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Technical Notes and Correspondence_______________________________

A State-Dependent Boundary Layer Design for Sliding
Mode Control

Min-Shin Chen, Yean-Ren Hwang, and Masayoshi Tomizuka

Abstract—The use of a boundary layer in sliding-mode control has been
a common technique to reduce chattering of the control signal. However,
different choices of the boundary layer width lead to conflicting effects:
a large/small boundary layer width can more/less effectively alleviate the
chattering phenomenon, but leads to less/more accurate control results.
This note proposes online adjusting the width of the boundary layer based
on the state norm for an uncertain linear system. The proposed state-de-
pendent boundary layer design can effectively eliminate chattering while
at the same time ensuringalmost perfectcontrol accuracy.

Index Terms—Boundary layer control, chattering, control accuracy,
sliding mode control, variable structure system.

I. INTRODUCTION

Sliding-mode control is known to be robust against parameter un-
certainties and external disturbances [1]–[3]. However, for the sliding
surface to beattractive, a switching function must be used in the con-
trol law, which causes chattering of the control signals. In order to re-
duce chattering, one can introduce a boundary layer [4], [5] around the
sliding surface. Inside the boundary layer, the discontinuous switching
function is interpolated by a continuous function to avoid discontinuity
of the control signals. The width of the boundary layer is normally con-
stant, and the larger the boundary layer width, the smoother the control
signal. Even though the boundary layer design alleviates the chattering
phenomenon, it no longer drives the system state to the origin, but to a
small residual set around the origin. The size of the residual set is de-
termined by the width of the boundary layer: the larger the width of the
boundary layer, the larger the size of the residual set. As a consequence,
there exists a design conflict between requirements on the smoothness
of control signals and on the control accuracy. For smoothness of the
control signals, a large boundary layer width is preferred, but for better
control accuracy, a small boundary layer width is preferred.

Instead of using a constant width, one can also use a time-varying
boundary layer width. In one example [3], the width can be the
filtered output of the reference trajectory. In other examples [6],
[7], the width is scheduled to decay exponentially starting from
some initial value. The decaying-width design is attractive since it
ensures the exponential convergence of the system state to zero. The
simulation results in [8] also demonstrate that the decaying-width
design is effective in maintaining stability in the face of high-frequency
unmodeled dynamics. However, in the decaying-width design, the
chattering phenomenon inevitably shows up when the width has
decayed practically to zero. Another drawback of the decaying width
design, which uses a simple “open-loop” tuning of the boundary
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layer width, is its lack of vigilance to the change of system conditions
such as the sudden injection of a disturbance.

A more reasonable approach to the boundary layer design is to
schedule the width based on the system state; forming a “closed-loop”
tuning of the boundary layer width. In this note, it is proposed that
the width of the boundary layer be proportional to the modulus of the
system state when controlling an uncertain linear system. The new
design can control the system state toalmostzero with no chattering in
the control signals. It is interesting to note the work in [9], where they
use a first-order filter to smooth the control signal in a fuzzy sliding
mode control design. The filter bandwidth is scheduled to be propor-
tional to the angle between the state vector and the normal vector
of the sliding surface. Their design, lacking rigorous mathematical
proof, is in spirit similar to the state-dependent boundary layer width
design in this note. There are other various approaches proposed to
alleviate the chattering problem. Prefiltering of the control signal is
one approach. This can be done either by direct insertion of a low-pass
filter before the plant [10], or by treating the time derivative of the
control input as the design input [11], or as used in the disturbance
estimator design in [12]. Another approach is the observer-based
sliding mode control [13], which can ease the chattering problem
due to unmodeled dynamics by constructing a high-frequency bypass
loop. The most common approach is to shape the phase portrait near
the sliding surface such that the state velocity vector is almost parallel
to the sliding surface. See for example [14]–[16], among which the
boundary layer control is recognized to be the most simple and widely
used approach.

The remainder of this note is organized as follows. Section II re-
views the switching sliding mode control for linear uncertain systems.
Section III examines the constant-width and decaying-width boundary
layer controls. Section IV introduces the new state-dependent boundary
layer control. Finally, Section V gives conclusions. Notice that this note
offers a “unified” stability analysis for various boundary layer controls,
and this analysis is more concise than those previously proposed. In
order not to obscure the development of the control designs, all the
proofs of lemmas and theorems are placed in the Appendix.

