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Nonlinear controls for a class of discrete-time bilinear systems
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SUMMARY

For a discrete-time neutrally stable bilinear system, a nonlinear state feedback control based on the
passivity design has been proposed to stabilize the system globally and asymptotically. This paper
shows that the decay rate resulting from the passivity control is not exponential, and the system’s response
speed becomes very sluggish asymptotically. A ‘normalized’ nonlinear control is therefore proposed to
achieve exponential stability. The new exponentially stabilizing control not only improves the system’s
response speed, but also enhances the system’s robustness against small parametric perturbations.
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1. INTRODUCTION

Bilinear systems comprise an important subclass of nonlinear dynamical systems because
numerous real-world dynamical plants have bilinear structures References [1, 2]. Real-world
examples include engineering applications in nuclear, thermal, chemical processes, and non-
engineering applications in biology, social-economics, immunology and so on. Therefore, it is
important to devise efficient control laws for such bilinear systems.

An early treatment of discrete time bilinear system control is a state feedback control design
Reference [3] based on hyperstability, which ensures local asymptotical stability. In References
[4,5], an output feedback control is proposed for general time-varying bilinear systems, which
again ensures only local asymptotic stability. Later, based on the concept of passivity, a state
feedback control Reference [6] is proposed for an open-loop stable bilinear system. The design
achieves global asymptotic stabilization under a zero-state detectability assumption.
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The objectives of this paper are as follows. First, using the Lyapunov function analysis, one
can show that when the bilinear system is homogeneous (corresponding to the case D ¼ 0 in
Reference [6]), the closed-loop decay rate for the passivity control in Reference [6] is not
exponential. The norm of the state jjxðkÞjj decays as 1=

ffiffiffi
k

p
; as a result, the decay rate becomes

sluggish as time goes on. Second, a ‘normalized’ nonlinear control is therefore proposed in this
paper to achieve exponential stability of the closed-loop system. Such a new control not only
substantially improves the system response speed, but also enhances robustness of the controlled
system. In this paper, the analysis and control design are introduced in detail for single-input
bilinear systems, and then roughly sketched for multi-input bilinear systems in the final
section.

2. REFORMULATION OF ASYMPTOTICALLY STABILIZING CONTROL

Considers a discrete-time homogeneous bilinear system

xðk þ 1Þ ¼ AxðkÞ þ uðkÞNxðkÞ xð0Þ ¼ x0 ð1Þ

where xðtÞ 2 Rn is the system state vector, uðkÞ is a scalar control input, and A 2 Rn�n and
N 2 Rn�n are constant square matrices. The bilinear system (1) is assumed to satisfy the
following two assumptions:
Assumption A1

There exists a positive definite matrix P > 0 such that

ATPA� P ¼ 0 ð2Þ

Assumption A1 restricts that the open-loop system be neutrally stable, and all the eigenvalues of
A fall on the unit circle.
Assumption A2

There exists an integer m > 0 such that

rank½A�1Nx;A�2NAx; . . . ;A�mNAm�1x� ¼ n ð3Þ

for any non-zero x in Rn: Assumption A2 [7] guarantees that system (1) is controllable [8] at any
non-zero x: Notice that under the Assumption A1, the zero-state detectability in Reference [6] is
equivalent to the controllability Assumption A2 here.

One now presents the asymptotically stabilizing control introduced in Reference [6]; however,
in this paper the control will be constructed based on the Lyapunov function theory instead of
on the passivity theory as in Reference [6]. The advantage of using the Lyapunov analysis is to
make decay rate analysis possible, as will be shown in Section 3. The asymptotically stabilizing
control is as follows:

uðkÞ ¼ �r
ax

2bx þ e
; 05r42; e > 0 ð4Þ

where r is the control gain, normally chosen to be one, e is a small positive number, and ax and
bx are abbreviations of axðkÞ and bxðkÞ:

axðkÞ ¼ 2xTðkÞATPNxðkÞ

bxðkÞ ¼ ½NxðkÞ�TP ½NxðkÞ�
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in which P is the positive definite matrix in (2). Note that bx may be either positive or zero. The
introduction of the small parameter eð> 0Þ in the control law (4) is to avoid possible division by
zero in uðkÞ:

In this section, it will be shown that the bilinear system (1) with the control law (4) is
asymptotically stable.

