
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Weighted least-squares image
reconstruction in phase-contrast
tomography

Pin-Yu Huang, Cheng-Ying Chou

Pin-Yu Huang, Cheng-Ying Chou, "Weighted least-squares image
reconstruction in phase-contrast tomography," Proc. SPIE 7800, Image
Reconstruction from Incomplete Data VI, 780008 (27 August 2010); doi:
10.1117/12.861062

Event: SPIE Optical Engineering + Applications, 2010, San Diego, California,
United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Jul 2023  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Weighted least-squares image reconstruction in
phase-contrast tomography

Pin-Yu Huanga and Cheng-Ying Choua

aDepartment of Bio-Industrial Mechatronics Engineering
National Taiwan University, Taipei, Taiwan 106

ABSTRACT

X-ray phase-contrast tomography (PCT) methods seek to quantitatively reconstruct separate images that de-
pict an object’s absorption and refractive properties. Most PCT reconstruction algorithms generally operate
by explicitly or implicitly performing the decoupling of the projected absorption and phase properties at each
tomographic view angle by use of a phase-retrieval formula, followed by the inversion of X-ray transform. Tomo-
graphic reconstruction by use of statistical methods can account for the noise model and a priori information,
and thereby can produce images with better quality over conventional filtered backprojection algorithms. We
proposed a weighted least-squares method that takes into account the second-order statistical properties of the
projected phase images and aims to minimize the objective function by employing a conjugate-gradient (CG)
method. A computer-simulation study was carried out to investigate and evaluate the developed method.
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1. INTRODUCTION

X-ray phase-contrast imaging is a technique that can produce two separate images that respectively describe the
phase and absorption properties of an object.1–3 Because the contrast of phase property is several orders higher
than that of absorption property, it can permit the visualization of the features with similar or identical absorption
property. Additionally, phase contrast can persist at higher X-ray energies, and hence has the potential for low
dose imaging. Provided its advantages over conventional X-ray methods, it is particularly suitable for biomedical
imaging applications,4–6 and has been exploited to produce three-dimensional (3D) distribution1, 7–9 of an object
in phase-contrast tomography (PCT).

The tomographic reconstruction process can generally be divided into two steps. First, a phase retrieval
formula is applied to yield a collection of projected phase and absorption estimates.10–12 Subsequently, 3D
distribution of refractive index can be reconstructed by inverting the X-ray transform. The phase retrieval
formulas used to determine the complex amplitude contain the singularity that will result in greatly amplified
low-frequency noise in the reconstructed images.

Recently, the analytic expression for image covariance in planar-mode phase-contrast imaging has been de-
termined.13–15 The statistical properties of the projected estimates can be accounted for in the tomographic
reconstruction to produce images with better quality over conventional filtered backprojection (FBP) algorithms.
In this work, we employed a weighted least-squares method that takes into account the covariance properties of
the projected phase images. The objective of the reconstruction method is to find an image that minimizes the
cost function. This can be accomplished by employing the optimization algorithms such as conjugate-gradient
method.16 A computer-simulation study was carried out to investigate and evaluate the developed method.
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2. BACKGROUND

2.1 Imaging physics of In-line X-ray phase contrast tomography

In this section, we briefly review the imaging model of the in-line phase-contrast tomography developed by
Cloetens.17 Consider a monochromatic wavefield Ui propagates along the zr-axis and irradiates on the object
centered at the origin of a reference coordinate system (x, y, z). The object is characterized by its complex X-ray
refractive index distribution as

n(�r) = 1− δ(�r) + iβ(�r), (1)

where �r ≡ (x, y, z) and i ≡ √−1. The transmitted wavefield Ut(x, yr) on the contact plane immediately behind
the object can be described by

Ut(x, yr) = Ui exp[−A(x, yr) + iφ(x, yr)], (2)

where the absorption and phase perturbations are respectively related to the complex refractive index as

A(x, yr) = (2π/λ)

∫
β(�r) dzr (3)

and

φ(x, yr) = −(2π/λ)

∫
δ(�r) dzr. (4)

