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Structural basis for a conserved neutraliza-
tion epitope on the receptor-binding domain
of SARS-CoV-2

Kuan-Ying A. Huang 1,2,3,12 , Xiaorui Chen 2,12, Arpita Mohapatra 2,
Hong Thuy Vy Nguyen 2,4,5, Lisa Schimanski6, Tiong Kit Tan 6, Pramila Rijal6,
Susan K. Vester 7, Rory A. Hills7, Mark Howarth 7,11, Jennifer R. Keeffe 8,
Alexander A. Cohen8, Leesa M. Kakutani8, Yi-Min Wu9, Md Shahed-Al-Mahmud2,
Yu-Chi Chou10, Pamela J. Bjorkman 8, Alain R. Townsend 6 & Che Ma 2

Antibody-mediated immunity plays a crucial role in protection against SARS-
CoV-2 infection. We isolated a panel of neutralizing anti-receptor-binding
domain (RBD) antibodies elicited upon natural infection and vaccination and
showed that they recognize an immunogenic patch on the internal surface of
the core RBD, which faces inwards and is hidden in the “down” state. These
antibodies broadly neutralize wild type (Wuhan-Hu-1) SARS-CoV-2, Beta and
Delta variants and someare effective against other sarbecoviruses.Weobserved
a continuum of partially overlapping antibody epitopes from lower to upper
part of the inner face of the RBD and some antibodies extend towards the
receptor-binding motif. The majority of antibodies are substantially compro-
misedby threemutational hotspots (S371L/F, S373P andS375F) in the lowerpart
of theOmicronBA.1, BA.2 andBA.4/5RBD.By contrast, antibody IY-2A induces a
partial unfolding of this variable region and interacts with a conserved con-
formational epitope to tolerate all antigenic variations and neutralize diverse
sarbecoviruses as well. This finding establishes that antibody recognition is not
limited to the normal surface structures on the RBD. In conclusion, the deli-
neation of functionally and structurally conserved RBD epitopes highlights
potential vaccine and therapeutic candidates for COVID-19.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
continues to spread and cause outbreaks worldwide. Antibody-
mediated immunity established via natural infection or vaccina-
tion reduces the risk of disease or lessens the clinical severity of

the infection1,2. Neutralizing antibody levels and spike-binding
antibody levels serve as correlates of protection against SARS-
CoV-2 in humans1,2. Although neutralizing antibodies are elicited
against other parts of the spike protein, the receptor-binding

Received: 17 June 2022

Accepted: 10 January 2023

Check for updates

1Graduate Institute of Immunology and Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University,
Taipei, Taiwan. 2Genomics Research Center, Academia Sinica, Taipei, Taiwan. 3College of Medicine, Chang Gung University, Taoyuan, Taiwan. 4Chemical
Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan. 5Institute of Biochemical Sciences,
National Taiwan University, Taipei, Taiwan. 6MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe
Hospital, Oxford, UK. 7Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. 8Division of Biology and Biological Engineering, California
Institute of Technology, Pasadena, USA. 9Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan. 10Biomedical Translation Research Center,
AcademiaSinica, Taipei 11529, Taiwan. 11Present address: Department of Pharmacology,University ofCambridge, TennisCourt Road, CambridgeCB2 1PD, UK.
12These authors contributed equally: Kuan-Ying A. Huang, Xiaorui Chen. e-mail: arthurhuang1726@ntu.edu.tw; cma@gate.sinica.edu.tw

Nature Communications |          (2023) 14:311 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6891-6945
http://orcid.org/0000-0001-6891-6945
http://orcid.org/0000-0001-6891-6945
http://orcid.org/0000-0001-6891-6945
http://orcid.org/0000-0001-6891-6945
http://orcid.org/0000-0002-4492-0883
http://orcid.org/0000-0002-4492-0883
http://orcid.org/0000-0002-4492-0883
http://orcid.org/0000-0002-4492-0883
http://orcid.org/0000-0002-4492-0883
http://orcid.org/0000-0003-3468-6912
http://orcid.org/0000-0003-3468-6912
http://orcid.org/0000-0003-3468-6912
http://orcid.org/0000-0003-3468-6912
http://orcid.org/0000-0003-3468-6912
http://orcid.org/0000-0001-7577-3452
http://orcid.org/0000-0001-7577-3452
http://orcid.org/0000-0001-7577-3452
http://orcid.org/0000-0001-7577-3452
http://orcid.org/0000-0001-7577-3452
http://orcid.org/0000-0001-8746-8308
http://orcid.org/0000-0001-8746-8308
http://orcid.org/0000-0001-8746-8308
http://orcid.org/0000-0001-8746-8308
http://orcid.org/0000-0001-8746-8308
http://orcid.org/0000-0002-4210-118X
http://orcid.org/0000-0002-4210-118X
http://orcid.org/0000-0002-4210-118X
http://orcid.org/0000-0002-4210-118X
http://orcid.org/0000-0002-4210-118X
http://orcid.org/0000-0001-8870-7147
http://orcid.org/0000-0001-8870-7147
http://orcid.org/0000-0001-8870-7147
http://orcid.org/0000-0001-8870-7147
http://orcid.org/0000-0001-8870-7147
http://orcid.org/0000-0002-5317-6398
http://orcid.org/0000-0002-5317-6398
http://orcid.org/0000-0002-5317-6398
http://orcid.org/0000-0002-5317-6398
http://orcid.org/0000-0002-5317-6398
http://orcid.org/0000-0002-2277-3990
http://orcid.org/0000-0002-2277-3990
http://orcid.org/0000-0002-2277-3990
http://orcid.org/0000-0002-2277-3990
http://orcid.org/0000-0002-2277-3990
http://orcid.org/0000-0002-3702-0107
http://orcid.org/0000-0002-3702-0107
http://orcid.org/0000-0002-3702-0107
http://orcid.org/0000-0002-3702-0107
http://orcid.org/0000-0002-3702-0107
http://orcid.org/0000-0002-4741-2307
http://orcid.org/0000-0002-4741-2307
http://orcid.org/0000-0002-4741-2307
http://orcid.org/0000-0002-4741-2307
http://orcid.org/0000-0002-4741-2307
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-35949-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-35949-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-35949-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-35949-8&domain=pdf
mailto:arthurhuang1726@ntu.edu.tw
mailto:cma@gate.sinica.edu.tw


domain (RBD) is the dominant target of the neutralizing antibody
response3–7.

The antigenic characterization of the RBD by human neutraliz-
ing antibodies revealed four major antigenic sites, two of which
(class 1 and class 2) are located at the top of RBD and overlap with
the ACE2-binding site (or RBM, the receptor-binding motif), while
the other two are on the external (class 3) and internal (class 4)
surfaces of the core RBD and extend beyond the ACE2-binding
region6,8,9. The internal and external surfaces are defined as inward-
facing (hidden) and outward-facing (exposed) areas of the RBD in
the “down” conformation, respectively. Class 3 neutralizing anti-
bodies have been effectively used alone10,11 or in therapeutic com-
binations with class 1 or class 2 neutralizing antibodies8,12,13. Class 4
anti-RBD antibodies mainly recognize a patch of the molecular sur-
face conserved between SARS-CoV-2 and SARS-CoV. Class 4 anti-
body neutralizationmay bemediated either by destabilization of the
spike structure or hindrance of ACE2 access6,7,9,14.

