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Abstract-Sliding observers are considered as nonlinear state estimators with good robustness 
to bounded modeling errors. In this paper we have developed sliding observers for process 
control. The observer is hence designed so as to possess invariant dynamic modes which can be 
assigned independently to achieve the desired performance. Convergence of the estimating 
algorithm is formulated by using Lyapunov stability theorems. Conditions for robustness to 
modeling errors are derived by analyzing the norms of estimation errors. For process control, 
servo-tracking and disturbance rejection for chemical reactors have been discussed by making 
use of this sliding observer. Simulation examples to demonstrate the construction and perfor- 
mance of this proposed sliding observer for chemical process control are also presented. 0 1997 
Elsevier Science Ltd. All rights reserved 
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1. INTRODUCTION 

Various methods for designing nonlinear controllers 
have been reported in the literature. Unless they are 
using ad hoc designs, most of the nonlinear controllers 
such as those using feedback linearization (Hunt et a/., 

1983; Kravaris and Chung, 1987), GMC (Lee and 
Sullivan, 1988) and many others require the feedback 
of state variables to implement the control strategies. 
In practice, however, complete state feedback is im- 
practical in most applications. Although direct inte- 
gration, i.e. open-loop observer, can be used to esti- 
mate the required state feedback and works well for 
a few applications, a closed-loop observer with feed- 
back correction is still desirable, especially, when the 
system consists of modeling error(s) or pure inte- 
grator(s). 

Although the theories and applications for linear 
systems are well developed, development of observers 
for nonlinear systems still provides an open area for 
research. Till now, development of observers for non- 
linear systems has encountered many difficulties, such 
as: requirement of extensive computational efforts, 
coupling with controllers, uncertainty in the perfor- 
mance or robustness, restrictive conditions to be satis- 
fied, etc. Some of the major difficulties encountered in 
the development of observers, which are reported in 
literature, have been reviewed by Misawa and Hed- 
rick (1989). 

*Corresponding author. 

In the last decade, attention has been focused on 
applying the transformed canonical forms for design 
(Bestle and Zeitz, 1983; Keller, 1987; Kantor, 1989; 
Ding et al., 1990, etc.). For most of the nonlinear 
systems, such a transformation can be defined 
through Lie derivatives of the output which is a func- 
tion of state variables (Gibon-Fargeot et al., 1994; 
Alvarez-Ramirez, 1995). However, the resulting ca- 
nonical forms are not strictly linear and the trans- 
formations thus involve exogenous inputs and a finite 
number of their derivatives. In case of simple systems, 
such difficulties involved in the transformations could 
be easily resolved. However, for systems having di- 
mensions greater than two, solution of the coordinate 
transformations and existence of such transforma- 
tions appear to be the bottleneck. 

Recently, another type of observers that also use 
sliding mode have been reported. In the early work of 
Slotine et al. (1987), the observer was constructed for 
a second-order nonlinear dynamic system involving 
only single measurement. The extensions of such ob- 
servers to nth-order and multi-output systems have 
also been addressed in the literature. Further develop- 
ment in this field of sliding observer was made by 
Misawa (1988). Canudas and Slotine (1991) have 
further applied such observers in robot manipulators. 
In all the studies mentioned above, a framework 
similar to a Luenberger observer was used by appen- 
ding a switching function with constant gains as 
part of feedback corrections. To obtain such gains, 
different procedures have been proposed (Misawa 
and Hedrick, 1989). These procedures require certain 
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conditions to be satisfied or optimized with singular 
values which depend on the scaling factors. Thus, the 
procedures developed for determining the switching 
gains are complicated and the performance issue of 
the observers is also not addressed. 