The intensity of the transmitted wavefield is recorded on two or more detector planes at constant zr, which
are specified by the rotated coordinate (x, yr). The rotated coordinates (x, yr, zr) are related to the reference
system as yr = y cos θ + z sin θ and zr = −y sin θ+ z cos θ. On the detector plane zr = zd behind the object, the
measured intensity is related to the transmitted wavefield as

Id(x, yr) =
∣∣Ut(x, yr) ∗ ∗hzd(x, yr)

∣∣2, (5)

where the hzd(x, yr) is Fresnel propagator and ‘∗∗’ denotes the two-dimensional convolution operation. The
tomographic scanning is performed by keeping the object fixed while simultaneously rotating the X-ray source
and the detector, or equivalently, by keeping the imaging system fixed and rotating the object. A schematic of
the scanning geometry for PCT is illustrated in Fig. 1. For simplicity, the tomographic view angle θ will be
suppressed in the equations below.

Figure 1. A schematic of the scanning geometry of in-line phase-contrast tomography.

2.2 Image reconstruction

Assuming that
∣∣A(x, yr)∣∣ << 1 and φ(x, yr) is varying smoothly,18–20 it has been demonstrated that A(x, yr)

and φ(x, yr) can be determined readily by the algebraic formulas in Fourier domain as

Ãm,n(u, vr) =
sin(πλznf

2)Ĩm(u, vr)− sin(πλzmf2)Ĩn(u, vr)

2 sin[πλf2(zm − zn)]
(6)
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and

φ̃m,n(u, vr) =
cos(πλznf

2)Ĩm(u, vr)− cos(πλzmf2)Ĩn(u, vr)

2 sin[πλf2(zm − zn)]
, (7)

respectively,17, 21 where f2 ≡ u2+ v2r and the subscripts m,n have been added to Ã(u, vr) and φ̃(u, vr) to denote
that they are estimated by use of measurements Im(x, yr) and In(x, yr). Note that a singularity is present at
the zero frequency u = vr = 0 in Eq. (7), indicating that the low-frequency components of φ(x, yr) will contain
greatly amplified noise levels. The pole will affect the noise properties of the reconstructed phase image φ(x, yr)
and δ(x, y, z).

The tomographic reconstruction problem can be approximated by the discrete linear model

�g = H�f, (8)

where �g ∈ R
M corresponds to projection measurements, �f ∈ R

N denotes the object function, and H ∈ R
M×N

denotes the discrete approximation of X-ray transform. The application of inverse Fourier transform to Eqs.
(6) and (7) allows for estimation of A(x, yr) and φ(x, yr) at each view angle. Subsequently, β(x, y, z) and
δ(x, y, z) can be obtained by inverting the X-ray transform. This can be accomplished by applying a statistical
reconstruction method that aims to find the solution that minimizes the mismatch between the observed data
and the reconstructed image. A penalized weighted least-squares method that takes into consideration of the
statistical properties of the observed data is an useful approach to obtain the solution. The cost function Φ(�f)
that we aim to minimize take on the following form,16

Φ(�f) =
1

2
(�g −H�f)TW (�g −H�f) + ηR(�f), (9)

where R(�f) is the penalty function, which smoothes the the object function �f , η is the regularized parameter that
controls the tradeoff between the noise and resolution, and W corresponds to the inverse of covariance matrix
of �g. This will yield an estimate of f̂ that satisfies

f̂ = argmin
�f

Φ(�f). (10)

In phase-contrast tomography, �g is the estimated Am,n(x, yr) or φm,n(x, yr), and �f refers to the corresponding
βm,n(�r) or δm,n(�r).

3. NOISE MODEL

In the presence of stochastic noise, the measured intensity will be denoted as Im(x, yr), where hereafter boldface
and normal fonts will denote a stochastic quantity and its mean, respectively. We consider a measurement
model22

Im(x, yr) = Im(x, yr) + n(x, yr), (11)

where n(x, yr) denotes an additive noise term. We assume the noise satisfies

Cov{nm(x, yr),nm′(x′, y′r)} = Var{nm(x, yr)}δ(x− x′)δ(y − y′r)δmm′ , (12)

where Cov{nm(x, yr),nm′(x′, y′r)} and Var{nm(x, yr)} denote covariance and variance of the noise.