We previously isolated and characterized a typical class 4 neu-
tralizing monoclonal antibody (mAb) EY-6A that binds to a highly
conserved epitope composed mainly of the 384–389 helix of the RBD
core6,14,15. We nowdescribe a panel of antibodies thatwere identified as
class 4 by exhibiting complete or partial competition for RBD binding
with EY-6A6,14 or similar antibodies. Structural analysis of their binding
footprints and comparison with examples in the literature help to
reveal antigenic regions consisting of multiple overlapping epitopes,
one of which is newly defined by our antibody IY-2A. These antibodies
tend to bind to highly conserved epitopes and were broadly effective
against SARS-CoV-2 variants of concern.

Results
Specificity of class 4 anti-RBD antibodies
We isolated eight class 4 anti-RBD antibodies from SARS-CoV-2
convalescent patients or SARS-CoV-2 vaccinated individuals
(Table 1). Antibodies were encoded with distinct heavy chain and
light chain variable domain rearrangement and harbored an average
of 4 ± 1 (mean ± standard error of the mean) somatic amino acid
substitutions in the heavy chain variable domain (Table 1 and
Table S1).

All of the eight antibodies bound to RBD of SARS-CoV-2 spike
and cross-reacted with Beta and Delta variant RBDs (Table 1, Fig. 1a).
EY-6A6,14, IV-6D, and IY-2A retained their binding activity with Omicron
BA.1 RBD, but the others lost activity (Fig. 1a, Fig. S1). EY-6A6,14 and IV-
6D failed to or had greatly reduced activity with BA.2 and BA.5 RBDs,
whereas IY-2A binds to all Omicron RBDs in the ELISA (Fig. 1a). Control
antibodies FD-11A (class 3) and FI-3A (class 1)6 bound strongly to Delta
RBD, but both failed to bind all Omicron RBDs (Fig. 1a). Six out of eight
antibodies cross-reacted with SARS-CoV spike, but none of the anti-
bodieswas reactive toMERS andonly onewasweakly reactive toOC43
betacoronavirus (Table 1).

There is ~60–90% amino acid identity in the RBD among SARS-
CoV-2 and other sarbecoviruses, including SARS-CoV and bat-
derived SARS-like viruses16–18. We tested the binding of all 8 anti-
bodies against a panel of sarbecovirus RBD from different clades
(clade 1; SARS-CoV, WIV1 and SHC014, clade 2; Rf1, RmYN02, Yun11
and Rs4081, clade 1/2; pang17, SARS-CoV-2, and RaTG13, and clade 3;
BM48-31 and BtKY72). EY-6A6,14 and IY-2A showed binding against
the RBD of all sarbecoviruses tested. IV-6D bound to all RBDs except
for Yun11 (Fig. 1b). IV-4B, IS-9A, and IS-11B cross-reacted with a lim-
ited set of sarbecoviruses, with weak to no binding against clade 2
RBD (Rf1, RmYN02, Yun11) and some clade 1/2 RBD binding (pang17)
(Fig. 1b). IV-10C and FP-12A only showed binding to SARS-CoV-2
RBD (Fig. 1b).

The footprint recognized by EY-6A is located at the internal
surface of the core RBD14,19. EY-6A and another well-characterized
antibody CR3022 are designated as class 4 antibodies5,14,20. Patterns
of cross-competition between these broadly reactive antibodies
indicated they recognize a continuum of partially overlapping epi-
topes of the RBD. In this assay one antibody was labelled with biotin,
and binding was measured in conditions of molar excess of the
unlabeled competitor. EY-6A6,14 and IV-6D competed with each other
for binding to RBD and exhibited partial or no interference with the
interaction between ACE2 and RBD (Fig. 1c, d). FP-12A showed a one-
way pattern of competition with EY-6A but blocked the interaction
between ACE2 and RBD (Fig. 1c, d). Five other antibodies competed
with EY-6A6,14 and exhibited strong ACE2 blocking activities; IV-4B
and IV-10C competed with each other, while IS-9A, IS-11B, and IY-2A

Table 1 | Antigenic specificity and cross-reactivity of class 4 anti-SARS-CoV-2 RBD neutralizing human antibodies

mAba Antigen exposure Gene usage SARS-CoV-2b SARS MERS OC43 ACE2-blockadec

S RBD NTD S S S

EY-6A6, 14 Infection Vh3-30 VK1-39 1.75 1.81 0.17 1.67 0.16 0.26 +

FP-12A Infection Vh3-30 Vλ6-57 1.76 1.79 0.15 0.12 0.13 0.12 +++

IV-6D Vaccination Vh3-9 VK3-15 1.77 1.84 0.11 1.83 0.42 0.77 Neg

IV-4B Vaccination Vh3-9 Vλ1-44 1.84 1.80 0.12 1.24 0.17 0.22 ++

IV-10C Vaccination Vh4-39 Vλ6-57 1.82 1.74 0.17 0.25 0.13 0.14 ++

IS-9A Vaccination Vh5-10-1 VK1-33 1.78 1.88 0.16 1.83 0.14 0.15 +++

IS-11B Vaccination Vh5-10-1 VK1-33 1.76 1.75 0.11 1.67 0.15 0.17 +++

IY-2A Vaccination Vh4-34 Vλ6-57 1.80 1.87 0.15 1.78 0.16 0.25 +++

Control

BS-1A Vh3-64 Vλ2-11 0.13 0.12 0.14 0.12 0.15 0.16 Neg

FD-11A6 Infection Vh3-33 Vλ1-40 1.79 1.77 0.21 0.14 0.13 0.15 ++

FI-3A6 Infection Vh3-53 VK1-33 1.80 1.78 0.17 0.14 0.13 0.16 +++

Plasma Infection 1.69 1.74 1.77 1.05 0.92 1.29
aEY-6A and FP-12A were isolated from twoCOVID-19 adult patients (Wuhan-Hu-1 infection) in the convalescent phase. IV-6D, IV-4B, IV-10C, IS-9A, and IS-11B were isolated from an adult at day 8 after
the second dose of mRNA-1273 COVID-19 vaccine. IY-2A was isolated from an adult at day 7 after the second dose of mRNA-1273 COVID-19 vaccine.
bA sample (1 µg/ml) was considered positive when the measured extinction is at least 3 times the OD value of the negative control in the ELISA with SARS-CoV-2, SARS, MERS, and OC43 proteins.
BS-1A (1 µg/ml) is an anti-influenzaH3humanmAb. FD-11A (1 µg/ml) and FI-3A (1 µg/ml) are class 3 andclass 1 anti-SARS-CoV-2 RBDhumanmAbs. ACOVID-19convalescentplasma is also included as
a control.
cInhibition activity, +++ ≥75%, ++ 51-74%, + 25-50%, Neg, <25%.
mAbmonoclonal antibody, Vh variable region heavy chain, VK variable region kappa chain, Vλ variable region lambda chain, S spike, RBD receptor-binding domain, NTD N-terminal domain, Neg
negative.
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competed with each other (Fig. 1C, D). IY-2A prevented the binding
of IS-9A and IS-11B to RBD, but IS-9A and IS-11B showed slightly less
competition with IY-2A. None of these class 4 antibodies competed
with the biotinylated FI-3A (class 1)6, C121 (class 2)21 or FJ-10B
(class 3)6 binding to the RBD (Fig. 1d).