It is the purpose of the present paper to design 
sliding observers for control of nonlinear chemical 
processes. In chemical process control, measurements 
of indirect outputs are usually used to infer the key 
outputs which are rather difficult to be measured 
on-line. The sliding observer presented here is used to 
force these indirect but measurable outputs to lie on 
specified sliding surfaces, so that the resulting esti- 
mated states can be used to implement the nonlinear 
feedback control more efficiently. In order to design 
the observer independently, time-varying gains for the 
switching functions are used to keep the dynamic 
modes of these estimated states invariant regardless of 
the position of the states. For formulating the nominal 
convergence of the estimating algorithm, Lyapunov 
stability analysis has been used. Conditions for its 
robust stability are also derived herein. To demon- 
strate the potential use of this sliding observer, rejec- 
tion of unknown disturbance by using a feedforward- 
like control is illustrated. Similar use for the model- 
based predictive control may be investigated in future 
research. Simulations for the application of chemical 
reactor control are given as illustrations for the poten- 
tial uses of such sliding observers. 

2. MATHEMATICAL FORMULATION 

Consider a general nonlinear system as 

k = f(x, u) 

Y = h(x) 
where x E R” is a vector of state variables, u E R” is the 
input vector and y E RP is the output vector. 

To construct the nonlinear observers for the system 
given in eq. (1) it is essential to devise a correcting 
function @ such that, integration of the following 
equation would produce estimates of x, i.e. 9: 

4 = f(%, II) + qy - 9) 
(2) 

i = h(f). 

3. SLIDING OBSERVER FOR SISO SYSTEMS 

In the following text, for convenience, we shall use 
x, instead of z, to denote the state in eq. (3). Consider 
a SISO nonlinear system of the following form: 

e = f(x, u) 
(6) 

Y = Xl 

As has been mentioned earlier, many nonlinear ob- 
servers have been reported in the literature. Although 
not exhaustive, various methods of approach along 
with their disadvantages for the few reported nonlin- 
ear observers are summarized in Table 1. To over- 
come some major obstacles in the construction of 
nonlinear observer for process control, a sliding ob- 
server is presented here. 

where x = [x1 x2 ... x,IT is a state vector and u is an 
external input. The function f(x, u) in eq. (6) is subject 
to a norm-bounded modeling error. 

The sliding observer for this SISO system becomes 

ii =f,(ir, u) + k, sgn(x, - ai) 

i2 =f2(%, u) + k2 sgn(x, - a,) 

(7) 

We will assume that the Jacobian matrix of h, i.e. 
J(h(x)), exists and is of full rank for all x E X, so that eq. 
(1) can now be transformed into the following system: 

& =f,(%, u) + k,sgn(x, - x*i). 

Let Pi = xi - Ti, i = 1,2, .‘. , n; then the above equa- 
tion becomes 

i = f*(z, u) 
(3) 

y = cz 

i?, = Afi + Sfi - kl sgn(Zi) 

;, = Af2 + Sf2 - k2 sgn(Z,) 

where C = [I, 0] and X is an open subset of R”. ;, = Afn + 6fn - k,sgn(x”,) 

Using eq. (3), z is partitioned into 

so that an observer of the following form is con- 
structed: 

i = P(&, u) + K(t)a (5) 

where K is a time-varying gain matrix and u is given 
as follows: 

U= 

swh - 9 
wb2 - 9 

i f wb, - &I 1 
and the sign function, sgn(t), is defined as 

i 

1 ift>O 
sgn(t) = 

- 1 if t < 0. 

Further, let Z” = z“ - P lie on sliding surfaces by 
applying sliding conditions. The switching gain 
matrix, K, is formulated in order to keep the dynamic 
poles of Z* = z* - 4* invariant at desired constant 
values, which would lead to a good performance. 
Convergence of the estimating algorithm is for- 
mulated by using Lyapunov stability theorems and 
the robustness to modeling errors are derived via 
analysis of norms. Incorporation of such a sliding 
observer into a closed loop for process control is 
addressed in the following. 

(8) 
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where Afi =fi(x, U) -f;(%, u) and Sfi is the modeling 
error due to structural deviation. 

We can define a sliding function in terms of Z1 as 

s = 11 

and a sliding condition for J, as either 

(9) 

or 

$s = -qsgn(s) (11) 

where q is a positive constant. In order to drive Z1 to 
its sliding surface, dZ,/dt should have a sign opposite 
to that of fl. To do so, we can assign the value to kl as 

kl >q+F. (12) 

Here, we assume that the dynamic uncertainty is ex- 
plicitly bounded, i.e. 

