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Technical Notes and Correspondence

A State-Dependent Boundary Layer Design for Sliding  layer width, is its lack of vigilance to the change of system conditions
Mode Control such as the sudden injection of a disturbance.
A more reasonable approach to the boundary layer design is to
Min-Shin Chen, Yean-Ren Hwang, and Masayoshi Tomizuka schedule the width based on the system state; forming a “closed-loop”
tuning of the boundary layer width. In this note, it is proposed that
the width of the boundary layer be proportional to the modulus of the
Abstract—The use of a boundary layer in sliding-mode control has been  gystem state when controlling an uncertain linear system. The new
a common technique to reduce chattering of the control signal. However, design can control the system statamostzero with no chattering in

different choices of the boundary layer width lead to conflicting effects: . L . .
a large/small boundary layer width can more/less effectively alleviate the the control signals. Itis interesting to note the work in [9], where they

chattering phenomenon, but leads to less/more accurate control results. Use a first-order filter to smooth the control signal in a fuzzy sliding
This note proposes online adjusting the width of the boundary layer based mode control design. The filter bandwidth is scheduled to be propor-
on the state norm for an uncertain linear system. The proposed state-de- tional to the angle between the state vector and the normal vector
pendent boundary layer design can effectively eliminate chattering while f the sliding surface. Their design, lacking rigorous mathematical
at the same time ensuringalmost perfectontrol accuracy. - L .
proof, is in spirit similar to the state-dependent boundary layer width

[Index Terms—Boundary layer control, chattering, control accuracy, design in this note. There are other various approaches proposed to
sliding mode control, variable structure system. alleviate the chattering problem. Prefiltering of the control signal is
one approach. This can be done either by direct insertion of a low-pass
filter before the plant [10], or by treating the time derivative of the
control input as the design input [11], or as used in the disturbance

Sliding-mode control is known to be robust against parameter Usstimator design in [12]. Another approach is the observer-based
certainties and external disturbances [1]-[3]. However, for the slidirRgiding mode control [13], which can ease the chattering problem
surface to battractive a switching function must be used in the congue to unmodeled dynamics by constructing a high-frequency bypass
trol law, which causes chattering of the control signals. In order to rgyop. The most common approach is to shape the phase portrait near
duce chattering, one can introduce a boundary layer [4], [5] around ##@ sliding surface such that the state velocity vector is almost parallel
sliding surface. Inside the boundary layer, the discontinuous switchiftgthe sliding surface. See for example [14]-[16], among which the
function is interpolated by a continuous function to avoid discontinuityoundary layer control is recognized to be the most simple and widely
of the control signals. The width of the boundary layer is normally cofrsed approach.
stant, and the larger the boundary layer width, the smoother the controthe remainder of this note is organized as follows. Section Il re-
signal. Even though the boundary layer design alleviates the chatteNigvs the switching sliding mode control for linear uncertain systems.
phenomenon, it no longer drives the system state to the origin, but tg&ction 11l examines the constant-width and decaying-width boundary
small residual set around the origin. The size of the residual set is #ier controls. Section IV introduces the new state-dependent boundary
termined by the width of the boundary layer: the larger the width of thgyer control. Finally, Section V gives conclusions. Notice that this note
boundary layer, the larger the size of the residual set. As a consequeggers a “unified” stability analysis for various boundary layer controls,
there exists a design conflict between requirements on the smoothngs$ this analysis is more concise than those previously proposed. In
of control signals and on the control accuracy. For smoothness of #igler not to obscure the development of the control designs, all the
control signals, a large boundary layer width is preferred, but for bettgfoofs of lemmas and theorems are placed in the Appendix.
control accuracy, a small boundary layer width is preferred.

