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Static Output Feedback Control for
Periodically Time-Varying Systems

Min-Shin Chen and Yong-Zhi Chen

Abstract—Most control designs for periodically time-varying systems
use either full-state feedback or observer-based state feedback. In this
paper, it is shown thatstaticoutput feedback is sufficient for the exponen-
tial stabilization of a periodical system under both the controllability and
observability assumptions. In fact, by incorporating a new generalized
hold function in the control design, one is able to arbitrarily shift all
the Poincaré exponents of the periodical system. Most importantly, the
control signal is guaranteed to becontinuous in time while the control
signal from previous designs may be discontinuous.

Index Terms—Continuous-time system, generalized hold function, peri-
odically time-varying system, Poincaŕe exponents, static output feedback.

I. INTRODUCTION

An important class of linear time-varying systems in the physical
world is the class of periodical systems, in which the system
parameters vary periodically. Analysis for such systems has been
done thoroughly in the past [1], [2]. One of the most important results
is summarized in the Floquet theory, which states that the stability
property of a linear periodical system can be determined byn constant
numbers called the Poincaré exponents, wheren is the dimension
of the system. As in the time-invariant case, if all the Poincaré
exponents are in the open left-half plane, the periodical system is
exponentially stable. If at least one of the Poincar´e exponents is in
the open right-half plane, the system is unstable.

For the stability synthesis of periodical systems, most control
designs are based on the assumption that all the state variables are
accessible for measurement. Among these, the earliest approach is
the LQ optimal control, in which one solves a periodical Riccati
equation to obtain a stabilizing state feedback control [3], [4].
Another approach is the modal control proposed in [5] which can
arbitrarily shift only one of the Poincaré exponents of the system.
Later, a layer of modal controllers is suggested to shiftall the
Poincaŕe exponents [6]. Recently, the generalized hold function
design, originally developed in [7], is applied to the state feedback
control of a periodical system [8]. However, the resultant control
signal may have large discontinuities in time. In practice, such large
discontinuities are either unacceptable under the actuator constraint
or undesirable due to the possible excitation of high-frequency
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unmodeled dynamics. Even though an attempt has been made to
make the control signal continuous, its success is obstructed by a
singularity problem [8].

In this paper, a new design is proposed to avoid discontinuities in
the control signal. Furthermore, it is shown that when the periodical
system is both controllable and observable, simplestatic output
feedback control is sufficient for the arbitrary assignment of all the
Poincaré exponents (note that fullstatefeedback is required in [8]).
The key elements in the new control design are the well-known
Floquet transformation [5] and a new generalized hold function
design. This paper is arranged as follows. In Section II, the definition
of Poincaŕe exponents for a periodical system is presented. In
Section III, adiscontinuousoutput feedback control is developed to
assign the Poincaré exponents of the closed-loop system, and the
control design is further modified in Section IV in order to remove
discontinuities in the control signals.

II. STABILITY ANALYSIS FOR PERIODICAL SYSTEMS

Consider the stability analysis of the following system:

_x(t) = A(t)x(t) (1)

wherex(t) 2 Rn is the state vector and the system matrixA(t) 2
Rn�n is T -periodic in the sense that

A(t+ T ) = A(t); 8t > 0:

In the famous Floquet theory [1], the stability property of (1) is
studied through a state transformation into a new coordinate, on which
the system matrix becomes time invariant. Such a transformation,
called theFloquet transformation, is given by

z(t) = P (t)x(t); P (t) = e
Jt��1(t; 0) (2)

where�(t; 0) is the state transition matrix [2] of (1), satisfying

@�(t; �)

@t
= A(t)�(t; �); �(t; t) = I; �(�; t) = ��1(t; �)

(3)

and J is a constant matrix given by

J =
1

T
ln�(T; 0): (4)

From (1)–(3), the periodical system (1) has aconstantrepresenta-
tion in the new coordinate

_z(t) = Jz(t): (5)

One can verify (see [2]) that the state transformation matrixP (t) in
(2) is alsoT -periodic and remains uniformly bounded and nonsin-
gular. The stability property of the periodical system (1) can then be
inferred from that of the constant system (5). In the literature, the
eigenvalues of the constant matrixJ in (5) are referred to as the
Poincaré (or characteristic) exponents

P:E: �i(J) =
1

T
ln�i[�(T; 0)] (6)

where the second equality results from (4). The condition for expo-
nential stability of (1) is thus

Re[�i(J)] < 0 (7)

or equivalently

j�i[�(T; 0)]j < 1
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due to (7), where�(T; 0) is called themonodromy matrix[8]. To
end this section, note that from (2)–(4) one can derive the identity

�(T; t) = e
J(T�t)

P (t) (8)

which will be used in subsequent sections.