Neutralization by class 4 anti-RBD antibodies
All of the class 4 antibodies were assessed for neutralization potency
using a SARS-CoV-2 pseudotyped virus assay. The antibodies showed
varied levels of neutralizing potency against wild-type (Wuhan-Hu-1)
SARS-CoV-2 virus, with IV-4B, IS-9A, IS-11B, and IY-2A being most
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potent with half-maximal inhibitory concentrations (IC50 values) less
than 0.1μg/ml (Fig. 2a). The majority of antibodies exhibited com-
parable activities against Delta and Beta variants. The superior
potencies of IV-4B, IS-9A, IS-11B, and IY-2A against wild type and var-
iants are consistent with their binding and ACE2-blocking activities
(Fig. 1a, c, Fig. S1). Themajority of class 4 antibodies lost or had greatly
reduced neutralization against the Omicron variant. Only IY-2A
retained neutralization against Omicron BA.1, BA.2, and BA.4/5, with
IC50 values of 0.23, 0.27 and 0.17μg/ml (Fig. 2a), in agreement with its
binding activity with Omicron RBDs (Fig. 1a, Fig. S1).

We then tested neutralization potencies of representative antibodies
using a pseudovirus-based assay of SARS-CoV and sarbecoviruses known
to infect human ACE2-expressing target cells (SHC014 and WIV1) as
previously described17 and a mutant BtKY72-CoV2 that is able to bind to
human ACE222. We found that IY-2A potently neutralizes all four sarbe-
coviruses including SARS-CoV (IC50s ranging from7 to 569ng/ml), similar
to the neutralization potency of a previously described human donor-
derived antibody17, C118 (IC50 ranging from 5 to 1,130ng/ml) (Fig. 2b). IS-
9A and EY-6A6,14 neutralized BtKY72, SHC014, and WIV1 but failed to
neutralize SARS-CoV, whereas IV-4B only neutralized BtKY72 (Fig. 2b).
The control class 3 antibody S30910 neutralized SARS-CoV, BtYK72 and
WIV1 but failed to neutralize SHC014 as previously described17.

Class 4 RBD epitope-specific serological response
Toexamine the level of antibodies competingwith representative class
4 antibodies in Wuhan strain infection- and vaccine-elicited sera,
serum blockade of RBD binding experiments were performed. The
results showed that a relatively small percentage of convalescent and
post-ChAdOx1 nCoV-19 (AZD1222)23 sera demonstrated competitive
activity with EY-6A binding, compared to that of post-mRNA-1273
(Moderna COVID-19 vaccine)24 sera (Fig. S2a). Similar results were
found in the convalescent and post-ChAdOx1 nCoV-19 (AZD1222) sera
which competed with IS-9A and IY-2A for RBD binding. Two post-
mRNA-1273 sera (2 of 8, 25%) did not compete with IS-9A and mar-
ginally competedwith IY-2A forRBDbinding (Fig. S2b, c). These results
suggested that the mRNA-1273 vaccine would likely elicit more class 4
anti-RBD antibodies than the ChAdOx1 nCoV-19 (AZD1222) vaccine.

Structural features and footprints of class 4 antibodies
Crystal structures of the RBD-Fab complexes were determined for FP-
12A, IS-9A and IY-2A for characterizing their footprints on RBD
(Table S2). An RBD-Fab complex structure has been solved for EY-6A14

and was included for comparison. Although most of the class 4 anti-
bodies bind to an overlapping area on the internal surface of the core
RBD, they showed variable approach angles (Fig. S2a). Mapping of
these footprints on RBD revealed key structural features that are
associated with their behaviors in the competition and binding assays
(Fig. 1). For EY-6A6,14, the footprint is more focused on the C-terminal
half of the long linker between β1 and β3 of RBD (residues 378–386),
like that of CR302225, S30426 and 10–2827 (Fig. 3a, Fig. S3b). For FP-12A,
the footprint is focused on the N-terminal half of the linker (residues
369–377), like that of 3D1128 and S2A426 (Fig. 3b, Fig. S3b). IS-9A and
similar antibodies such as C11817, H01429, S2X3526, S2X25916, DH104730,
and BD55-123931 exhibited more diversified binding modes (Fig. S3a),
and their footprints cover the lowerpart (residues 373-378), themiddle
part (residue 408), and the upper part (residues 502–504) of the

internal RBD surface (Fig. 3c, Fig. S3b). The footprints of C02217 and
similar antibodies such as 10-4027 and COVA1-1632 cover the left part of
the RBD (residues 412–415 and 427–429) (Fig. 3d, Fig. S3b).

Finally, a unique footprint is observed for IY-2A, which extends
further to the right bottompart of the RBD (residues 364–368, Fig. 3e),
a region that is buried in the apo RBD but becomes exposed upon
interaction with IY-2A (Fig. 3e). The residues 364–375 region of RBD in
this complex exhibits an unwound α2 helix and a newly formed left-
handed 310-helix at residues 369–372, creating a novel interface on
RBD (Fig. 3f, g). Binding to this interface underlies the excellent and
broad neutralizing activity that IY-2A exhibited against SARS-CoV-2
variants and other sarbecoviruses (Fig. 2), which outcompetes all the
other class 4 antibodies described here.

A linear peptide (residues 369–386) that spans across the lower
internal part of RBD is involved in the footprint of all class 4 antibodies
(Fig. S3b). This region contains a short β-strand (β2) in the middle,
overlapping with two short α-helices (α2 and α3) on each side (Fig.
S3b). Two additional regions recognized mainly by IS-9A include the
previously identified highly conserved residue R408 in the α4 helix17

(Fig. 3c, Fig. S3b), which has since mutated to serine (R408S) in the
Omicron BA.2 and BA.4/5 variants, and the 502-504 region, which
overlaps with the RBM (Fig. S3c) in the immediate vicinity of muta-
tional hotspots N501Y (Alpha, Beta, Omicron, etc.) and Y505H (Omi-
cron). From surface accessibility and antigenic variation analyses33, it
can be deduced that IS-9A and similar antibodies exhibit increased
neutralization potencies because these additional recognition sites
(R408 and residues 502–504) are more exposed (Fig. S3d), but their
neutralization breath can be compromised by emerging variants with
mutations at or around these sites (Fig. S3c, e). It should also be noted
that three mutational hotspots (S371L/F, S373P, and S375F, Fig. S3e)
are in theC-terminal half of the lower region (residues 369–377), which
couldhave a larger influenceon the activity of FP-12A, IS-9A and similar
antibodies than the EY-6A-like antibodies.

Structural basis for the functional difference between class 4
antibodies
Structural details of the RBD-mAb interface may aid molecular
understanding of their functional differences in neutralization potency
and breadth. For example, EY-6A6,14 and S30410 share an almost iden-
tical binding mode with ~91% sequence identity (Fig. S4a), but EY-6A
has a stronger hydrophobic interaction at residue W100 (Kabat num-
bering) of heavy chain complementarity determining region 3
(HCDR3) and residue L95 of light chain complementarity determining
region 3 (LCDR3), as well as a strengthened polar contact at residues
52A/53 of HCDR2 (Fig. S4b, c), all possibly contributing to a lower IC50

value against SARS-CoV-2 wild type (EY-6A, 0.56 µg/ml; S304, > 2 µg/
ml)6,10,14. On the other hand, antibody FP-12A is a weaker neutralizer
compared to 3D1128, although their binding modes almost overlap
when superimposed (Fig. S4d). Their detailed structural differences
include the Tyr-rich HCDR3 of FP-12A which slightly pushes away the
α2 helix, a weaker engagement with the 372–375 region, as well as
other residue differences in LCDR1 and 3 (Fig. S4e, Fig. 4a).