II. SWITCHING SLIDING MODE CONTROL

Consider aswitchingsliding mode control design for a linear system
with “matching” uncertainties [17]

_x = Ax +B(u+�Ex+ d); x(0) = x0 (1)

wherex 2 Rn is the system state,u is a scalar control input,A 2
Rn�n andB 2 Rn are nominal system matrices satisfying the con-
trollability condition [18], uncertainty�E is possibly time-varying,
andd an unknown disturbance. The system uncertainties are bounded
by two known constants:

k�Ek � E kdk � D: (2)

Note that one can always perform a state transformation such that the
controllable pair(A; B) is in the controller canonical form [18]

A =

0 1 � �

� 0 1 �

� � � �

a1 � � an

B =

0

�

0

1

: (3)
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The objective of sliding mode control is to regulate the statex in (1)
to zero, and this is achieved by a two-stage control design.

Stage I—Design of the Sliding Variable:First define an augmented
state

_v = x1 or v =
t

0

x1 d� (4)

and choose the sliding variable as

s =Cx+ c0v; C = [c1; c2; . . . ; 1] (5)

=xn + cn�1xn�1 + � � �+ c1x1 + c0
t

0

x1 d�

=x
(n�1)
1 + cn�1x

(n�2)
1 + � � �+ c1x1 + c0

t

0

x1 d� (6)

where the coefficientscis are chosen such that the differential equation
(6) is stable (has only left-half plane characteristic roots). The purpose
of adding an integral term in (6) is for the special case when the system
dimensionn = 1. Note from (3) and (5) thatCB = 1.

The differential equations (4) and (6) can be cast into a state-space
form

_z = Fz +Gs; wherez =

t

0

x1 d�

x1
�

�

xn�1

2 Rn (7)

and matricesF andG are in controller canonical form:

F =

0 1 � �

� 0 1 �

� � � �

�c0 � � �cn�1

2 Rn�n G =

0

�

0

1

2 Rn:

(8)

Since the differential equation (6) is stable by the choice of the coeffi-
cientsci ’s, the matrixF in (7) is stable.

Several results regarding (7) that will be repeatedly used in later sec-
tions are listed below. Firstly, given the stable matrixF in (8), there
exist positive constantsm and� such that

eF (t��) � me��(t��) 8 t � � (9)

where� is treated as a control design parameter since its value is deter-
mined by the choices ofc0is in (6). Second, given any positive constant
� � �Re[�i(F )] > 0 for all i, whereRe[�i(F )] denotes the real part
of eigenvalues ofF , there exists a positive definite matrixP 2 Rn�n

satisfying the following Lyapunov inequality:

(�F��I)TP+P (�F��I)�0; � � �Re[�i(F )]>0 8 i:

(10)

Finally, from linear system theory [18], the state in (7) satisfies

z(t) = eFtz(0) +
t

0

eF(t��)Gs(� )d�: (11)

Stage II—Design of the Control Input:Thestablestate space equa-
tion (7) suggests that if the sliding variables can be driven to zero
by some control design, the statez will decay to zero. Therefore, one
chooses the following “switching” sliding mode control to drives to
zero:

u = ��s� c0x1 � CAx � �(x)f0(s) (12)

where� > 0, s is the sliding variable,�(x) = �0(Ekxk+D),�0 > 1,
with E andD given by (2), andf0(s) a switching function

f0(s) = sgn(s) =
1; s > 0

�1; s < 0:
(13)

Lemma 1 [3]: If the switching sliding-mode control (12) is applied
to the uncertain system (1), there exists a finite timeT0 such that
js(t)j = 0 for all t > T0.

Onces(t) becomes zero according to Lemma 1, the statez in (7)
starts to decay exponentially, and so does the statex in (1).

Theorem 1 [3]: If the switching sliding mode control (12) is applied
to the uncertain system (1), the system statex will converge to zero
exponentially.

III. CONSTANT/DECAYING-WIDTH BOUNDARY LAYER CONTROL

In practical implementation of the switching control (12), the imper-
fect switching of the discontinuous functionf0(s) = sgn(s) causes
the control signal to chatter [3]. Such chattering may bring damage to
the actuator or excite high-frequency unmodeled dynamics. To alle-
viate the problem, a boundary layer around the sliding surfaces = 0
is suggested to smooth the control signal. The result is the so-called
boundary layer control

u = ��s� c0x1 � CAx� �(x)f1(s) (14)

where the discontinuous functionf0(s) = sgn(s) in the switching
control (12) is now replaced by a continuous function

f1(s) =
s

jsj+ �0e��t
; � > � � 0; �0 > 0 (15)

in which �0e��t is the width of the boundary layer, which decays ex-
ponentially to zero when� 6= 0, and remains constant when� = 0.

Lemma 2: If the boundary layer control (14) is applied to (1), then

js(t)j � �0e
��t + js(0)je��t; �0 =

�0
�0 � 1

: (16)

If � chosen to be positive, it is a decaying-width boundary layer
design. In this case,exponentialstability of the controlled system is
guaranteed by the control (14).