III. STABILITY SYNTHESIS BY DISCONTINUOUS CONTROL

Consider now a periodical system with control

_x(t) = A(t)x(t) +B(t)u(t); x(0) = x0

y(t) = C(t)x(t)
(9)

wherex(t) 2 Rn is the state vector,u(t) 2 Rp the control input, and
y(t) 2 Rq the system output. It is assumed that the only accessible
signal is the system outputy(t) and thatA(t) 2 Rn�n; B(t) 2

Rn�p; C(t) 2 Rq�n are allT -periodic; i.e.,

(A(t+ T ); B(t+ T ); C(t+ T )) = (A(t);B(t); C(t))

8t > 0:

The objective in this section is to find a stabilizingstatic output
feedback controlu(t) that can arbitrarily assign the locations of the
Poincaré exponents of the closed-loop system. For this purpose, the
following assumptions are required.

A1) The pair (A(t);B(t)) is controllable in the sense that its
controllability grammian [1]W defined on the time interval
[0; T ] is positive definite, where

W =
T

0

�(T; �)B(�)BT (�)�T (T; �)d� (10)

and�(t; �) is the open-loop state transition matrix of (1).
A2) The constant pair(�(T; 0); C0) is observable [9], where

�(T; 0) is the open-loop monodromy matrix andC0

C(0) = C(kT ):

The proposed control design proceeds as follows.
Step I: Choosen Poincaŕe exponents!i (real or in complex

conjugate pairs) withRe(!i) < 0. Calculate the eigenvalues for the
closed-loop monodromy matrix based on (6)

�
c
i = e

T! (11)

and then use the pole placement algorithm [9] to find a constant
matrix L 2 Rn�q so that

�i(�(T; 0) + LC0) = �
c
i (12)

where�(T; 0) andC0 are as in Assumption A2). Note that Assump-
tion A2) guarantees the existence ofL in (12) for any choice of the
value �ci .

Step II: Construct aT -periodic generalized hold functionG(t) 2
Rp�q

G(t) = B
T (t)�T (T; t)W�1

L; t 2 [0; T ) and G(t+ T ) = G(t)

(13)

where �(T; t) and W are as in (10). Note that Assumption A1)
guarantees the invertibility ofW in (13).

Step III: Set the control input to be

u(t) = G(t)y(kT ); t 2 [kT; kT + T ) (14)

wherey(kT ) is the sampled system output with a sampling period
T and G(t) is in (13).

Notice that in the above control design (13), one needs to calculate
the open-loop state transition matrix�(T; �) over the entire period
� 2 [0; T ]. Such computation becomes difficult when the period
is long or when the system dimension is large. For an efficient and
accurate numerical algorithm in calculating the state transition matrix,
one may refer to [10] and [11].

Theorem 1: Under Assumptions A1) and A2), the static output
feedback control (14) stabilizes (9) exponentially. Furthermore, the
closed-loop Poincaré exponents are located as specified inStep I in
the design procedure.

Proof: Apply the Floquet transformation (2) to the controlled
system (9), obtaining

_z(t) = Jz(t) + �B(t)u(t)

y(t) = �C(t)z(t)
(15)

where J is given by (4), and both the new input matrix�B(t) =
P (t)B(t) and output matrix �C(t) = C(t)P�1(t) are T -periodic
sinceP (t); B(t); andC(t) are allT -periodic.