Antibody IS-9A and its closest partner, IS-11B, share 94.8%
sequence identity in the CDRs (Table S1) and exhibit a slightly higher
activity against wild type but lower activity against Beta and Delta
variants (Fig. 2a). This difference could be attributed to the

Fig. 1 | Specificity and epitope grouping of class 4 antibodies. a Binding of
antibody with RBD of wild type, Beta, Delta, Omicron BA.1, BA.2 and BA.5 variants
measured by ELISA. Anti-RBD mAb FD-11 A (class 3) and mAb FI-3A (class 1) were
included as controls. Anti-influenza H3 mAb BS-1A was included as a control.
OD450, optical density at 450 nm. Each antibody was run with two technical
replicates (n = 2) for each RBD antigen. b Heat-map showing binding of each anti-
body (50 nM) to the indicated sarbecovirus RBD, measured by ELISA as OD450
value. Anti-MERS RBD antibody LCA60 was included as a control. c The ability of

antibody to inhibit binding of the RBD toMDCK-ACE2.Anti-influenzaH3mAbBS-1A
was included as a control. Each antibody was run with two technical replicates
(n = 2) in the experiment. d Cross-competition for RBD binding by class 4 anti-
bodies and ACE2. Anti-RBDmAb FI-3A (class 1), mAb C121 (class 2), FJ-10B (class 3),
and anti-influenza stem mAb Z3B2 were included as controls. Each antibody was
runwith four technical replicates (n = 4) in the experiment and values are presented
as mean. Source data are provided as a Source Data file.
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substitutions of HCDR1 N31 for S and HCDR3 L99 for Y in IS-11B that
modulate the interaction with different antigen variants (Fig. 4b). In IS-
9A, the HCDR2 forms a β-turn (sequence D52PSD54, Kabat numbering)
to present two acidic side chains that contact two positively charged
RBD residues, K378 and R408 (Fig. 4b, Fig. S5a). R408 is also involved
in hydrogen bonds with T30 and N31 from HCDR1 and a cation-π
interaction with Y98 from HCDR3 of IS-9A (Fig. 4b, Fig. S5a). This
extensive interactionnetworkmaybepart of the structural basis for IS-
9A’s high potency (IC50 0.03 µg/ml), compared to other similar anti-
bodies, while the second potent antibody, S2X259 (IC50 0.14 µg/ml)16,
employs a 13-residue-long LCDR3 loop (IMGT definition34) that closely
interacts with RBD’s 501-504 region (Fig. S5b–d).

The IY-2A-RBD structure reveals a novel binding mode for a class 4
antibody (Fig. 4c). IY-2A’s hydrophobic HCDR3 (sequence G97IFGV100A,
Kabat numbering) intrudes deep into the hydrophobic core of RBD,
surrounded by seven aromatic residues, two leucines and one iso-
leucine, including F338, F342, Y365, Y369, F374, F377, F515, L387, L513,
and I434 (Fig. 4c). This blade-like HCDR3 is strengthened by the
hydroxyl group of Y33 from HCDR1, which forms hydrogen bonds with
the backbone nitrogen of F99 and G100 on HCDR3 and the carbonyl
oxygen of RBD residue Y365 (Fig. 4c). Such a structure partially refolds
the 364–376 region (α2 helix andα2-β2 linker) of RBD, shifts Y369 by up
to 7.8Å (compared to the ACE2-bound RBD, Fig. S6a) and brings S366
into contact with N52 on HCDR2 (Fig. 4c). The observed conformational
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Fig. 2 | Neutralization breath of class 4 antibodies. a Neutralization potency of
each antibody against SARS-CoV-2 pseudotyped virus (wild type, Beta, Delta, and
Omicron BA.1, BA.2 and BA.4/5 variants). Gray curves are anti-influenza H3mAb BS-
1A as control. Data are mean of technical duplicates (n = 2), and curves are fit by
nonlinear regression for half-maximal inhibitory concentrations (IC50 values), as
summarized in the table below. Each box of the table is colored accordingly: the

higher the potency, the darker the color. b Neutralization potencies of class 4
antibodies using a pseudovirus-based assay of SARS-CoV and sarbecoviruses. C118
(class 4) andS309 (class 3) are anti-RBDmAbs and are includedas controls. The IC50

values are summarized for each antibody, with each box colored accordingly.
Source data are provided as a Source Data file.
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change is consistent for all four copies in the crystallographic asym-
metric unit (Fig. S6a), and the electron density at this region is unam-
biguous (Fig. S6b). Importantly, this region is known to be structurally
conserved and stable among various RBD structures (Fig. S6c, Fig. 3e),
but in the recently emerged Omicron BA.1 and BA.2 variants, the region
exhibits higher flexibility, yet maintaining an overall similar conforma-
tion (Fig. S6d). At least two residues of RBD (Y365 and L368) are brought
from the buried to the exposed state (Fig. S6e, Fig. 3f, g), while residues
that are found in the interface with other antibodies, such as Y369 and
N370 (Fig. 4a, b), become less accessible when IY-2A is bound (Fig. S6e).
In addition, the LCDRs of IY-2A interactmostly via hydrogen bonds (e.g.,
Y32 of LCDR1 and D51 of LCDR2), and unlike other class 4 antibodies, its
LCDR3 only has a minimal contact (Fig. 4c).

An opposite direction of view from the RBD side towards the
antibody provides a clear structural explanation for the ability of
Omicron variants to evade antibody responses (Fig. 2a). While the
footprint of EY-6A6,14 does not overlap with any of the three hotspot
residues (S371, S373, and S375) (Fig. 4d, Fig. S7a), the close

engagement of FP-12A (HCDR3 and LCDR3) with S371 (Fig. 4a, e), and
of IS-9A (HCDR3) with S375 (Fig. 4b, f), explains their lack of neu-
tralizing activity against Omicron variants (Fig. 2a). The IY-2A footprint
also overlaps with these residues (Fig. S7a), but the conformational
change induced by IY-2A flips the side-chains of S371, S373, and S375
out of the binding site (Fig. 3e, Fig. 4c, g). Other mutations in Omicron
BA.2 andBA.4/5, such asT376A,D405N, andR408S, are not involved in
the IY-2A-RBD interface, except that T376 is somewhat close to S30 of
LCDR1 (~4 Å) without forming a hydrogen bond (Fig. S6f).

The binding mode of IY-2A is consistent with the finding that it
tolerates all the changes in SARS-CoV-2 variants and other sarbecov-
iruses (Fig. 2). Another antibody that binds widely across sarbecov-
iruses, EY-6A6,14, has reduced RBD binding and neutralization of SARS-
CoV (Fig. 1b, Fig. 2b), likely because the S373F substitution alters the
local structure and moves the backbone carbonyl groups away from
K57 of EY-6A6,14 (Fig. S7a, b). On the other hand, the substitution of
A372 to T in all sarbecoviruses other than SARS-CoV-2 may have a
substantial effect on the FP-12A/RBD interaction (Fig. 1b, Fig. S7a), as
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Fig. 3 | Structural footprints of class 4 antibodies on theRBDand an inducedfit
ofRBDby IY-2A. Footprints of each class 4 antibody on the internal surface of RBD
are shown. The footprint includes all the residues that are directly involved in
hydrogen-bond (2.5-3.5 Å), salt-bridge (<4 Å), or hydrophobic (3.3-4.0 Å) interac-
tion in the structure. a EY-6A6,14 and similar antibodies share thebinding site around
the residues 378-386 region. PDB code 6ZER for EY-6A, 6W41 for CR3022, 7R6X for
S304 and 7SI2 for 10–28. b FP-12A and similar antibodies share the binding site
around the residues 369-377 region, with some reaching residue 408. PDB code
7M7B for 3D11 and 7JVA for S2A4. c IS-9A and similar antibodies extend their
footprints upwards and contact residue 408 and the residues 502-504 region. PDB
code 7CAH for H014, 7R6W for S2X35, 7M7W for S2X259, 7LD1 for DH1047, 7WRL