Theorem 2: If the decaying-width boundary layer control (14) (� >
0) is applied to the uncertain system (1), the system statex will con-
verge to zero exponentially.

If � is chosen to be zero, it is a constant-width boundary layer de-
sign. In this case, the so-calledpractical stability is guaranteed in the
sense that given any small neighborhood of the origin, there always
exist control design parameters in (14) such that the state will eventu-
ally be trapped in the specified neighborhood.

Theorem 3: If the constant-width boundary layer control (14) (� =
0) is applied to the uncertain system (1), the system statex will asymp-
totically approach a residual set around the origin, with the size of the
residual set proportional to�0=(�0 � 1); �0 > 1.

The following simulation examples demonstrate the effects of using
different values of�0 and� in the boundary layer control (14).

Example 1 Constant Boundary Layer Width:Consider a distur-
bance rejection problem for (1) with

A =
0 1

0 0
B =

0

1

the disturbanced(t) = sin(t), system uncertainty�E = 0, and
xT (0) = [5; �2]. The constant-width boundary layer control (14) is
applied to the system with� = 0, �0 = 1:5; � = 2; E = 0; D = 1
andc0 = 1; c1 = 2; c2 = 1 in (6). Two computer simulations are
tested: one with a small constant boundary layer width�0 = 0:001,
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Fig. 1. Time history of state normkx(t)k.

and the other with a large width�0 = 0:1. Fig. 1 plotskx(t)k versus
t for t 2 [10; 20], which clearly shows that the control with a smaller
boundary layer width (the upper plot) results in better control accuracy,
while the control with a larger width (the lower plot) results in much
worse control accuracy. On the other hand, one can see from Fig. 2 that
the use of a smaller boundary layer width (the upper plot) causes severe
chattering in the control signal during the transient (sayt 2 [2; 8]),
while the use of a larger width (the lower plot) can effectively alleviate
the chattering phenomenon.

Example 2 Decaying Boundary Layer Width:The same system as in
Example 1 is simulated by the control (14) with� = 0:1, �0 = 0:1, and
all other design parameters the same as in Example 1. In this case, the
boundary layer width decays exponentially because� > 0. At t = 50
second, the system is subject to an impulsive type disturbance, which
brings the state toxT (50+) = [3; 4]. When the control drives the state
close to the sliding surface again, chattering shows up as shown in the
lower plot of Fig. 3 (t 2 [40; 60]), and this is because the boundary
layer width has decayed practically to zero. This example reflects that
the decaying-width design lacks the ability to respond to the change of
system conditions.

IV. STATE-DEPENDENTBOUNDARY LAYER CONTROL

As is demonstrated by the first simulation example in Section III,
the constant-width boundary layer design can reduce chattering of the
control signals, but it decreases the control accuracy. The compromise
between the smoothness of control signals and the accuracy of con-
trol results is dictated by the choice of the boundary layer width [�0 in
(15)]. A solution to this design conflict is revealed by a careful exam-
ination of Figs. 1 and 2, which shows that for the control with a small
boundary layer width, chattering occurs only during the transient stage
when the system state is far from the origin. When the state becomes
closer and closer to the origin, the chattering phenomenon gradually
disappears even though the boundary layer width is very small. This
observation suggests that whenkxk is large, one should use a large
boundary layer width to avoid chattering, and whenkxk is small, use
a small boundary layer width to achieve good control accuracy. There-
fore, this note proposes that the boundary layer width be proportional
to the modulus of the system state. Such a design automatically ad-
justs the boundary layer width based on the system condition, and will
be more capable of dealing with unexpected situations such as the one
seen in the simulation Example 2.

The aforementioned reasoning leads to the followingstate-depen-
dent boundary layer control

u = ��s� c0x1 � CAx � �(x)f2(s) + �21G
TPz + �0�1G

TPez

(17)

Fig. 2. Time history of control signalu(t).

Fig. 3. Control with decaying width� = 0:1e .

whereP is as in (10),G as in (8),z the state in (7),�1 = �1=(�0�1) >
0, �0 = �0=(�0 � 1) > 0, ez = z=kzkp and

f2(s) =
s

jsj+ �1kzkp + �0
; kzkp �

=
p
zTPz (18)

in which �1 > 0 and1 � �0 > 0. Since�0 � 0, the boundary layer
width in (18) is approximately proportional to the state normkzkp. The
reason for adding this small�0 in the boundary layer width is to prevent
f2(�) from degenerating into the discontinuoussign(�) function when
the statez has decayed practically to zero. Note that there are two extra
feedback terms (the last two terms) in the new control (17), which serve
to ensure that the inequality (19) in Lemma 3 holds.