Instead of using a constant width, one can also use a time-varying
boundary layer width. In one example [3], the width can be the
filtered output of the reference trajectory. In other examples [6], Consider awitchingsliding mode control design for a linear system
[7], the width is scheduled to decay exponentially starting fromith “matching” uncertainties [17]
some initial value. The decaying-width design is attractive since it
ensures the exponential convergence of the system state to zero. The i = Av+ B(u+ AEx +d), 2(0) = xo (1)
simulation results in [8] also demonstrate that the decaying-width

design is effective in maintaining stability in the face of high-frequencyhare € R" is the system state, is a scalar control inputd €

unmodeled dynamics. However, in the decaying-width design, t@gx“ andB € R" are nominal system matrices satisfying the con-

chattering phenomenon inevitably shows up when the width hﬁ?ﬂllability condition [18], uncertaintyA E' is possibly time-varying,

decayed practically to zero. Another drawback of the decaying Wid};\%dd an unknown disturbance. The system uncertainties are bounded
design, which uses a simple “open-loop” tuning of the boundag/ ' . '
y two known constants:

. INTRODUCTION

Il. SWITCHING SLIDING MODE CONTROL
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The objective of sliding mode control is to regulate the staite(1) wheres > 0, s is the sliding variableg(x:) = po (E||«||+D), po > 1,

to zero, and this is achieved by a two-stage control design. with E and D given by (2), andf, (s) a switching function
Stage |I—Design of the Sliding Variablé=irst define an augmented 1 50
state ) = sanls) =4 7 °
t fo(s) = sgn(s) { _1 s<o. (13)
=z or v= / xy dt (4) Lemma 1 [3]: If the switching sliding-mode control (12) is applied
0 to the uncertain system (1), there exists a finite tilgesuch that
and choose the sliding variable as |s(t)| = 0forallt > Tp.

Onces(t) becomes zero according to Lemma 1, the state (7)
, starts to decay exponentially, and so does the state(1).
ey e+ o / vy dr Theorem 1 [3]: If the switching sliding mode gontrol (12) is applied
0 to the uncertain system (1), the system staigill converge to zero

s =Cx 4+ cov, C=lc1, c2y .00y 1] (5)

e . -t exponentially.
:x(l 1)+cn_1wi 2)+---+clxl+co/ x dT (6)
0
. ) . ) 11l. CONSTANT/DECAYING-WIDTH BOUNDARY LAYER CONTROL
where the coefficients; s are chosen such that the differential equation o _ o _
(6) is stable (has only left-half plane characteristic roots). The purposdn Practical implementation of the switching control (12), the imper-

of adding an integral term in (6) is for the special case when the systét switching of the discontinuous functigha(s) = sgn(s) causes

dimension» = 1. Note from (3) and (5) that'B = 1. the control signal to chatter [3]. Such chattering may bring damage to
The differential equations (4) and (6) can be cast into a state-spd@ actuator or excite high-frequency unmodeled dynamics. To alle-
form viate the problem, a boundary layer around the sliding surfaee0
" is suggested to smooth the control signal. The result is the so-called
/ xy dT boundary layer control
0
i= F:4Gs. wheres — *1 cR ) u=—0os—cox1 — CAz — p(z) f1(s) (14)
where the discontinuous functiofa(s) = sgn(s) in the switching
o control (12) is now replaced by a continuous function
and matrice” andG are in controller canonical form: fi(s) = W-% c>m>0,e >0 (15)
S €ge— Tt
o 1 - - 0
0 1 . . . , in which eoe™™" is the width of the boundary layer, which decays ex-
F= _ €ER G=1, €R" ponentially to zero when # 0, and remains constant when= 0.
. . 1 Lemma 2: If the boundary layer control (14) is applied to (1), then
—Co : " —Cn—1
(8) IS < e +15(0)e™", = - “. ()
o —

Since the differential equation (6) is stable by the choice of the coeffi- If = chosen to be positive, it is a decaying-width boundary layer

cientse,’s, the matrix£” in (7) is stable. design. In this caseexponentialstability of the controlled system is
Several results regarding (7) that will be repeatedly used in later sec- an. &Xp y Y

. . . . . guaranteed by the control (14).
teliir: sgil:\s,;ego?gtgvrﬁ;;ty; %xirr: ttrt:e‘it stable matfbin (8), there Theorem 2: If the decaying-width boundary layer control (14) &

0) is applied to the uncertain system (1), the system statdl con-
—a(t—7) Vi> T ©) verge to zero exponentially.

