizon of our study period, the time dependence may not have a 

large impact. When further epidemiological data (e.g., time-dependent seroprevalence) are available, 

validation of the observed data and forecasting should be addressed in further research. 

When one model overestimates the number of cases and the other underestimates it, relative 

RMSE maybe suitable for the model validation. This is because the absolute number of the 

difference between prediction and observation, which is used in RMSE calculation, has a different 
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meaning between the two models, even if they have the same value. In this study, this is evidenced in 

the RMSE of the SIR with lockdown model being larger than that of the Richards model when the 

data cutoff point was February 9 and α was 0.8, whereas the relative RMSE of the SIR with 

lockdown model was smaller than that of the Richards model in the same condition (i.e., data cutoff 

point: February 9; α: 0.8). 

This study involved several limitations. First, as mentioned above, in this study, the mechanistic 

models generally forecasted better than the phenomenological models. In an epidemic’s early phase, 

however, when there is high uncertainty in the underlying transmission dynamics, forecasting future 

incidence with an SIR mechanistic model without any intervention effect may produce biased results [11]. 

The effect of China’s lockdown assessed in this study also was clear and had substantial impacts. 

Note that if unknown effects that influence the disease transmission are not employed into 

mechanistic models, the better forecasting observed in the mechanistic models may change (i.e., 

forecasting could be less accurate). Second, short-term forecasting during the very early period of 

pandemic was conducted in this study. Other published studies explored the heterogeneity of 

populations and multiple factors that influence the epidemic dynamics [36,37], which we assumed 

unavailable yet during the process of forecasting. It should be noted that consistent result to ours may 

not be obtained if the scope is extended to longer period of forecasting. Third, the R0 values 

estimated from our model might be influenced by interventions other than lockdown measure in 

China. The R0 from the phenomenological model was obtained when an inflection point was 

properly identified. Due to the uncertainty of the incidence data and the extent of interventions 

implemented in the early phase of the epidemic, the estimate has fluctuated substantially. Therefore, 

the R0 values estimated were comparable between phenomenological and mechanistic models only 

when data after the epidemic peak was used; however, this was not the case when the dataset before 

epidemic peak was used. The R0 estimation from the phenomenological model was influenced by the 

above-mentioned issue (i.e., data uncertainty and the extent of interventions implemented at the time 

in the early phase), while the R0 from the mechanistic model reflected overall intervention effect 

before lockdown measure (thus, more stable regardless of the data cutoff points). We did not account 

for this time-varying intervention effect [38,39] in the mechanistic model, because our exercise 

assumed a shortage of information in the very beginning of an epidemic.  

5. Conclusions 

In conclusion, this study investigated the forecasting ability of phenomenological and simple 

mechanistic models. The mechanistic models considering a lockdown effect forecasted better than 

the phenomenological models. To effectively capture disease dynamics, integrated interpretations 

from both phenomenological and mechanistic models are required as factors such as the epidemic’s 

phase, interventions implemented, and population behavior influence the results of forecasting.  
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