Lemma 1
Consider the bilinear system (1) with the control law (4). If the bilinear system satisfies
Assumptions A1 and A2, and

axðkþiÞ ¼ 2xðk þ iÞTATPNxðk þ iÞ ¼ 0; 8 i ¼ 0; 1; 2; . . . ;m� 1 ð5Þ

then xðkÞ must be the null vector.

Proof
Hypothesis (5) can be put into the following matrix form, using the system dynamics
xðk þ iÞ ¼ AixðkÞ under hypothesis (5),

xTðkÞ ATPNxðkÞ; AT
� �2

PNAxðkÞ; . . . ; AT
� �m

PNAm�1xðkÞ
h i

¼ 0 ð6Þ

Since ATP ¼ PA�1 from Assumption A1, (6) becomes

xTðkÞP A�1NxðkÞ;A�2NAxðkÞ; . . . ;A�mNAm�1xðkÞ
� �

¼ 0 ð7Þ

If xðkÞ is non-zero, according to the controllability assumption A2, the matrix in (7) is full rank;
hence, xTðkÞP ¼ 0: Since P is positive, one concludes that xðkÞ ¼ 0: One then reaches a
contradiction with the assumption that xðkÞ is non-zero, therefore, xðkÞ must be zero.

Theorem 1
The bilinear system (1) with the control law (4) is globally asymptotically stable.

Proof
Choose a Lyapunov function candidate

V ðkÞ ¼ xTðkÞPxðkÞ50

where P is the positive definite matrix in (2). One can derive, along the trajectory of (1) and (4),

DV ðkÞ ¼ V ðk þ 1Þ � V ðkÞ

¼ 2xTðkÞATPNxðkÞuðkÞ þ ½NxðkÞ�TP ½NxðkÞ�u2ðkÞ

¼ � a2x
r½ð2� rÞbx þ e�

ð2bx þ eÞ2
40 ð8Þ

Since bx50 and 25r > 0; DV ðkÞ is always non-positive. From the Lyapunov stability theory [8],
the system state xðkÞ will remain uniformly bounded; that is,

xðkÞ 2 D ð9Þ

for some bounded region D in the state space.
To show that the state xðkÞ actually approaches zero asymptotically, notice from (8) that

DV ðkÞ ¼ 0 implies axðkÞ ¼ 0: Since the largest invariant set contained in fxjaxðkÞ � 0g is f0g
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according to Lemma 1, one concludes from the LaSalle theorem [8] that xðkÞ approaches zero
asymptotically, and hence the controlled system is asymptotically stable. &

Remark
The passivity control (D ¼ 0) in Reference [6, Theorem 4] corresponds to control (4) in this
paper with r ¼ 2 and e ¼ 4:However, these parameter values are not optimal as far as the decay
rate of V ðkÞ is concerned. The reason is as follows. If one sets @DV ðkÞ=@uðkÞ ¼ 0 in the proof of
Theorem 1, one obtains

unðkÞ ¼ �
ax
2bx

; bx50

which will maximize the decrease rate of V ðkÞ: Comparing the above unðkÞ with control (4)
immediately suggests that for fast responses, one should choose r ¼ 1 and e sufficiently small in
the control law (4). Simulation results do confirm such a choice. Note that e is added in the
control (4) to avoid the possible division by zero in unðkÞ:

3. DECAY RATE ANALYSIS OF ASYMPTOTICALLY STABILIZING CONTROL

The purpose of this section is to provide a decay rate analysis for the asymptotically stabilizing
control (4), which is not available when the control was first proposed in Reference [6]. Define
the notations:

ae ¼
4 ax
jjxjj2

¼ 2eðkÞTATPNeðkÞ where eðkÞ ¼4
xðkÞ
jjxðkÞjj

ð10Þ

and eðkÞ is called the normalized state.

Definition
Define a scalar real function B1ðeðkÞ; jjxðkÞjjÞ : S � I ! Rþ [ f0g for the controlled system (1)
and (4)

B1ðeðkÞ; jjxðkÞjjÞ ¼

Pkþm�1
i¼k aeðiÞ

� �2¼ Pkþm�1
i¼k 2

xTðiÞ
jjxðiÞjj

ATPN
xðiÞ

jjxðkÞjj

� �2
; xðkÞ=0

limjjxðkÞjj!0B1ðeðkÞ; jjðkÞjjÞ; xðkÞ ¼ 0

8><
>: ð11Þ

where S is the unit sphere in Rn and I ¼ ½0; r�; in which r¼4 maxi fjjxðiÞjj jxðiÞ 2 D inð9Þ;
i ¼ 0; 1; . . . ;1g:

