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Abstract—For a bilinear system that is open-loop neutrally
stable, a quadratic state feedback control has been proposed to
ensure global asymptotical stability of the closed-loop system. In
this paper, a new nonlinear contro] is proposed so that the
closed-loop system is not only asymptotically stable but also
exponentially stable. The new control results in a much faster
state convergence rate than the quadratic control; furthermore,
it can be applied to systems with tight saturation limits on the
control input. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction
This paper considers the control of a bilinear system

X(t) = Ax(t) + u(t) Nx(8), (1)

where x(t) € R" is the system state vector, (¢} is a scalar control
input, and 4 € R"*" and N € R"*" are constant square matrices.
It is assumed that there exists is a positive-definite matrix Q such
that

x(o) =X,

A0+ QA =0, 2

in other words, the open-loop system is neutrally stable
(Slemrod, 1978). Furthermore, the pair (A, N) satisfies the
following controllability assumption (Vidyasagar, 1993): there
exists an integer m( > n — 1) such that

span{ad*(4, N}xo,k =0,1,2, ... ,m} =R" 3)

for any nonzero x, in R", where ad*(4, N)’s are defined recur-
sively by

ad°(4, N) =N,

ad***(4,N) = A-ad*(A, N) — ad* (A4, N)- 4, k=0,1,2 ... .

Conventionally, quadratic feedback control (e.g. Jurdjevic
and Quinn, 1978; Singh, 1982; Ryan and Buckingham, 1983) has
been proposed for the stabilization of the system (1):

u(t) = — xT()QNx(2), @

which ensures global asymptotic stability of the closed-loop
system. However, Quinn (1980) has shown that the controlled
system is not exponentially stable, and the state converges as

Ix{tl ~ —=. (5
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The objective of this work is to introduce a new nonlinear
control which stabilizes the closed-loop system globally and
most importantly exponentially. The exponential stability
results in a much faster time response of the system state than
in equation (5); furthermore, it enhances the robustness of the
controlled system (Callier and Desoer, 1991).

2. Nonlinear control
The proposed nonlinear control is as follows:

x¥(t) x(t}
[ x(e) Ix@
0, x(ty=0,

where p is a positive control gain, and @ is as in equation (2).
Notice that the control (6) is uniformly bounded for whatever
values of the state x(t):

|u(t)] < pnq, Vt>0, M

where g and » are, respectively, the matrix norms of @ and N. If
the bilinear system (1) is subject to the control constraint

lu(t) < tmaxs
the control gain p in equation (6) will have to be chosen within

the range:
pE (O, ""’).
nq

Lemma 1. If the system (1) satisfies the controllability assump-
tion (3), and there exists a constant vector x, such that

xfet’ KON~ Ny, =0, Vie[kT, kT +T)

for some T > 0, then x, must be the null vector.

gN

- p x(t) # Oy

u(t) = ©

®

3. Stability analysis

®

Progf. Taking consecutively the time derivatives of equation (9)
at t = kT, and using equation (2) repeatedly, one obtains

x5Qad’(A, N) xo = z5ad"(4,N) Qxo = -+ = x3Qad™ 4, N) %o = 0,

where ad“(A, N) is as given in equation (3). These identities can
be put into a matrix form

x5 Q[ad®(4, N)xo, ad* (4, N)xo, ... ,ad™A, N)xo] = 0. (10)

From assumption (3), the matrix in equation (10) has full
rank. Therefore, xJQ = 0 and hence x, == 0 since Q is positive
definite.

Given any time interval length T' > 0, define a scalar function
B(-):5 - R for the controlled system (1) and (6), where § is the
unit sphere in R",

x(kT) ) A J’"‘“’T( xT(@®) x(t) )2
Bl —) 2 e QN e | dt,  x(t) # 0.
(“x(kT) I kT [l (e} @ I x (e} I ®
(11)
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Note that given Q and N, the function B(-) is determined by the
normalized closed-loop trajectory x(t)/[Ix(¢} |, t € [kT, kT + T),
which is uniquely determined by its initial condition
x(kT)/|| x(kT)||. Therefore, B() in equation (11) is defined as
a function of the initial condition x(kT)/|x(kT)|.

Lemma 2. There exists some positive constant # such that

x(kT) _
nf[B(“x(kT]” )]~5>0, (12)

where the inf (imum) is taken over all x(kT)/|| x(kT)| € S (that is,
over all x(kT) # 0).

Proof. Since the integrand in equation (11) is nonnegative,
B(-) must be nonnegative. It will further be shown that
B(*) is, in fact, positive for each x(kT')/{|x(kT)| € S. A contra-
diction argument will be used for this purpose. Assume
that B(x(kT)/||x(kT)|)) is zero for some x(kT)/|x(kT)| €S
(that is, for some nonzero x(kT)). By the definition of B(:),
one has

x(t)T x(t)
— — =0, V kT, kT + T 13
=01 2 00 relniTH+T) (1)

suggesting that
u(t)=0, VielkT, kT +T),

according to equation (6). Hence, following the open-loop
dynamics (1), one has

x(t) = e *Dx(kT), Vte[kT,kT + T). (14
Substituting equation (14) into equation (13) gives

x&T)"
Ix&T)|

x(kT)

eA'(t —kT) NeA(t —kT)
¢ x|

=0, Veel[kT,kT + T).