Discretizing the transformed system (15) with a sampling period
T yields

z((k+ 1)T ) = �(T; 0)z(kT) +R[u(�)] (16)

where �(T; 0) is the open-loop monodromy matrix andR[�] the
controllability map [2] defined by

R[u(�)] =
(k+1)T

kT

e
J[(k+1)T�� ] �B(�)u(�)d�

=
T

0

e
J(T��)

P (�)B(�)u(� + kT ) d�

=
T

0

�(T; �)B(�)u(� + kT )d� (17)

where the identity (8) has been used to obtain the last equality. Since
P (kT ) = I for all k � 0, it follows from (2) thatx(kT ) = z(kT ).
Hence, (16) becomes

x((k + 1)T ) = �(T; 0)x(kT ) +R[u(�)]: (18)

Substituting the control (14) and (13) into (18) gives

x((k + 1)T ) = �(T; 0)x(kT ) +R[G(� )C0x(kT )]

= (�(T; 0) +R[G(� )]C0)x(kT ): (19)

One can verify that theT -periodic generalized hold functionG(t)
in (13) satisfies

R[G(� )] =
T

0

�(T; �)B(�)G(� + kT ) d�

=
T

0

�(T; �)B(�)G(�)d� = L: (20)

Hence, the discretized closed-loop dynamics (19) becomes

x((k + 1)T ) = (�(T; 0) + LC0)x(kT ):

The closed-loop monodromy matrix�c(T; 0) is thus given by
�(T; 0) + LC0; and the Poincaré exponents are now successfully
relocated as desired

P:E: =
1

T
ln�i[�c(T; 0)] =

1

T
ln�i(�(T; 0) + LC0)

=
1

T
ln�ci =

1

T
ln eT! = !i

where the third and fourth equations are obtained via (11) and
(12). Consequently, the discretized statex(kT ) converges to zero
exponentially.

To examine the intersampling behavior of the system statex(t),
one can discretize the closed-loop system (14) and (15), fromt = kT

to t = kT + s; s 2 (0; T ), to obtain

x(s) = P
�1(s) �(s; 0) +

s

0

�(s; �)B(�)G(�)d� � C0 x(kT )

where (2) and (8) have been used in deriving the equation, and
P (s) is the T -periodic transformation matrix in (2). Sincex(kT )
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Fig. 1. State response with discontinuous control (14).

Fig. 2. Control signal with discontinuous control (14).

converges to zero exponentially, and all the other terms on the right-
hand side of the above equation are uniformly bounded functions
of s; s 2 (0; T ), one concludes that the intersampling statex(s)
remains uniformly bounded and converges to zero exponentially as
k approaches infinity.

A simple simulation example is provided below to verify the
proposed control design.

Example 1: Consider a periodic system, which is open-loop un-
stable

_x(t) =
1 + cos 2�t 0

0 2 + sin 2�t
x(t) +

1
�1

u(t)

y(t) = [2 + sin 4�t �9 + sin 4�t]x(t):

The period of the system is 1 s. The proposed control (14) is applied
to the system with the initial conditionxT (0) = [2; 2]. The design
parameters in Step I are!1 = ln 0:1 and!2 = ln 0:3. Fig. 1 shows
the time history of the system state, which converges exponentially
as predicted by Theorem 1, and Fig. 2 shows the control input.

IV. STABILITY SYNTHESIS BY CONTINUOUS CONTROL

Fig. 2 in Example 1 reveals a problem with the control design
based on the generalized hold function: the control signalu(t) in
(14) has large discontinuities at the sampling instantst = kT .
Since control with large discontinuities is either not implementable
in practice or unacceptable from the robustness consideration, the
objective of this section is to modify the previous control design
so that assignment of the Poincaré exponents can be achieved by a
continuouscontrol input.

The approach adopted here is to find a new generalized hold
function �G(t) to replaceG(t) in the discontinuous control (14), with
�G(t) now satisfying

�G(kT ) = 0; 8k = 0; 1; 2; � � � : (21)

This will force the control inputu(t) to be continuous at any time
instantt = kT ; in fact, according to (14) and (21), one has

u(t�) = u(t+) = 0 at t = kT: (22)

Equation (21) can be achieved by the following modified design
procedure.