From the knowledge of xðkÞ; one can determine consecutively xðk þ 1Þ; xðk þ 2Þ; . . . ; x�
ðk þ m� 1Þ; from the closed-loop dynamics (1) and (4):

xðk þ 1Þ ¼ A� r
2xTðkÞATPNxðkÞ

½NxðkÞ�TP ½NxðkÞ� þ e
N

� �
xðkÞ ð12Þ

The value of the function B1ð�; �Þ in (11) can then be exactly calculated; hence, the function B1ð�; �Þ
is uniquely defined by eðkÞ and jjxðkÞjj: Note that B1ðeðkÞ; jjxðkÞjjÞ at the origin xðkÞ ¼ 0 is defined
by a limiting process, for otherwise division by zero will take place at xðkÞ ¼ 0: The next lemma
shows that the limit in (11) does exist.
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Lemma 2
For the closed-loop system (1) and (4), there exists a real scalar function B0ðeðkÞÞ : S ! Rþ [ f0g
such that

B0ðeðkÞÞ ¼ limjjxðkÞjj!0 B1ðeðkÞ; jjxðkÞjjÞ

Proof
When xðkÞ approaches the origin, the closed-loop dynamics (12) can be described by its
linearized model:

xðk þ 1Þ ¼ AxðkÞ as jjxðkÞjj ! 0

As a result, there exists a recursive relationship for the normalized state eðkÞ:

eðk þ 1Þ ¼
AeðkÞ
jjAeðkÞjj

as jjxðkÞjj ! 0: ð13Þ

One can determine the value of B1ðeðkÞ; jjxðkÞjjÞ; a functions of eðiÞ; i ¼ k; k þ 1; . . . ; k þ m� 1;
using only the information of the initial normalized state eðkÞ and the recursive relationship (13).
In other words, when xðkÞ is close to the origin, given any eðkÞ; the value of B1ðeðkÞ; jjxðkÞjjÞ is
independent of jjxðkÞjj; and hence the limiting function in (11) is well defined. &

The following lemma shows that the controllability assumption (3) guarantees that the value
of B1ðeðkÞ; jjxðkÞjjÞ is bounded above from zero on its domain S � I :

Lemma 3
For the closed-loop system (1) and (4), there exists some positive constant b such that

inf eðkÞ2S
jjxðkÞjj2I

fB1ðeðkÞ; jjxðkÞjjÞg ¼ b > 0

where inf denotes the infimum taken over all eðkÞ 2 S and all jjxðkÞjj 2 I :

Proof
One first shows that B1 eðkÞ; jjxðkÞjjð Þ is positive for all eðkÞ 2 S and jjxðkÞjj 2 I \f0g (at every point
in its domain except at xðkÞ ¼ 0), then shows that B1 eðkÞ; jjxðkÞjjð Þ is actually also positive at
xðkÞ ¼ 0:

First, consider the case jjxðkÞjj=0: By definition, B1ð�; �Þ must be non-negative. Hence, to prove
that B1ð�; �Þ is positive, one only needs to show that B1ð�; �Þ is non-zero. Assume the contrary:
B1ðeðkÞ; jjxðkÞjjÞ is zero at some eðkÞ and some non-zero xðkÞ; Then,

xTðiÞATPNxðiÞ � 0; 8 i ¼ k; k þ 1; . . . ; k þ m� 1

Applying Lemma 1 to the above equation suggests that xðkÞ ¼ 0; contradicting the hypothesis of
this case that xðkÞ=0: Therefore, B1ð�; �Þ must be positive at every point where xðkÞ=0:

Next, consider the case jjxðkÞjj ¼ 0: To prove that B1 eðkÞ; jjxðkÞjjð Þ is positive at jjxðkÞjj ¼ 0;
recall from the proof of Lemma 2 that, given any eðkÞ; the value of B1 eðkÞ; jjxðkÞjjð Þ becomes a
constant independent of jjxðkÞjj as it approaches zero. Since it is already proved in the first case of
this lemma that B1 eðkÞ; jjxðkÞjjð Þ is positive no matter how small jjxðkÞjj is, this constant must be
positive. Hence, from the limiting definition of B1 eðkÞ; jjxðkÞjjð Þ at jjxðkÞjj ¼ 0; the value of B1 �
eðkÞ; jjxðkÞjjð Þ must be positive at jjxðkÞjj ¼ 0:
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Finally, since B1ð�; �Þ is positive at every point in its domain from the above analysis, and the
domain of B1ð�; �Þ; S � I ; is compact, it follows from Theorem 4.4.1 in Reference [9] that the
infimum of B1ð�; �Þ (¼ b) is also positive. &