for BD55-1239 and 7RKS for C118. d C022 and similar antibodies extend their
footprints towards the left side, including residues 412–415 and 427–429. PDB code
7RKU forC022, 7SD5 for 10–40and7JMWforCOVA1-16. e IY-2A recognizes a region
(the 365-369 helix, black arrow), which is originally buried but is now exposed after
a conformational change (enlarged view, the backbone shift highlighted in red).
Structures (PDB code 6ZER, 7M7W, 7R6X, 7R6W, 6W41, light gray) are used for
superimposition. f Superimposition of the ACE2-bound wild-type RBD (PDB 6M0J,
white). TheACE2-boundOmicronBA.2 RBD(PDB7ZF7, gray)with IY-2A-boundRBD
(red) reveals a rotated view of the conformational change, highlighting residues
Y365, L368, and Y369. g Detailed structure of the shifted 364–373 region in IY-2A-
bound RBD, with all affected residues drawn in sticks and labeled.
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RBD residue A372 is tightly packed between the HCDR2 and LCDR3 of
FP-12 and there is no space for the side chain of a threonine (Fig. S7c).
Similarly, a serine residue at the G404 site of RBD would make an
unfavorable hydrophilic contact with L99 of IS-9A (Fig. S7d), thus
explaining why IS-9A binds to the RBD of SARS/WIV1/SHC014/RaTG13
but not Rs4081 (Fig. 1b).

Binding mode of class 4 antibodies to the spike trimer
The conserved neutralization epitope recognized by class 4 anti-
bodies is known to have low surface accessibility on the intact spike
trimer (Fig. S3d), which raises the question as to how these anti-
bodies recognize authentic virus. Our cryo-EM structures of the
spike-Fab complexes revealed a three-RBD-up conformation for the
complex with all these class 4 antibodies (Fig. 5a–d, Table S3),
because only in the open state could their epitopes be accessed. The
local footprint differences now result in visibly distinct conforma-
tions of the complex (Fig. 5a–d), but none of these antibodies exhibit
the possibility of simultaneous binding of both Fabs of an IgG to a
single trimer (intra-spike avidity) because of the long distance
between the C-termini of adjacent bound Fabs17 (Fig. 5e). The Fabs-
spike interaction further opens the trimer (Fig. 5f) and tilts the RBD in

different degrees compared to the apo structures (Fig. 5g) or the
ACE2-bound 3-RBD-up spike, in which the inter-RBD distance is
around 36–39 Å.

Generally, the more buried the target region is, the harder for an
antibody to approach, but at the same time, the more conserved the
interacting residues are (Fig. S3d, e). This is the case for antibody EY-
6A6,14, which reaches the most conserved 377-386 region and remains
broadly interacting (Fig. 1a, b), while antibody IS-9A binds to a more
easily accessible area and exhibits a much higher potency but loses
activity against Omicron BA.1, BA.2, and BA.4/5 variants (Fig. 1a,
Fig. 2a). A more balanced example is shown as antibody IY-2A, which
creates a conformational epitope, tolerates all antigenic variations
and compensates for the energy cost of its induced fit with extensive
hydrophobic interactions (Fig. 4c). The cryo-EM of IY-2A-Spike
complex also shows a similar conformation of the 364-375 region
with the unwound α2 helix to accommodate the binding of IY-2A
(Fig. S8).

Discussion
There is a need for developing broadly reactive SARS-CoV-2 vaccines
and broadly reactive therapeutic mAbs against SARS-CoV-2 variants
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and animal coronaviruses that have the potential to cause a pandemic.
In this study, we identified a cryptic and conserved epitope capable of
eliciting broad anti-SARS-CoV-2 antibodies, represented by antibody
IY-2A, which has not been reported previously. IY-2A binds not only to
diverse SARS-CoV-2 variants but also throughout the sarbecovirus
family. Although IY-2A-like antibodies are rare in polyclonal sera (Fig.
S2), the high potency and breadth of such antibodies suggest that
broad SARS-CoV-2 vaccines could seek to direct responses to this
epitope and induce similar broadly neutralizing antibodies. The broad
cross-reactive anti-RBD response has been reported from a mosaic
RBD nanoparticle vaccine presenting multimerized antigens35. Recent
clinical trials have also shown a heterologous boost of SARS-CoV-2
vaccine substantially enhances the breadth and potency of anti-RBD
antibody response36–38, which is associated with improved protection
against emerging variants38,39. Although amajority of class 4 antibodies
did not overcomemutations in the Omicron RBD, the discovery of IY-
2A-like antibodies highlights the potential of a potent and cross-
reactive anti-RBD antibody response.

The majority of class 4 antibodies reported here, including IY-
2A, were derived from peripheral B cell clones elicited upon two

doses of SARS-CoV-2 mRNA vaccine (Table 1), which was based on
the ancestral Wuhan strain. It has been reported that the neutralizing
activity of mRNA vaccine-elicited antibodies was more targeted to
the RBD compared to antibodies elicited by natural infection40.
Moreover, mRNA vaccine-elicited anti-RBD antibodiesmay recognize
more widely distributed epitopes in comparison to infection-elicited
antibodies40,41. The development of class 4 antibody repertoire indi-
cates that both natural infection and mRNA vaccination elicit anti-
bodies that evolve increased neutralizing activity and breadth.
Another study found that broadly neutralizing class 4 antibodies
were enriched in SARS convalescents after COVID-19 vaccination31.
Although the majority of such antibodies are sensitive to D405N and
R408S mutations in BA.2 and BA.4/5 variants, a rare antibody
BD55-5514 retains neutralization against recently emerged Omicron
variants31.

Sequence analysis reveals common genetic features shared by
anti-RBD human antibodies elicited after vaccination and infection42. A
preference for Vλ6-57 light chain gene usage combined with diverse Vh
gene usage was observed in a cluster of anti-RBD antibodies26,42. FP-12A,
IV-10C, and IY-2A share the gene usage of Vλ6-57 germline. The
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conserved S30NY32 motif (Kabat numbering) in CDR1 and E50D51 motif
in CDR2 participate in an extensive hydrogen-bond network with the
376–380 strand and 384–388 helix of RBD (Table S1, Fig. 4). IV-10C was
encodedwith the Vh4-39 genewhich is frequently used in this antibody
cluster;42 by contrast, each of FP-12A and IY-2A was encoded with its
unique heavy chain gene segment and lacks theWLRGmotif in HCDR3.
EY-6A and IS-9A have distinct genetic usages in the heavy and light
chain variable regions and there is no convergence of CDR sequences
readily identified in the public anti-RBD antibody responses42.