Step I and Step II:They are the same as in the previous section.
Step III: Choose any twoT -periodic matrix functionsG1(t) 2

Rp�q andG2(t) 2 Rp�q that are continuous on(0; T ). Calculate
R[G1(�)] andR[G2(� )], whereR[�] is the controllability map in
(17). Denote the two resultant constant matrices by

L1 R[G1(� )] 2 R
n�q

; L2 R[G2(� )] 2 R
n�q

: (23)

Step IV: Construct the following twoT -periodic matrix functions
from G1(t) and G2(t):

G01(t) = G1(t)�B
T (t)�T (T; t)W�1

L1; t 2 [0; T ) (24)

G02(t) = G2(t)�B
T (t)�T (T; t)W�1

L2; t 2 [0; T ) (25)

whereB(t); �(T; t); andW are as in (13) andL1 andL2 in (23).
Step V:

Case a) When the number of inputs is no less than that of
outputs(p � q), determine two constant matrices�1 and
�2 2 Rp�p from the equations

G(0+) + �1G01(0
+) + �2G02(0

+) = 0 (26)

G(T�) + �1G01(T
�) + �2G02(T

�) = 0 (27)

whereG(t) is given by (13) andG01(t) andG02(t) by
(24) and (25). Solutions�1 and�2 in (26) and (27) exist
if the following matrix is full rank:

rank
G01(0

+) G01(T
�)

G02(0
+) G02(T

�)
= 2q:

If this condition is not satisfied for theG1(t) andG2(t)
chosen in Step III, one can simply choose a different
pair ofG1(t) andG2(t) until the required rank condition
is satisfied. Notice that there areinfinite degrees of
freedom in choosingG1(t) andG2(t) for no constraint is
imposed on them except continuity on the interval(0; T ).
Hence, choosingG1(t) andG2(t) to meet the above rank
condition is in general quite easy.

Case b) When the number of inputs is no more than that of
outputs(p � q), determine two constant matrices�1 and
�2 2 Rq�q from the equations

G(0+) +G01(0
+)�1 +G02(0

+)�2 = 0

G(T�) +G01(T
�)�1 +G02(T

�)�2 = 0

whereG(t); G01(t); andG02(t) are as in (26). Similarly,
it will be assumed that in solving the above equations for
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�1 and�2, the following matrix (note that it is different
from the previous one) is full rank:

rank
G01(0

+) G02(0
+)

G01(T
�) G02(T

�)
= 2p:

Step VI: Set the control input to be

u(t) = �G(t)y(kT ); t 2 [kT; kT + T ) (28)

wherey(kT ) is the sampled system output and�G(t) = �G(t+ T ) is
the new generalized hold function

�G(t) = G(t) + �1G01(t) + �2G02(t); if p � q

�G(t) = G(t) +G01(t)�1 +G02(t)�2; if p � q
(29)

in which G(t); G01(t); G02(t) are as in (26) and�i and �i from
Step V.

The following theorem shows that the new control (28) will
shift the Poincar´e exponents to thesamedesired locations as the
discontinuous control (14) in the previous section; furthermore, the
new control input (28) is now continuous for allt > 0.

Theorem 2: The closed-loop system (9) with thecontinuous
control (28) is exponentially stable. Furthermore, the closed-loop
Poincaŕe exponents are located as specified in Theorem 1.

Proof: Continuity of the control (28) can be verified by noticing
that (26) and (27) ensure that the new generalized hold function�G(t)
in (29) satisfies (21). Hence, the control input is continuous for all
time instantst = kT as suggested in (22).

To prove that the Poincaré exponents are relocated as desired,
observe thatG01(t) in (24) is in fact in the null space of the
controllability map

R[G01(t)] = R[G1(t)]�R[BT (t)�T (T; t)W�1
L1]

= L1 � L1 = 0

and so isG02(t) in (25). As a result, the new generalized hold
function �G(t) in (29) (the casep � q can be shown similarly)
satisfies, recalling (20)

R[ �G(t)] = R[G(t)] + �1R[G01(t)] + �2R[G02(t)]

= L+ �1 � 0 + �2 � 0 = L:

Following (19), withG(�) replaced by the new�G(�), one obtains

x((k + 1)T ) = (�(T; 0) +R[ �G(�)]C0)x(kT )

= (�(T; 0) + LC0)x(kT )

where it is seen that the same closed-loop monodromy matrix
�(T; 0) + LC0 is obtained as in Theorem 1. Hence, the discretized
system statex(kT ) converges to zero exponentially. The same
argument as in Theorem 1 can show that the intersampling statex(t)
also converges to zero exponentially.

Example 2: In this example, thecontinuouscontrol (28) is sim-
ulated for the same system as in Example 1. The control design
parameters in Step I are as before, and theT -periodic functions
(T = 1 s) in Step III are chosen to beG1(t) = t; G2(t) = 1 � t;

where t 2 [0; T ). Fig. 3 shows the time history of the controlled
system state and Fig. 4 the control input. Observe that the control
input now becomes continuous in time while the state convergence
rate remains the same as in Example 1.