One can now present a decay rate analysis for the Lyapunov function V ðkÞ:

Theorem 2
Consider the Lyapunov function V ðkÞ ¼ xTðkÞPxðkÞ for the closed-loop system (1) and (4). For
the integer m as in (3) and for some real positive constant p; the decay rate of V ðkÞ is given by

V ðmkÞ4
1

pk
as k ! 1

Proof
Rewrite (8) as

V ðk þ 1Þ � V ðkÞ ¼ �
ax
jjxjj2

� 	2r½ð2� rÞbx þ e�

ð2bx þ eÞ2
jjxjj4

ðxT PxÞ2
V 2ðkÞ

4 � a2e
r½ð2� rÞbx þ e�

ð2bx þ eÞ2
1

l2P
V 2ðxÞ ð14Þ

where lP is the maximum eigenvalue of P : Since xðkÞ is uniformly bounded from Theorem 1, one
can show that there exists a positive constant c1 such that for all xðkÞ 2 D in (9),

r½ð2� rÞbx þ e�

ð2bx þ eÞ2
5c1 > 0

Equation (14) then becomes

V ðk þ 1Þ � V ðkÞ4�
c1
l2P
a2eðkÞV

2ðkÞ ð15Þ

Derive, using (15),

1

V ðk þ 1Þ
�

1

V ðkÞ
¼
V ðkÞ � V ðk þ 1Þ
V ðkÞV ðk þ 1Þ

5
c1
l2P
a2eðkÞ

V ðkÞ
V ðk þ 1Þ

5
c1
l2P
a2eðkÞ

where the last inequality results from V ðk þ 1Þ4V ðkÞ: Summing the above equations from k to
k þ m� 1 yields

1

V ðk þ mÞ
�

1

V ðkÞ
5

c1
l2P

Xkþm�1

i¼k

a2eðiÞ5
c1
l2P
b; ð16Þ
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where the second inequality results from Lemma 3. By setting k ¼ 0;m; 2m; . . . ; ð‘ � 1Þm in (16),
and summing all the equations, one has

1

V ð‘mÞ
�

1

V ð0Þ
5c1

b

l2P
‘

therefore, V ð‘mÞ4V ð0Þ=ðc1ðb=l
2
P Þ‘V ð0Þ þ 1Þ; which, when ‘ is replaced by k and c1ðb=l

2
P Þ by p;

proves the claim of the theorem. &

Remark
Theorem 2 shows that the passivity control (4) in Reference [6] results in a power-law decay rate.
With the power-law decay rate, the system response slows down substantially as k approaches
infinity, making control (4) unacceptable in real-world applications. This motivates a new
control design that can produce a faster decay in the next section.

4. EXPONENTIALLY STABILIZING CONTROL

As a modification of the asymptotically stabilizing control (4), the following exponentially

stabilizing control is proposed for system (1):

uðkÞ ¼ �r
ae

2be þ e
; 05r42; e > 0 ð17Þ

where r is the control gain, normally one, e is a small positive number to avoid division by zero,
and

aeðkÞ ¼ 2eTðkÞATPNeðkÞ

beðkÞ ¼ ½NeðkÞ�TP ½NeðkÞ�

in which eðkÞ is the normalized state defined in (10). The above exponentially stabilizing control
law (17) has exactly the same structure as the asymptotically stabilizing control law (4) studied
in the previous section except that the system state xðkÞ in (4) is now replaced by the
‘‘normalized’’ state eðkÞ in the new control.

The following lemmas are required for the stability analysis of the proposed new control.

Lemma 4
Consider the bilinear system (1) and (17). If

aeðkþiÞ ¼ 2eðk þ iÞTATPNeðk þ iÞ ¼ 0; 8 i ¼ 0; 1; 2; . . . ;m� 1 ð18Þ

where eðkÞ is defined in (10), then xðkÞ must be the null vector.

Proof
Assume that xðkÞ is non-zero. Multiplying (18) by jjxðkÞjj2 results in (5). The rest of proof then
follows that of Lemma 1.