Now, by applying Lemma 1 to the above equation, one can
deduce that

x(kT)
Ix(kT)

s

contradicting the fact that x(kT)/ix(kT)|l € S (or x(kT) # 0).
Therefore, one concludes that

x(kT)
B
(IIX(kT)II

x(kT)
[Ix(kT) |

Further, note that B(-) in equation (11) depends continuously
on x(t), t € [kT, kT + T). Since the right-hand side of equation
(1) with u(t) given by the control law (6) has continuous first-
order derivative with respect to x(t) (for nonzero x(t)), it follows
from Theorem 7.2 (Coddington and Levinson, 1955) that the
closed-loop solution x(t) depends continuously on the initial
condition x(kT). As a result, B(-) depends continuously on its
argument x(kT)/||x(kT)|. Since the domain of B('), §, is com-
pact, it follows from equation (15) and Theorem 4.4.1 (Marsden
and Hoffman, 1993) that there exists a positive constant § such
that equation (12) holds. O

) >0 for each €S. (15)

One can now prove the global exponential stability of the
controlled bilinear system.

Theorem. Consider the bilinear system (1) and the nonlinear

control (6) subject to the constraint (8). Given any initial condi-
tion, the controlled state x(t) converges to zero exponentially.

Proof. Define a Lyapunov function candidate
V() = xT()Qx(t),
where Q is as in equation (2). Notice that

xT(1)Ox(t) < A x|?, (16)

where 1 is the maximum eigenvalue of the positive-definite
matrix Q. The time derivative of V' (t) along equations (1) and (6)
is given by

V(t) = xT(t)(ATQ + QA)x(t) + 2xT(t)QNx(t) u(t)
- - 2p( X 0) QN—-’fQ—)Z IO 0. (7

@) = fix(e)l
Since V() is nonincreasing, one has
VT + TY< V(t), Vte[kT,kT + T). (18)

Integrating equation (17) from k7 to (k + 1) T yields
V(T + Ty — V(kT)

—ZPJ‘(nnr( XT(t) oN x(t) )2 I x(@) |13 vods

o \xol V1) Foexo
p (k+l)1‘( xT(t) x(t) )2
—_ 2 T AN ——t ,
S - pVGTH T)LT <01 2N i) ¢
< - 2%9 VKT +T),

where the first inequality results from equations (16) and (18),
and the second from equation (12) in Lemma 2. Rearranging the
last inequality gives

1
1+ 2pB/A

proving that the Lyapunov function ¥ (kT') decreases exponenti-
ally to zero as k approaches infinity, and so does x(kT).

Finally, it remains to show that the continuous state x(t)
remains bounded and also converges to zero exponentially. To
this end, note from equations (1) and (7) that

(%)) < (a + pn*q)| x(1)), (20

where a is the matrix norm of the open-loop system matrix A.
Taking the time derivative of the identity ||x(2)}® = x"(£) x(¢),
one obtains

VKT + T) < V(kT) (19)

d
2@ 1> = 2xT(e)%() < 2[x@ - Ix@1, @)

where the inequality results from the Schwartz inequality
(Marsden and Hoffman, 1993). Cancelling || x(¢) || from equation
(21) gives

d .
3 1XON < 1x61, 22)

One can then derive from equations (20) and (22) that
Ix(e) < e+ X =tD | x(kT)(, Vte[kT,kT + T).

Hence, the continuous state x(t) remains bounded and
converges exponentially to zero as the discrete state x(kT')
does. |

Remark. Notice that the theorem holds for whatever value of
the control saturation limit um., > 0 as long as the control gain
p satisfies equation (8). As a result, even if the control actuator
can provide only a small amount of energy (i.e. a tight saturation
limit uy,,,), the proposed control can still stabilize the system
globally and exponentially. Such a property is not shared by the
conventional quadratic control (4), for which the amount of
energy required is proportional to the square of | x(¢)|. Hence,
large control input is required by the quadratic control (4) if x(t)
is far from the origin.

4. Simulation examples

Example 1. Consider the bilinear system (1) with

el vl
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Fig 1. State response with quadratic control.
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Fig. 2. State response with new nonlinear control.

and the initial condition x"(0) = [5, — 2]. Figure 1 shows the
state response of the system with the conventional quadratic
control (4) with @ = 31, and Fig. 2 the state response with the
new nonlinear control (5) with p = 3, @ = I. It is obvious that
the new nonlinear control results in a much faster time response
since the state now decays exponentially.

Example 2. Consider the same system as in the previous
example but with a perturbation on the open-loop system
matrix

The perturbed open-loop system becomes slightly unstable, but
still controllable in the sense of equation (3). The initial condi-
tion is x7(0) = [S, — 2]. Figure 3 shows that the closed-loop
system becomes unstable under the conventional quadratic con-
trol (4). However, the new nonlinear control (p = 3, ¢ = I) can

still stabilize the perturbed system as is indicated by Fig. 4.
The reason why the new control can stabilize a slightly per-
turbed system is as follows. Since the closed-loop system with
the proposed control is expomential stable, one can show,
following Theorem 121 in Chap. 7 in Callier and Desoer
(1991), that the exponential stability is retained given any small
perturbation in the open-loop system matrix 4 in equation
(1). Note that such slightly perturbed system may not be
stabilized by the conventional quadratic control (4) due to
the fack of exponential stability for the nominal closed-loop
system.

5. Conclusions

In this paper, a new nonlinear control different from the
conventional quadratic feedback control is proposed to stabilize
a homogeneous-in-the-state bilinear system. The new control
results in exponential stability of the closed-loop system, and
hence a much faster time response than with the quadratic
control.
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Fig. 3. Perturbed response with quadratic control.
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Fig. 4. Perturbed response with new nonlinear control.
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