4. NUMERICAL RESULTS

Computer simulation studies were conducted to investigate the effect of covariance matrix on the statistical
properties of reconstructed images in PCT.
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4.1 Numerical phantom and image reconstruction

A mathematical phantom comprised of 4 uniform ellipsoids was employed to represent the object. The wavelength

of the incident monochromatic X-ray beam was 0.8265
◦
A. The intensity data were acquired on two distinct

detector planes positioned at 100 and 230 mm behind the object, respectively. The detector was assumed to
contain 128 × 128 elements of dimension of 5 μm. Noisy intensity data were produced according to Eq. (11),

where the standard deviation of Gaussian noise was σ=1%. Estimates of the Fourier components of Ã(u, vr) and

φ̃(u, vr) were reconstructed by use of Eqs. (6) and (7), respectively. From these Fourier data, estimates ofA(x, yr)
and φ(x, yr) were obtained after the application of the 2D inverse Fourier transform. A set of tomographic data
were obtained by repeating the above procedures at 180 equally distributed tomographic view angles θ over [0
180◦).

The covariance properties of the projected estimates were computed analytically by use of Eqs. (31) and
(33) in Ref.14 . The elements of the weighting matrix W in Eq. (9) were specified by inverting the computed
covariance matrix. In order to search for the solution that minimizes the objective function expressed in Eq. (9),
the conjugated gradient method was employed. In this work, we used the Polak-Ribiere CG method to calculate
the search direction solve the inverse problem iteratively, and the regularized parameter was set at η = 0.01.16, 23

4.2 Numerical results

An example of noisy reconstructed images of A(x, yr) and φ(x, yr) is contained in Fig. 2. It can be seen that
φ(x, yr) is contaminated by low frequency noise, while A(x, yr) is not. This is consistent with the prediction made
in the previous noise analysis.14 Although the ramp filter in the classical FBP algorithm can help to mitigate
the Fourier pole at the zero-frequency, the reconstructed tomographic refractive index images still possess high
low-frequency noise, as compared to the attenuation images.24

(a) A(x, yr) (b) φ(x, yr)

Figure 2. Estimates of (a) A(x, yr) and (b) φ(x, yr) reconstructed from noisy data for imaging geometry with detector
spacing Δz = 130 mm

Next, the collection of phase estimates was used as the projection data for tomographic reconstruction.
This was accomplished by use of FBP and the penalized weighted least-squares algorithms, respectively. The
reconstructed estimates of δ(�r) corresponding to the transverse slice x = 0 are presented in Fig. 3, in which the
subfigures (a) and (b) correspond to the images reconstructed by use of the FBP and the penalized weighted
least-squares algorithms, respectively. The images contained in Fig. 3 appear to possess different noise textures,
as the applied algorithms differ.

The statistical properties of phase-contrast tomography using the FBP and weighted least-squares methods
were computed from ensembles of 1000 and 180 noisy realizations of intensity measurement pairs I1(x, yr) and
I2(x, yr). The covariance properties of the refractive images obtained by use of FBP and the weighted least-
squares methods are contained in Figs. 4(a) and (b). In contrast to the corresponding FBP result, both the
magnitude of the covariance of δ(�r) and the degree of noise correlation for the weighted least-squares one are
reduced.

Proc. of SPIE Vol. 7800  780008-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Jul 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



(a) FBP (b) Weighted least-squares

Figure 3. Estimates of δ(0, y, z) reconstructed by use of the (a) FBP and (b) penalized weighted least-squares algorithms
at the 64th iteration.
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Figure 4. The covariance maps Cov{δ(0, y, z), δ(0, 0, 0)} of the images reconstructed by use of the (a) FBP and (b)
penalized weighted least-squares algorithms.

5. SUMMARY

In this work, we investigated the statistical properties of the reconstructed images in X-ray phase-contrast
tomography. We employed the penalized weighted least-squares method and utilized the analytically computed
covariance of the projected phase as a priori information in PCT reconstruction. The estimates of the covariance
properties of the 3D real-valued refractive index distributions resulted from the FBP and the proposed algorithms
were determined empirically. We observed that the values of covariance properties of the reconstructed refractive
index are mitigated by taking the noise properties of data functions into consideration during the reconstruction
process. It was also found that the degree of the correlation in the reconstructed phase images is reduced.
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