In Fig. 4 the control signal has become continuous; however, there
is a spike taking place att = 1 s, which may still excite high-
frequency unmodeled dynamics. Observe that such a spike results
from the discontinuity of thetime derivativeof the control signal. One
can easily avoid such undesirable spikes by a further modification of
the generalized hold function. For example, to ensure continuity of

Fig. 3. State response with continuous control (28).

Fig. 4. Control signal with continuous control (28).

the first-ordertime derivativeof the control signal at the time instants
t = kT , one can design theT -periodic generalized hold function
�G(t) to satisfy, in addition to (21)

d �G(t)

dt
t=kT

= 0; 8k = 0; 1; 2; � � � : (30)

This will force the time derivative of the control input to be
continuous att = kT since, from (28)

_u(t�) = _u(t+) = 0; at t = kT:

In order to satisfy (21) and (30) at the same time, the generalized
hold function will have to be in the form (sayp � q)

�G(t) = G(t) + �1G01(t) + �2G02(t) + �3G03(t) + �4G04(t)

where the constant matrices�0is; i = 1; 2; 3; 4 are chosen to satisfy
the four conditions in (21) and (30). The detailed design procedure is
omitted here since it is a straightforward extension of the proposed
design in this section.

Finally, to conclude the paper, it is mentioned that in Step III
of the design procedure, the matrix functionG1(t) andG2(t) may
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be arbitrarily chosen. However, their choice affects the maximum
amplitude of the control input [i.e.,max k �G(t)k; t 2 [0; T ] in (28)].
Hence, a future direction of research is to perform an optimization
(minimization) on a certain norm of�G(t) subject to the constraints
(21) and/or (30), so that the control objective is achieved with
minimum control effort.
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From Singular to Nonsingular Filtering
of Periodic Systems: Filling the Gap
with the Spectral Interactor Matrix

Sergio Bittanti, Patrizio Colaneri, and Marco Fabio Mongiovı́

Abstract—With reference to periodic discrete-time systems, in this
paper the concept of the periodic spectral interactor matrix operator
(PSIMO) is introduced. Such an interactor enables one to transform the
singular system into a nonsingular one with identical spectral properties.
This concept is useful to characterize the family of periodic solutions of
the singular periodic Riccati equation arising from the singular filtering
problem. The PSIMO is also a synthetic tool to represent the invariant
zeros structure at infinity (delays) of periodic systems in an operatorial
fashion.

Index Terms—Interactor matrix, periodic systems, Riccati equation,
singular filtering.

I. INTRODUCTION

Singular prediction and control problems for time-invariant systems
have been studied by a number of authors; see, e.g., [10], [14],
[15], [19], and [21]. However, in the realm of periodic systems,
such problems have not been given the attention they deserve.
Singular problems arise for example in the LQG/LTR framework
or in multirate sampled data control systems; see [3], [11], and
[13]. In this paper, we consider the problem of singular filtering for
discrete-time periodic systems, and we reduce it to a nonsingular one.
In this way, one can take advantage of the well-established results
concerning periodic nonsingular filtering and control problems; see,
e.g., [6]. The basic tool which will be used for the reduction of
the periodic singular problem to the nonsingular one is the so-called
spectral interactor matrix (SIM), defined in [8] and [10] as a particular
characterization of the class of interactor matrices; see [16], [17], [20],
and [23].

In this way, it is possible to clearly point out the different roles
played by the finite zeros and by the delays of the system in
determining the optimal filter.

The paper organization is as follows. In Section II, we introduce
the periodic spectral interactor matrix(PSIMO); see also [9]. The
PSIMO is an anticausal periodic system, with a polynomial-like
input–output representation, which preserves the spectral proper-
ties and acts on the system as a delay eraser. The determina-
tion of the PSIMO can be carried out by making reference to
the lifted time-invariant representation as discussed in Section III.
The relation between the invariant zeros of the original system
and its delay-free image (obtained by applying the PSIMO to the
original system) is addressed in Section IV. This sets the basis
for the study of the singular Riccati equation (Section V), lead-
ing to the solution of the prediction problem as stated in Section
VI.
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