Structural studies of these class 4 antibodies may provide insights
about how a single amino acid change, even to a similar-sized side
chain, could lead to a major reduction of neutralization potency (Fig.
S7). Moreover, the unexpected bindingmode of IY-2A has revealed that
an epitope of RBD could be created by a conformational change, and in
this way the conventional epitope prediction based on the pre-defined
structure would be rendered incomplete. However, the neutralization
mechanism of our class 4 anti-RBD antibodies against SARS-CoV-2
remains elusive. There are several possibilities. Firstly, we have struc-
turally characterized EY-6A binding in detail to spike by cryo-EM ana-
lyses and EY-6A binding would destabilize the native Spike
conformation, catalyzing conversion to the post-fusion form6,14. EY-6A
converts even the stabilized spike to a partially unfolded state, where
Fab is visible, still attached to the RBD6,14. These findings suggest that
neutralization may be mediated by the destruction of the pre-fusion
spike14,43. Secondly, antibody neutralization may also act by blocking
the interaction of viral RBD and receptor ACE229,32. For example, IS-9A,
IS-11B, and IY-2A efficiently prevented both the attachment of biotiny-
lated RBD to ACE2-expressing MDCK cells and the binding of biotiny-
lated ACE2 to recombinant RBD (Fig. 1c, d), which could be attributed
to steric clashes with ACE2, as observed in superimposed structures
(Fig. S9a–c). Similar ACE2-blocking activities were reported in class 4
antibodies17,27,29,31,32. Thirdly, it was previously proposed that some class
4 antibodies do not directly compete with ACE2 but may enhance
S1 shedding and thus premature spike conformational changes16,26,
which may offer an alternative mechanism of neutralization.

SARS-CoV-2 is constantly evolving and certain variants of concern
have garnered widespread attention because of their rapid emergence
within populations44–46. In particular, several variants escape antibody
immunity andhave been reported to be associatedwith a higher riskof
reinfection in individuals previously immunized with a different
variant19,47,48. RBD plays a substantial role in SARS-CoV-2 antigenicity
and the majority of serological neutralizing activity elicited after
infection or vaccination is contributed to anti-RBD antibodies4,25.
Mutations of variants that occur on the RBD, e.g., E484, K417, L452,
G446, affect binding and neutralization by polyclonal serum and
therapeutic antibodies9,19,49,50. Mutations of S371-S373-S375 in the
recently emerged Omicron variants escape the majority of class 4
antibodies, as reported in this study. It is difficult to predict which
mutations will rise next to prominence as SARS-CoV-2 continues to
evolve, but it seems likely that they will include additional RBD
mutations that affect recognition by infection- and vaccine-elicited
antibodies. The highly conserved 405-408 region was originally
retained when Omicron BA.1 first emerged but was quickly mutated
(D405N and R408S) and stabilized in BA.2, BA.4, and BA.5 variants in
the current worldwide circulation51. Therefore, continuous efforts
focusing on those broad-based antibody responses, via B cell clonal
breadth dissection and high-resolutionmapping of antibody epitopes,
would help to design an updated vaccine that is maximally cross-
reactive to variants and formulate immunization strategy that leads to
optimal neutralizing breadth and potency in the near future.

Methods
Participants and ethical statement
We enrolled two COVID-19 adult patients (Wuhan-Hu-1 infection)(43
and 55 years old) in the convalescent phase and two adults (26 and

44 years old) after second dose of COVID-19 vaccine. Naturally
occurring SARS-CoV-2 infection was diagnosed by positive real-time
reverse transcriptase polymerase chain reaction results of respira-
tory samples according to the guidelines of the Taiwan Centers for
Disease Control. The study protocol and informed consent were
approved by the ethics committee at the Chang Gung Medical
Foundation. Each patient provided signed informed consent. The
study and all associated methods were carried out in accordance
with the approved protocol, the Declaration of Helsinki and Good
Clinical Practice guidelines.

Isolation of antibodies
SARS-CoV-2 convalescent patients and immunized healthy adults were
enrolled and peripheral blood was collected. Peripheral blood mono-
nuclear cells (PBMCs) were prepared from peripheral blood using
Ficoll-Paque (Sigma-Aldrich, USA). Single B cells were isolated with or
without using biotinylated RBD (Beta variant) into the 96-well PCR
plate containing lysis buffer aspreviously described6. After performing
reverse transcription to obtain cellular Ig cDNA, variable domain-
encoding genes for heavy, kappa and lambda chains were amplified
and inserted into human IgG1 expression vectors. For antibody
expression, heavy and light chain expression vectors were transiently
transfected into ExpiCHO cells (Thermo Fisher Scientific, A29133)
using the ExpiCHO expression system kit. Human IgG1 monoclonal
antibody-containing supernatant was harvested and purified by rPro-
tein A Sepharose (GE healthcare), with the resulting monoclonal anti-
bodies collected for further analysis.

To determine the individual gene segments employed by VDJ and
VJ rearrangements and the number of nucleotidemutations and amino
acid replacements, the variable domain sequences were aligned with
germline gene segments using the international ImMunoGeneTics
(IMGT) alignment tool (http://www.imgt.org/IMGT_vquest/input)34.

Enzyme-linked immunosorbent assay
The binding of monoclonal antibody to SARS-CoV-2 RBDs, spike, and
NTD was evaluated with ELISA. The 96-well microplate (Corning, USA)
was coated with SARS-CoV-2 proteins in phosphate-buffered saline
(PBS) overnight at 4 °C. After washing, the plate was blocked with 3%
(w/v) bovine serum albumin for 2 h at room temperature. After
washing, the plate was incubated with monoclonal antibody prepara-
tion for 2 h at 37 °C. After washing, the plate was incubated with sec-
ondary antibody Rabbit anti-human IgG conjugated to horseradish
peroxidase (1:5000 dilution in sterile PBS, Rockland, USA) for 1 h at
37 °C. After washing, the plate was developed by TMB substrate
(ThermoFisher, USA) and the reactionwas stoppedby 1Msulfuric acid.
The absorbance was measured at 450nm with an ELISA microplate
reader. Data were analyzed byMicrosoft Excel forMac version 16.16.27
and graphs were presented by GraphPad Prism version 9.

ACE2-inhibition assay
The inhibitory activity of monoclonal antibody on the interaction of
SARS-CoV-2RBD andhumanACE2was evaluated using a flowcytometry-
based binding assay (Fig. S10a). Serial dilutions of antibodies weremixed
with biotinylated RBD and the mixture was incubated with MDCK-ACE2
cells for 1 h at 37 °C. PBS alone was included as the negative control. The
mixture of biotinylated RBD with BS-1A (anti-influenza H3 antibody,
starting at 100 µg/ml) was included as positive control. After washing,
cells were incubated with ExtrAvidin-R-Phycoerythrin conjugate (Sigma-
Aldrich, USA) for 30min at 4 °C. After washing, the binding activities
were analyzedbyBDFACSCanto IIflowcytometer (BDBiosciences, USA).
The relative inhibition was calculated as (1- (binding percentage antibody -
binding percentage PBS control) / (binding percentage biotinylated RBD - binding
percentage PBS control)) × 100%. Data were analyzed by Microsoft Excel for
Mac version 16.16.27 and graphs were presented by GraphPad Prism
version 9.
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RBD-based cross-inhibition assay
Competitive binding assays were performed with monoclonal anti-
bodies as described previously6. Briefly, RBD-VLP were coated on 96-
well microplates overnight at 4 °C, washed and blocked with dried
skimmed milk in PBS for 1 h at room temperature prior to the assays.
Antibody was biotinylated using EZ-Link Sulfo-NHS-LC-biotin (Life
Technologies, USA) and then mixed with competing antibody (in at
least 10-fold excess) and transferred to the blocked plates for 1 h. A
second layer Streptavidin-HRP (Life Technologies, USA) was then
added and incubated for another 1 h. Plates were then washed, and
signal was developed by adding POD substrate (Roche, USA) for 5min
before stopping the reaction with 1M sulfuric acid. Absorbance
(OD450) was measured using a plate reader. The mean and 95% con-
fidence interval of 4 replicate measurements were calculated. The
competition was measured as: (X-minimum binding/(maximum
binding-minimum binding), where X is the binding of the biotinylated
antibody in thepresenceof a competing antibody.Minimumbinding is
the self-blocking of the biotinylated antibody or background binding.
Maximum binding is the binding of a biotinylated antibody in the
presenceof non-competing antibody (anti-influenzaN1 neuraminidase
antibody).