Next, define a scalar function:

B2ðeðkÞÞ ¼
Xkþm�1

i¼k

aeðiÞ
� �2¼ Xkþm�1

i¼k

2eTðiÞATPNeðiÞ
� �2

ð19Þ
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for the new closed-loop system (1) and (17):

xðk þ 1Þ ¼ A� r
2eTðkÞATPNeðkÞ

½NeðkÞ�TP ½NeðkÞ� þ e
N

� �
xðkÞ ¼4 f ðxðkÞÞ ð20Þ

Note that the right-hand side of the function B2ð�Þ in (19) is almost the same as that of B1ð�; �Þ in
(11), but the two functions are defined differently. First, B2ð�Þ is not defined at xðkÞ ¼ 0; while
B1ð�; �Þ is. Second, B2ð�Þ is a function of eðkÞ only, while B1ð�; �Þ a function of both jjxðkÞjj and eðkÞ:
The reason why B2ð�Þ in (19) is defined a function of eðkÞ only is as follows. Notice that f ðxðkÞÞ in
(20) satisfies the so-called homogeneous property for all jjxðkÞjj (not just for jjxðkÞjj ! 0 as shown
in Lemma 2 for B1ð�; �Þ); that is,

f ðrxðkÞÞ ¼ rf ðxðkÞÞ for all r > 0 ð21Þ

Based on (20) and (21), it can be deduced that there exists a continuous function F ð�Þ : S ! S;
where S is the unit sphere in Rn; such that

eðk þ 1Þ ¼ F ðeðkÞÞ; F ðeðkÞÞ ¼4 f ðeðkÞÞ
jjf ðeðkÞÞjj

: ð22Þ

Using relation (22), one can calculate B2ð�Þ based on the knowledge of eðkÞ only. Hence, it is not
a function of state norm.

By following the same procedure as in the proof of Lemma 3, and using Lemma 4, one can
show that the non-negative function B2ð�Þ is actually bounded above from zero for all eðkÞ 2 S;
i.e., for all non-zero xðkÞ 2 Rn:

Lemma 5
For the closed-loop system (1) and (17), there exists a constant a > 0 such that

infeðkÞ2S ½B2ðeðkÞÞ� ¼ a > 0

One can now establish the exponential stability for the proposed new control law.

Theorem 3
If the bilinear system (1) satisfies the Assumptions A1 and A2, the nonlinear control law (17)
stabilizes the system exponentially.

Proof
Define a Lyapunov function candidate V ðkÞ ¼ xTPxðkÞ; where P is as in (2). The increment of
V ðkÞ along (1) and (17) is given by

V ðk þ 1Þ � V ðkÞ

¼ xTðk þ 1ÞPxðk þ 1Þ � xTðkÞPxðkÞ

¼ 2xTðkÞATPNxðkÞuðkÞ þ ðNxðkÞÞTP ðNxðkÞÞuðkÞ2

¼ � a2eðkÞ
r½ð2� rÞbeðkÞ þ e�

ð2beðkÞ þ eÞ2
jjxðkÞjj2

xT ðkÞPxðkÞ
V ðkÞ
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Since beðkÞ is uniformly bounded, one has

r½ð2� rÞbeðkÞ þ e�

ð2beðkÞ þ eÞ2
5c > 0

for some positive constant c: The last inequality in DV ðkÞ can then be deduced to

V ðk þ 1Þ � V ðkÞ4� a2eðkÞ
c
lP
V ðkÞ40 ð23Þ

where lP is the maximum eigenvalue of the positive definite matrix P : Since V ðkÞ is non-
increasing, one has

V ðk þ iÞ5V ðk þ mÞ; i ¼ 0; 1; . . . ;m� 1 ð24Þ

List the equations in (23) from k to k þ m� 1; and utilize (24),

V ðk þ 1Þ � V ðkÞ4� a2eðkÞ
c
lP
V ðkÞ4� a2eðkÞ

c
lP
V ðk þ mÞ

V ðk þ 2Þ � V ðk þ 1Þ4� a2eðkþ1Þ
c
lP
V ðk þ 1Þ4� a2eðkþ1Þ

c
lP
V ðk þ mÞ

�ðk þ mÞ � V ðk þ m� 1Þ4� a2eðkþm�1Þ
c
lP
V ðk þ m� 1Þ4� a2eðkþm�1Þ

c
lP
V ðk þ mÞ

Adding the above inequalities together, and quoting Lemma 5, one obtains

V ðk þ mÞ � V ðkÞ4�
Pkþm�1

i¼k a2eðiÞ
h i c

lP
V ðk þ mÞ4�

ac
lP
V ðk þ mÞ

Rearranging the last inequality gives

V ðk þ mÞ4
1

1þ ac=lP
V ðkÞ

and hence,

V ðkmÞ4skV ð0Þ where s ¼
1

1þ ac=lP
51 ð25Þ

One concludes from (25) that the Lyapunov function V ðkÞ converges exponentially to zero, and
so does xðkÞ by the definition of V ðkÞ: &