Lemma 3: If the new boundary layer control (17) is applied to the
uncertain system (1), the sliding variables will be bounded by, for all
t > 0

js(t)j � �1kz(t)kp + �0 + js(0)je��t
�1 = �1=(�0 � 1); �0 = �0=(�0 � 1): (19)

Lemma 4 (Bellman–Gronwall’s Lemma) [18]:If a continuous func-
tion f(t) � 0 satisfies

f(t) � b(t) +
t

t

k(� )f(�)d� 8 t � t0

whereb(t) � 0 andk(t) � 0 are continuous and nonnegative for all
t � t0, then

f(t) � b(t) +
t

t

b(�)k(�) exp
t

�

k(v) dv d� 8 t � t0:

Substituting the result of Lemma 3 into (11), and using
Bellman–Gronwall’s Lemma, one can establish the following
stability result for the state-dependent boundary layer control.
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Fig. 4. State-dependent boundary layer control with� = 0:001 and� =

0:1.

Fig. 5. Control with state-dependent width.

Theorem 4: Consider the uncertain system (1) and the state-depen-
dent boundary layer control (17). If the control design parameters are
chosen to satisfy

�1 > 0; 1� �0 > 0; �0 > 1

� � �Re[�i(F )] > 0; � >
�1

�0 � 1
m �p (20)

where� andm are as in (9),�p is the maximum singular value ofP
in (10),F is given by (8), then the system statex will asymptotically
approach a residual set around the origin, with the size of the residual
set proportional to�0.

The following example verifies the new boundary layer design.
Example 3 State-Dependent Boundary Layer Width:Consider the

same problem as in Example 1. A computer simulation with the new
state-dependent boundary layer control (17) is performed with�1 =
0:1; �0 = 0:001, and all other design parameters the same as in Ex-
ample 1. The upper plot in Fig. 4 showskx(t)k versus timet for t 2
[10; 20]. As can be seen that the state-dependent boundary layer con-
trol achieves the same control accuracy as the previous control (14)
with a small constant boundary layer width (the upper plot in Fig. 1).
Furthermore, the lower plot in Fig. 4 shows that the proposed state-de-
pendent boundary layer control (17) successfully avoids chattering of
the control signal.

In the second simulation, att = 50 s, similar to the experiment done
in Example 2, the system state is suddenly transferred toxT (50+) =
[3; 4] by an impulse disturbance, and the result fort 2 [40; 60] is
shown in Fig. 5. It is seen from the lower plot that the proposed new de-
sign successfully avoids the chattering problem in the decaying-width
design in Fig. 3, and this is because the new design can respond imme-
diately to the change of system conditions.

V. CONCLUSION

This paper proposes a new boundary layer design that resolves the
long-existent design dilemma in sliding-mode control between the re-
quirements of control accuracy and control signal smoothness. It is in-
teresting to extend this new design to nonlinear system control [19],
[20].

Finally, it is reminded that smoothing of the control signal in the
boundary layer design may be accomplished by continuous interpola-
tion functions different fromf2(�) in (17). For example, another com-
monly used interpolation function is thesaturationfunctionh1(s) = s
if jsj � �0 andh1(s) = sgn(s) otherwise. For the new state-depen-
dent boundary layer design proposed in this note, theh1(�) function
should be modified toh2(s) = s=(�1kzkp + �0) if jsj � �1kzkp + �0
andh2(s) = sgn(s=(�1kzkp + �0)), otherwise.

APPENDIX

Proof for Lemma 2: Define a region
0 in the extended state space
by


0 = xv
�
=

v

x
2Rn+1: jsj � �0e

��t; �0 = �0=(�0 � 1) :

Check the time derivative of(s2 � �20e
�2�t) along the closed-loop

trajectory (1) and (14)

d

dt
(s2 � �20e

�2�t) � �2�s2 + 2��20e
�2�t

��0jsj E kxk+D
jsj

jsj+ �0e��t
�

1

�0
:

Since the term in the rightmost parenthesis is greater than zero forjsj >
�0e

��t (or xv =2 
0), one has, using� < �

d

dt
(s2 � �20e

�2�t) � �2�(s2 � �20e
�2�t) 8 xv =2 
0: (A1)

Integrating the inequality suggests that
0 is attractivesince

s2(t)� �20e
�2�t � (s2(0)� �20)e

�2�t (A2)

wheret is any time before the extended system statexv enters the re-
gion
0. One can further deduce from (A2) thats2(t) � �20e

�2�t +
s2(0)e�2�t � (�0e

��t + js(0)je��t)2. Taking the square root of the
inequality proves that (16) holds for any time beforexv enters the re-
gion
0.