- If 7 is chosen to be zero, it is a constant-width boundary layer de-
wherea is treated as a control design parameter since its value is def@ifln- In this case, the so-callgdactical stability is guaranteed in the
mined by the choices e s in (6). Second, given any positive constanfense that given any small neighborhood of the origin, there always
o > —Re[\;(F)] > 0 for all i, whereRe[); (F)] denotes the real part €Xist control design parameters in (14) such that the state will eventu-

of eigenvalues of, there exists a positive definite matdx e R"*  ally be trapped in the specified neighborhood.
satisfying the following Lyapunov inequality: Theorem 3: If the constant-width boundary layer control (14)€

0) is applied to the uncertain system (1), the system stat#l asymp-
(=F—=oI)' P+P(—=F—0I)<0, o> —Re[\i(F)]>0 Vi. totically approach a residual set around the origin, with the size of the
(10) residual set proportional t@ /(po — 1), po > 1.
The following simulation examples demonstrate the effects of using
Finally, from linear system theory [18], the state in (7) satisfies different values of, andr in the boundary layer control (14).
Example 1 Constant Boundary Layer Widtonsider a distur-

(f) = cF*;(O) n /t U= Gs(7) dr. (11) bance rejection problem for (1) with
0

=) < me

0 1 0
Stage Il—Design of the Control InputThestablestate space equa- A= {0 0} B= L}
tion (7) suggests that if the sliding variabtecan be driven to zero
by some control design, the statevill decay to zero. Therefore, one the disturbancel(¢) = sin(t), system uncertaintAE = 0, and
chooses the following “switching” sliding mode control to driveo ' (0) = [3, —2]. The constant-width boundary layer control (14) is
zero: applied to the system with = 0, p0 = 1.5, 0 =2, E=0,D =1
andcg = 1, c7 = 2, ¢ = 1in (6). Two computer simulations are
u=—0s—cor1 — CAxr — p(x)fo(s) (12) tested: one with a small constant boundary layer width= 0.001,
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Fig. 1. Time history of state noru:(¢)||. Fig. 2. Time history of control signal(#).
6

and the other with a large widits = 0.1. Fig. 1 plots||«(t)|| versus

t for t € [10, 20], which clearly shows that the control with a smaller 4 "x(t)H

boundary layer width (the upper plot) results in better control accuracy,

while the control with a larger width (the lower plot) results in much

worse control accuracy. On the other hand, one can see from Fig. 2 that % 50 52 54 56 8 50

the use of a smaller boundary layer width (the upper plot) causes severe
chattering in the control signal during the transient (say [2, §]),

while the use of a larger width (the lower plot) can effectively alleviate
the chattering phenomenon.

Example 2 Decaying Boundary Layer Widtfhe same system as in
Example 1 is simulated by the control (14) with= 0.1,¢9 = 0.1, and . . ‘
all other design parameters the same as in Example 1. In this case, the 48 50 52 54 56 58 60
boundary layer width decays exponentially because 0. At t = 50
second, the system is subject to an impulsive type disturbance, whiié 3. Control with decaying width, = 0.1e=%-1*.
brings the state to” (507) = [3, 4]. When the control drives the state
close to the sliding surface again, chattering shows up as shown in#teereP is as in (10)(7 asin (8),z the state in (7)y1 = €1/(po—1) >
lower plot of Fig. 3 ¢ € [40, 60]), and this is because the boundan, 7, = e /(po — 1) > 0,e. = z/||2||, and
layer width has decayed practically to zero. This example reflects that , B A
the decaying-width design lacks the ability to respond to the change of f2(s) = Sralilte’ ||z]l, = V2 Pz (18)
system conditions. Hi=lle T to

in whiche; > 0 andl > e > 0. Sinceey = 0, the boundary layer
width in (18) is approximately proportional to the state ndjrrfj,,. The
reason for adding this smal in the boundary layer width is to prevent