Remark
Theorem 3 proves that the proposed control (17) produces an exponential deay rate. The
exponential decay rate in Theorem 3 is superior to the power-law decay rate in Theorem 2 in two
ways. (1) The exponential decay rate is much faster than the power-law decay rate as the time
gets large. A clear demonstration of this point is shown in Figure 1 below. (2) When the closed-
loop system is exponentially stable, it is robust against small unmodelled nonlinearities and
small parametric perturbations. For a proof of this, please refer to Reference [10, Theorem 121].

5. MULTI-INPUT BILINEAR SYSTEMS

In the previous section, the exponentially stabilizing control is introduced for the single-input
case. In this section, the multi-input case will be discussed. In particular, a two-input case will be
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examined. Consider the following two-input bilinear system:

xðk þ 1Þ ¼ AxðkÞ þ u1ðkÞN1xðkÞ þ u2ðkÞN2xðkÞ xð0Þ ¼ x0 ð26Þ

where xðkÞ 2 Rn is the system state vector, u1ðkÞ and u2ðkÞ are two scalar control inputs, and A;
N1; N2 2 Rn�n are constant square matrices. The multi-input bilinear system (26) is assumed to
satisfy the same neutral stability assumption A1 in (2) and the multi-input controllability
assumption below.

Assumption A20

There exists an integer m > 0 such that

rank½A�1N1x;A�2N1Ax; . . . ;A�mN1Am�1x

A�1N2x;A�2N2Ax; . . . ;A�mN2Am�1x� ¼ n

for any non-zero x in Rn:
An exponentially stabilizing control for the above system is as follows.

U ðkÞ ¼
u1ðkÞ

u2ðkÞ

" #
¼ �r NT

e ðkÞPNeðkÞ þ eI
� ��1

NT
e ðkÞPAeðkÞ; r 2 ð0; 2� ð27Þ

where r 2 ð0; 2� is a positive control gain, P is the positive definite matrix in (2), Ne ¼ ½N1e�
ðkÞ;N2eðkÞ�; and eðkÞ the normalized state in (10).

The stability analysis for the multi-input control law follows exactly the single-input case, and
is omitted here. Instead, a simulation example is used to verify the effectiveness of the proposed
control design.

Figure 1. jjxðtÞjj for different controls.
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Example
Consider a three-dimensional bilinear system (26) with

A ¼

0:7500 0:4330 0:5000

0:5000 �0:8660 0

�0:4330 �0:2500 0:8660

2
664

3
775; N1 ¼

0 0 0

0 0 0

0 0 1

2
664

3
775; N2 ¼

0 0 0

0 0 1

0 0 0

2
664

3
775

and the initial condition is xTð0Þ ¼ ½0:5;�0:5; 1�: For comparison, the system is simulated with
two different control schemes. In the first simulation, the passivity control in Reference [6] is
applied to the system, and the 2-norm of the system state versus time is shown by the dash line in
Figure 1. In the second simulation, control (27) in this paper is applied to the system with design
parameters P ¼ I ; r ¼ 1 and e ¼ 0:1; and the result shown by the solid line in Figure 1. The
figure clearly indicates that the decay rate from the new control (27) is exponential, and is much
faster than the dash line resulting from the passivity control [6]. The system state under the new
control virtually reaches the origin at around 12 s.

6. CONCLUSIONS

Conventional controls for discrete-time homogeneous bilinear systems with (neutrally) stable
dynamics can stabilize the system asymptotically, but not exponentially. In this paper, a new
nonlinear control is constructed to stabilize the bilinear system exponentially. Achieving
exponential stability has two important implications: (1) the system decay rate is much better
improved than the previous non-exponential decay rate; (2) the controlled system becomes
robust with respect to small parametric perturbations, as is shown in Reference [10].

However, the achieved exponential decay rate still has a limited exponent no matter how the
control design parameters are chosen. A more challenging problem then is to construct a control
that can produce any specified exponential decay rate, and this will be a subject to be pursued in
the future.
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