Once the system statexv has entered
0, which is invariant due to
the definition of
0 and (A1), it will remain in
0 forever. Ifxv(t) 2

0, one has, by definition,js(t)j � �0e

��t � �0e
��t + js(0)je��t.

Hence, (16) holds both before and afterxv enters
0.
Proof for Theorem 2:Substituting the result of Lemma 2 with� >

0 into (11), one can derive that

kz(t)k � m kz(0)k�
�0

�� �
�

js0j

�� �
e��t

+
mjs(0)j

�� �
e��t +

m�0
�� �

e��t:

Hence,z(t) decays to zero exponentially, and so doesx(t) following
the definitions ofz(t) in (7) ands(t) in (6).

Proof for Theorem 3:Substituting the result of Lemma 2 with� =
0 into (11), one can derive, using (9) andkGk = 1, that

kz(t)k � m kz(0)k�
�0
�
�

js0j

�� �
e��t+

mjs(0)j

�� �
e��t+

m

�
�0:

Therefore

lim
t!1

kz(t)k �
m

�
�0: (B1)

By definitions of s in (5) and z in (7), xn = s � Cz, where
C = [c0; . . . ; cn�1]. Hence,jxnj � jsj + kCk � kzk. Combining
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the previous inequality withkxk � kzk + jxnj, one obtains
kxk � jsj + (1 + kCk)kzk. Finally, using (16) and (B1), one
concludes thatlimt!1 kxk � [1 + (1 + kCk)m=�] � �0, where
�0 = �0=(�0 � 1), and�, �0 and�0 are control design parameters in
the control law.

Proof for Lemma 3: The proof is very much similar to that of
Lemma 2; hence only the first few steps are shown as follows. Define
a region
z in the extended state space by


z = xv
�
=

v

x
2 Rn+1: jsj � �1kzkp + �0;

�1 =
�1

�0 � 1
; �0 =

�0
�0 � 1

:

Check the time derivative of the following quantity along the trajectory
(1) and (17):

d

dt
[s2 � (�1kzkp + �0)

2]

= 2s _s� �21
dkzk2p
dt

+ �1�0
1

kzkp
dkzk2p
dt

� �2�[s2 � (�1kzkp + �0)
2]� 2�0jsj E kxk+D

� jsj
jsj+ �1kzkp + �0

� 1

�0

� �2�[s2 � (�1kzkp + �0)
2] 8 xv =2 
z

where one has purposely added two terms2�(�1�0kzk+�20) and used
(2), (10) and (14) to derive the first inequality. The remainder of this
proof follows exactly the same argument as in Lemma 2, and is omitted
here.

Proof for Theorem 4:Substituting (19) into (11), and using (9),
kGk = 1 andkzkp � p

�pkzk, one can derive

kz(t)kp � �pme��tkz(0)k+
t

0

�pme��(t��)

�(�1kz(� )kp + �0 + js(0)je���) d�: (C1)

Let q(t) = e�t(�1kz(t)kp + �0 + js(0)je��t). The following can be
deduced from (C1):

q(t) � �1m �p kz(0)k+ �0e
�t + js(0)je�(���)t

+
t

0

�1m �p q(�)d�:

Applying the Bellman–Gronwall Lemma to the aforementioned
inequality yields

q(t) � �1m �p kz(0)ke� m
p

� t + �0e
�t

+ js(0)je(���)t + �1m
p
�p �0

�� �1m
p
�p

e�t � e� m
p

� t

+
�1m

p
�p js(0)j

�� �1m
p
�p � �

e(���)t � e� m
p

� t :

Recalling the definition ofq(t), one can deduce thatkzkp satisfies

kz(t)kp �m �p kz(0)ke�(��� m
p

� )t

+
m
p
�p �0

�� �1m
p
�p

1� e�(��� m
p

� )t

+
m
p
�p js(0)j

(�� �1m
p
�p � �)

e��t � e�(��� m
p

� )t :

Since� > �1m
p
�p by (20), one obtains

lim
t!1

kz(t)kp � �0�0; �0 =
m
p
�p

�� �1m
p
�p

1

�0 � 1
:

Finally, following the same procedure as in the proof of Theorem 2,
one can show that

lim
t!1

kx(t)k � �1�0; �1 =
1

�0 � 1
+

1 + kCkp
�p

+ �1 �0:

Therefore, one concludes thatx asymptotically approaches a residual
set around the origin, with the size of the residual set proportional to
�0.
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