As is demonstrated by the first simulation example in Section Ik, (.) from degenerating into the discontinuatign () function when
the constant-width boundary layer design can reduce chattering of the state: has decayed practically to zero. Note that there are two extra
control signals, but it decreases the control accuracy. The compronfisedback terms (the last two terms) in the new control (17), which serve
between the smoothness of control signals and the accuracy of cenensure that the inequality (19) in Lemma 3 holds.
trol results is dictated by the choice of the boundary layer wiethr Lemma 3: If the new boundary layer control (17) is applied to the
(15)]. A solution to this design conflict is revealed by a careful examimcertain system (1), the sliding variablevill be bounded by, for all
ination of Figs. 1 and 2, which shows that for the control with a smadl >
boundary layer width, chattering occurs only during the transient stage
when the system state is far from the origin. When the state becomes ls(t)] <mullz(®)llp + no + [s(0)]e” 7"
closer and closer to the origin, the chattering phenomenon gradually m =e1/(po—1), no =e€o/(po — 1). (19)
disappears even though the boundary layer width is very small. This
observation suggests that whin|| is large, one should use a large Lemma4 (Bellman-Gronwall's Lemma) [18]f a continuous func-
boundary layer width to avoid chattering, and whjer| is small, use tion f(¢) > 0 satisfies
a small boundary layer width to achieve good control accuracy. There- -t
fore, this note proposes that the boundary layer width be proportional f(t) <b(t) —1—/ k(r)f(r)dr Vit >ty
to the modulus of the system state. Such a design automatically ad- to
justs the boundary layer width based on the system condition, and Wereb(t) > 0 andk(¢) > 0 are continuous and nonnegative for all
be more capable of dealing with unexpected situations such as the pne ;  then -
seen in the simulation Example 2. -

The aforementioned reasoning leads to the followstage-depen- F() < b(t) + /t
dent boundary layer control ’ -

IV. STATE-DEPENDENTBOUNDARY LAYER CONTROL

ot
b(T)k(7)exp </ k(v) dzv) dr VYt > 1.

to

, 9 7 - Substituting the result of Lemma 3 into (11), and using
u=—0s—coxy — CAx — p(x)f2(s) + G Pz +nom G Pe- Bellman—-Gronwall's Lemma, one can establish the following
(17) stability result for the state-dependent boundary layer control.
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0.08f ' ' ' ' 1 V. CONCLUSION
0.04l ] This paper proposes a new boundary layer design that resolves the
' Xy long-existent design dilemma in sliding-mode control between the re-
0 quirements of control accuracy and control signal smoothness. It is in-
10 1 7 15 18 20 teresting to extend this new design to nonlinear system control [19],
[20].
15 Finally, it is reminded that smoothing of the control signal in the
boundary layer design may be accomplished by continuous interpola-
o} tion functions different fromy(-) in (17). For example, another com-
monly used interpolation function is tlsaturationfunctionh (s) = s
-1.5¢ ‘ . . 1 if |s| < eg andh,(s) = sgn(s) otherwise. For the new state-depen-
0 5 10 15 20 dent boundary layer design proposed in this note ithe) function
‘ _ should be modified td2(s) = s/(e1||z]|, + €0) if |s] < er]|z]l, + €0
EI?. 4. State-dependent boundary layer control with= 0.001 ande, = andha(s) = sgn(s/(ei||z|l, + €0)), otherwise.
6 _ , , _ . APPENDIX
Proof for Lemma 2: Define a regior), in the extended state space
4t 1 by
2 HX(t)H 1 Alv n-+41 —7t
Qo = Q= . ER" i |s| <noe "', o =€ /(po—1)7.
% 50 52 54 56 58 60 Check the time derivative afs®> — 53¢~ 2"") along the closed-loop
trajectory (1) and (14)
3r I_It (s —noe >™) < =205 4 2mge >
a
0 — — |'s| 1 )
—pols| (E||z|| + D) | —————— — }.
° polel (Elell + D) (o - 2
Since the term in the rightmost parenthesis is greater than zgrg for
48 noe~ ™" (orz, ¢ Qo), one has, using < o
Fig. 5. Control with state-dependent width. d (52 —nie *””) < —=20(s” —mae 2™ YV, ¢ Q. (AL

dt

Inte rating the inequality suggests tlat is attractivesince
Theorem 4: Consider the uncertain system (1) and the state-depen 9 9 g y sugg KB