RBD-based serum competition assay
MDCK-RBD cells were produced by stably transducing MDCK-SIAT1
cells with a Lentiviral vector encoding a cDNA expressing RBD
(Wuhan-Hu-1) amino acids 340–538 fused via a short linker to the
transmembrane domain of hemagglutinin H7 (A/Hong Kong/125/
2017) (EPI977395) at the C-terminal for surface expression6. Antibody
was biotinylated using EZ-Link Sulfo-NHS-LC-biotin (Life Technolo-
gies, USA). The biotinylated antibody of an optimized concentration
was mixed with serum dilution and incubated with MDCK-RBD cells
for 1 h at 37 °C. After washing, cells were incubatedwith ExtrAvidin-R-
Phycoerythrin conjugate (Sigma-Aldrich, USA) for 30min at 4 °C.
After washing, the binding activities were analyzed by BD FACSCanto
II flow cytometer (BD Biosciences, USA) (Fig. S10b). The relative
inhibition was calculated as (1- (binding percentage serum - binding
percentage PBS control) / (binding percentage biotinylated antibody - binding
percentage PBS control)) * 100%. Data were analyzed by Microsoft Excel
for Mac version 16.16.27 and graphs were presented by GraphPad
Prism version 9.

Pseudotyped SARS-CoV-2 neutralization assay
For production and purification of SARS-CoV-2 pseudotyped lenti-
virus, the pseudotyped lentivirus carrying SARS-CoV-2 S protein was
generated by transiently transfecting HEK-293T (ATCC CRL-3216) cells
with pCMV-ΔR8.91, pLAS2w.Fluc.Ppuro and pcDNA3.1-nCoV-S (wild
type or variants) using TransITR-LT1 transfection reagent (Mirus). The
virus was harvested and clarified at 72 h post-transfection by cen-
trifugation at 4000 g for 10min and 0.45μm filtering (Pall Corpora-
tion) before being aliquoted and stored at −80 °C. The virus titer
(transduction units) was determined by AlamarBlue assay according to
the manufacturer’s instructions. A total of 1000 transduction units
(TU) of SARS-CoV-2 (WT or variants) pseudotyped lentivirus in DMEM
(supplemented with 1% FBS and 100 U/ml Penicillin/Streptomycin)
were mixed for 1 h at 37 °C with purified and 0.22μm filtered antibody
in 4x serial dilutions from the initial concentration around 0.06mg/ml
(see Source Data file). The mixture was then inoculated with 10,000
HEK293T cells stably expressing human ACE2 in 96-well plates with
medium refreshed at 16 h post-infection. Cells were cultured for
another 48 h before measuring the relative light units (RLU) in the
Bright-Glo Luciferase Assay System (Promega) by Tecan i-control
(Infinite 500). The percentage of inhibition was calculated as the ratio
of RLU reduction in the presence of each diluted sample to the RLU
value of no-sample control and the calculation formulawas (RLU control -
RLU sample) / RLU control.

Sarbecovirus RBD expression and purification
Sarbecovirus RBD constructs p3BNC-RBD-His8-SpyTag003 have pre-
viously been described35, corresponding to the RBD from SARS-CoV-2
(GenBank ON131086), SARS-CoV (GenBank ON131087), RaTG13-CoV
(GenBankON131088), SHC014-CoV (GenBankON131089), Rs4081-CoV
(GenBank ON131090), pangolin17 (pang17)-CoV (GenBank ON131091),
RmYN02-CoV (GenBank ON131092), Rf1-CoV (GenBank ON131093),
WIV1-CoV (GenBank ON131094), Yunnan2011 (Yun11)-CoV (GenBank
ON131095), BM48-31-CoV (GenBank ON131096) or BtKY72-CoV (Gen-
Bank ON131097). Sarbecovirus RBDs were expressed and purified. In
brief, expression was carried out in Expi293F cells using the Expi-
Fectamine 293 Transfection Kit (both Thermo Fisher) according to the
manufacturer’s instructions, and cell suspensions were harvested
5 days after transfection. Supernatants were supplemented with
cOmpleteMini EDTA-free Protease Inhibitor Cocktail (Roche), clarified
by centrifugation at 4,000g and 4 °C for 5min, then passed through a
0.45 μm syringe filter (Thermo Fisher). Purification was performed by
SpySwitch15 (coupled to SulfoLink Coupling Resin) in batch format at
4 °C. Supernatants were supplemented with 10% (v/v) 500mM Tris-
HCl pH 7.5 + 3M NaCl, incubated with SpySwitch resin for 1 h, washed
with 4× 10 column volumes (CV) 50mM Tris-HCl pH 7.5 + 300mM
NaCl. Proteins were eluted six times with 1.5 CV of 50mM acetic acid
pH 5.0 + 150mMNaCl, incubating each fraction for 5min. Each elution
fraction was neutralized by collection in a microcentrifuge tube con-
taining 0.3 CV 1M Tris-HCl pH 8.0. Protein concentrations were
determined by bicinchoninic acid assay (BCA Protein Assay Kit,
Thermo Fisher).

Enzyme-linked immunosorbent assay (sarbecovirus RBD)
The binding of mAb to various sarbecovirus RBDs was assessed using
ELISA. NuncMaxiSorp flat-bottom plates (Thermo Fisher) were coated
with PBS containing 50 nM of specified RBD by incubating for 16 h at
4 °C. The plate was incubated for 2 h at 25 °C with Blocking Buffer: 5%
(w/v) SkimMilk in PBS pH 7.4. The plateswerewashed three timeswith
PBS pH 7.4 with 0.1% (v/v) Tween 20 (PBST). The plate was then
incubated for 1 h with 50 nM of specified antibody diluted in Blocking
Buffer and then washed three times with PBST. The plate was incu-
bated at 25 °C for 1 h with 1/2500 dilution of goat anti-human IgG HRP
antibody (Sigma-Aldrich A8667) in Blocking Buffer and then washed
three times with PBST. The plate was finally incubated for 2min with
TMB substrate (Thermo Scientific), before the reaction was stopped
with 1M sulfuric acid. The absorbance wasmeasured at 450 nmwith a
FLUOstar Omega microplate plate reader (BMG Labtech). The mean
absorbance from triplicates is presented at a heat map. The results
shown are representative of two separate experiments.