dent boundary layer control (17). If the control design parameters are s2(t) —mpe 2T < (57 (0) = mp)e 2 (A2)

chosen to satisfy wheret is any time before the extended system statenters the re-

glon Q. One can further deduce from (A2) th&t(t) < nie 2" +
s2(0)e™27" < (noe™™" 4 |5(0)]e~"")?. Taking the square root of the
m /7, (20)  inequality proves that (16) holds for any time befareenters the re-
gion Qq.
wherea andrm are as in (9)7, is the maximum singular value d@? Once the system staie has entere,, which isinvariantdue to
in (10), F is given by (8), then the system statevill asymptotically the definition of(2; and (A1), it will remain in{, forever. Ifx,.(t) €
approach a residual set around the origin, with the size of the resid@al, one has, by definitiors(t)| < noe™ ™" < poe™ ™" 4 |5(0)]e 7.

€1 >0, 1> e >0, po>1
o > —Re[X:(F)] > 0, a >

set proportional tao. Hence, (16) holds both before and afterenters(y,. O
The following example verifies the new boundary layer design. Proof for Theorem 2: Substituting the result of Lemma 2 with >
Example 3 State-Dependent Boundary Layer WidBansider the 0 into (11), one can derive that

same problem as in Example 1. A computer simulation with the new 0o |so] ot

state-dependent boundary layer control (17) is performed ayite=  12(DIl < m <|| O = ——— E) e

0.1, ¢ = 0.001, and all other design parameters the same as in Ex- m| O e mm e

ample 1. The upper plot in Fig. 4 shows(¢)|| versus time for ¢ € e T ——eT

[10, 20]. As can be seen that the state-dependent boundary layer con- e=e a-n

trol achieves the same control accuracy as the previous control (IZgNCe:=(*) decays to zero exponentially, and so does following

with a small constant boundary layer width (the upper plot in Fig. 15 definitions of:(#) in (7) ands(#) in (6). =

Proof for Theorem 3: Substituting the result of Lemma 2 with=

Furthermore, the lower plot in Fig. 4 shows that the proposed state- %e to (11), one can derive, using (9) afjé|| = 1, that

pendent boundary layer control (17) successfully avoids chattering of!

the control signal. X i no  sol \ —ae, m|s(0)] _o
In the second simulation, at= 50 s, similar to the experiment done Izl < m <”'4(0)” o a a>€ + a—0 ¢
in Example 2, the system state is suddenly transferred t607) =  Therefore
[3, 4] by an impulse disturbance, and the resultfoe [40, 60] is m
shown in Fig. 5. Itis seen from the lower plot that the proposed new de- tlingo [zt < o No. (B1)
sign successfully avoids the chattering problem in the decaying-width
design in Fig. 3, and this is because the new design can respond imBwe-definitions of s in (5) and z in (7), 2. = s — Cz, where
diately to the change of system conditions. C = [co, ..., Ca—1]. Hence|x,| < |s| + |IC|| -
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the previous inequality with«|| < ||z|| + |«x|, one obtains Sincea > nim /7, by (20), one obtains
=] < |s| + (1 + |ICID)Il=]|. Finally, using (16) and (B1), one

concludes thatim;—, [|z]| < [1 4+ (1 + ||C|)m/a] - no, where . m /Ty 1

_ _ . - Lim ||z(8)||, < Boco, By = — .
no = €o/(po — 1), ande, po andey are control design parametersin = ;= o —mm 7, \po—1
the control law. O

Proof for Lemma 3:The proof is very much similar to that of Finally, following the same procedure as in the proof of Theorem 2,
Lemma 2; hence only the first few steps are shown as follows. Defigge can show that

aregion(2. in the extended state space by

. , 1 1+
) lim ||z(¢)|| < Bi€o, b1 = + + 1 | Po-
0= {2 ] ] e R Sl S 1T\
n = L no = ‘o } . Therefore, one concludes thaiasymptotically approaches a residual
-1 po—1 set around the origin, with the size of the residual set proportional to
. Lo . . . €0. O
Check the time derivative of the following quantity along the trajectory
(1) and (17):
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