Pseudotyped sarbecovirus neutralization assay
SARS-CoV, WIV1, and SHC014 pseudoviruses based on HIV-1 lentiviral
particles were prepared as described17,21,35,52 using genes encoding S
protein sequences with cytoplasmic tail deletions: 21 amino acid
deletions forWIV1 and SHC014, and a 19 amino acid deletion for SARS-
CoV. Plasmids expressing the spike protein found in the bat (Rhino-
lophus sinicus) coronavirus bCoV-WIV16 as well as the Sunda pangolin
(Manis javanica) coronaviruses fromGuandong, China (pCoV-GD) and
Guanxi, China (pCoV-GX) have been described previously and are
based on ALK02457 (GenBank), Pangolin_CoV_EPI_ISL_410721 (Gisaid)
and Pangolin_CoV_EPI_ISL_410542 (Gisaid)53. For neutralization data
presented in Fig. 2b, four-fold dilutions of purified IgGs (starting
concentrations of 75 µg/ml) were incubated with a pseudotyped virus
for 1 h at 37 °C. The pseudotyped virus and IgG mixture was added to
293TACE2 target cells and incubated at 37 °C for 48 h. Cells were lysed
with Luciferase Cell Culture Lysis 5x reagent (Promega) and luciferase
activity in lysates was measured using the Nano-Glo Luciferase Assay
System (Promega). Relative luminescence units (RLUs) were normal-
ized to values derived from cells infected with pseudotyped virus in
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the absence of IgG. Half-maximal inhibitory concentrations (IC50

values) were determined using 4- or 5-parameter nonlinear regression
in AntibodyDatabase54.

Crystallization, data collection and structure determination
The RBD domain (333-530) of SARS-CoV-2 WT Spike was constructed
and cloned into the pTT vector using oligonucleotide primers
(gtggggtaccacaaacctgtgcccatttg and gtggggatccgtggtggtgatggtgatgg-
gacttcttggggccgcac) for protein expression in HEK293 EBNA (ATCC
CRL-10852) suspension cells by transient transfection using poly-
ethyleneimine (PEI) followed by 37 °C incubation for 4 days. Culture
supernatants were harvested and clarified by centrifugation at 6500 g
for 20min, followed by Ni-NTA affinity (GE Healthcare) purification
and Superdex 200 Increase 10/300 GL (GE Healthcare) chromato-
graphy in a buffer containing 20mM Tris/HCl, pH 7.5, 150mM NaCl.
Fab fragments were digested from IgG using the immobilized papain
resin (Thermo Scientific) for 24 h at 37 °C and purified with rProtein A
Sepharose (GE Healthcare). Purified RBD and Fab were mixed at 1:1.15
molar ratio for 30min incubation on ice before further purification by
Superdex 200 Increase 10/300 GL (GE healthcare) in 20mM Tris/HCl,
pH8.0, 150mMNaCl. The complexpeakwasverifiedby 14%SDS-PAGE,
pooled together and concentrated to higher than 12mg/ml for
hanging-drop vapor diffusion crystallization at 20 °C. For FP-12A,
crystals appeared on day 2 in the condition containing 0.2M Ammo-
nium sulfate; 0.05MMagnesium sulfate heptahydrate; 0.1MBicine pH
9.0; 20 % v/v PEG SmearMedium. For IS-9A, crystals appeared onday 2
in the condition containing 2% (v/v) 1,4-Dioxane, 0.1M Tris pH 8.0 and
15% (w/v) Polyethylene glycol 3,350. For IY-2A, crystals appeared on
day 6 in the condition containing 0.2M Ammonium citrate tribasic pH
7.0, 0.1M Imidazole pH 7.0, and 20% (w/v) Polyethylene glycol
monomethyl ether. Crystals were harvested with diffraction datasets
collected at National Synchrotron Radiation Research Center (NSRRC)
BL15A1 or TPS05A beamline, at a temperature of 100K with the
wavelength 1.00 (Table S2). Data were processed in iMosflm 7.2.255.
Molecular replacement was performed by Phenix 1.19.2-4158 Phase-
MR56 using structures of RBD and Fab as separated searching ensem-
bles. The solved structure was further refined in phenix.refine with
manual adjustments done in WinCoot 0.8.957. Structural figures were
prepared with UCSF-ChimeraX 1.358 and PyMOL 2.559.

Cryo-EM sample preparation, data collection, processing, and
model building
SARS-CoV-2 (Delta orOmicronBA.1) Spike protein sequences (14-1209,
S2P) were synthesized (service provided by Genomics, Taiwan) and
cloned into the pTT vector by restriction digestion and ligation (KpnI
and EcoRV) for expression in HEK293 EBNA (ATCC CRL-10852) sus-
pension cells by transient transfection using polyethyleneimine (PEI)
followed by 32 °C incubation for 6 days. Culture supernatants were
harvested and clarified by centrifugation at 6,500 g for 20min, fol-
lowed by Ni-NTA affinity (GE Healthcare) purification and Superose 6
Increase 10/300 GL (GE Healthcare) gel filtration in a buffer containing
20mM Tris/HCl, pH 7.5, 150mM NaCl. Antibody expression and Fab
purification were the same asmentioned above. The ratio of Spike and
Fab for complex formation as well as the incubation time was eval-
uated by negative stain transmission electron microscopy. Freshly
purified Spike (diluted to 1mg/ml) wasmixed with Fab (2mg/ml) at 3:1
(v/v) ratio in 20mM Tris pH 8.0, 150mM NaCl for 3min at room
temperature before being applied (3 µl) to a glow discharged Quanti-
foil R1.2/1.3 holey carbon grid mounted in a Mark IV Vitrobot (Thermo
Fisher Scientific) at 4 °C with 100 % humidity. Grids were blotted at
force0 for 3 seconds. Datawerecollectedon aTitanKriosG3 at 300 kV
(Thermo Fisher Scientific), equipped with a Gatan K3 detector and the
Gif Quantum energy filter with 20 eV slit width. Movies were acquired
in EPU (Thermo Fisher Scientific, v2.10) at two exposures per hole.
Total electron dose was 38 e- /Å2 collected over 2.5 s and fractionated

into 40 frames. The corresponding pixel sizewas 0.83 Å (for IS-9A) and
1.06Å (for IY-2A) in the defocus range from −1.5 to −2 µm. Data were
processed with C1 symmetry in CryoSPARC 3.0 (for IS-9A)60 or relion
3.0 (for FP-12A and IY-2A)61 with the resolution of the final volume
determined by gold-standard Fourier shell correlation (FSC) cutoff at
0.143 (Fig. S11). The coordinates used for model fit in map included
PDB 7CAK and 6ZDH, as well as crystal structures solved in this study.

Binding affinity determination using biolayer interferometry
The spike protein (SARS-CoV-2 Delta S2P or Omicron S6P) was con-
jugated with biotin using Biotinylation Kit (Sigma-Aldrich) according
tomanufacturer’s instructions. Biotinylated spike was loaded at 50μg/
ml in PBS onto streptavidin biosensors (Molecular Devices, ForteBio).
Association and dissociation of IgG by biotinylated spike was per-
formed in PBS throughout all the steps at indicated concentrations
(Fig. S1) for 5min and 10min, respectively. The kinetic and equilibrium
constants were not determined since there could be avidity effects in
the experiment (bivalent IgG interacting with trimeric spike).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data associated with this study are available within the article, its
supplementary information and Source Data file. Source data are
provided with this paper. The coordinates and structure factors of the
SARS-CoV-2 RBD/FP-12A, RBD/IS-9A and RBD/IY-2A crystallographic
complexes generated in this study have been deposited in the PDB
(Protein Data Bank) under accession codes 8HHF, 8HHG and 8HHH,
respectively. Cryo-EM volumes and structuremodels of the SARS-CoV-
2Delta Spike/FP-12A, Delta Spike/IS-9A andBA.1 Spike/IY-2A generated
in this study have been deposited in the EMDB (Electron Microscopy
Data Bank) under accession codes EMD 34806, EMD 34807, and EMD
34808, and in the PDB under accession codes 8HHX, 8HHY and 8HHZ,
respectively. Source data are provided with this paper.
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