IAfi + hfil G F (13) 

where F is a positive constant. Thus, inequality (12) 
can make the variant trajectories point towards the 
surface s(t) = 0, where the tracking estimation error 
.C1 is zero. 

Applying the concept of equivalent dynamics in 
accordance with Filippov (Slotine and Li, 1991), the 
convex combination of the dynamics on both sides of 
the surface s(t) leads to 

i, = ;l(Af, + WI + k,) + (1 - y) (Afi + Sfi - k,) 

.& = r(.G + ~~ + k2) + (1 - Y) (Afi + Sf2 - k,) 

(14) 

;, = 1/(4fn + 6f + k,) + (1 - y) (A& + Sfn - k,). 

When k, is determined from eq. (12), we have 
S = f, = 0, i.e. 

dAf1 + WI + h) + (1 - Y) (Afi + Sfi - k,) = 0. 

Hence, the value of y is given as 

h -Afi -6fi y= 
2kl (15) 

Substituting eq. (15) into eq. (14) gives the reduced- 
order sliding observer dynamics in the form of 

.& = Afz + Sfz - Wkd (Afi + Sfd 

$3 = Af3 + Sf3 - b’dkd (Afl + Sfd 

(16) 

% = Afn + 6fn - Wk,) (Afl + Sfi). 

By linearizing locally with respect to the point at %, 
eq. (16) can be treated as a state observer with the 

following total differential form: 

k, = {.$;g}& + . . . + {?&%&}i” 

In the following, we first neglect the structural modeling 
error terms. Linearization is made on the basis of each 
point of the estimated states, instead of a fixed point of 
equilibrium, hence, the deviations considered for lin- 
earization are Zis, rather than considering how far they 
are away from the 6xed point. Consequently, this would 
be less restrictive compared to the extended linearization 
method of Baumann and Rugh (1986). 

Let 

k, 

k, = 
k, [! L 

X” 

where f, E R”-’ and 

H(k)4 

af2 kz afi - --- 
ax, kt ax, 
af3 k afl - --- 
ax2 h ax2 

afn km afi - _-- 
ax, k, ax, 

E R(“-1)X(“-1) 

* 
x2 

_ 1 i-1 = H(B) “.’ 

X” 

(18) 

7 

af2 kz afl . ---- 
ax, h ax, 
af3 ks afl . . . ---- 
ax, h ax, 

afn kn afl ---- 
ax, h ax, 1 

(19) 

To keep the eigenvalues of the observer invariant, the 
switching gains, k,A [kz k3 ... kJT, can be directly 
calculated by a specific formula depicted below. From 
eq. (19), it becomes 

H(k) = 

- af2 af2 
ax, “. dx, 

. : 

ai ’ i 
-ax, ‘.’ ax, I 

p v,f, - BV,,fl 

JA A, - /?c,. (20) 
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Let a,P[az a3 ... a,] be the coefficient vector of the Thus, if xi is in sliding mode, we would have k, = 0 
characteristic equation of A,, i.e. and all the first time derivatives of li, i 2 2, will be 

det(sI - A,) = s”-l + a2snm2 + a3.fA3 + ... + a, = 0. 
given by eqs (8) and (16) so that 

V-(Z) = i,.k, + ‘.’ + _;;k, 
Also, define 

= MAfi + Sfz - k2 sgn(?i)] + .. 
Pi = [cl’ A,TC,T (A;)%; ... (A;)“-%:]-’ 

+ %CAf + K - k,sgnGdl 
and 

1 a2 1 0 1 . . ..oo . . 0 0 . 
:I’ : 

1 
R, = . . . . . . 

an-2 an-3 ... 1 0 

i 
= [cc2 2’3 “’ 2.1 

a,_, a,_, “. a2 1 
af2 kz afl af2 kz afl ---- . ---- 

If a,A[cr2 ct3 ... cr.] is set to be the coefficient vector ax2 h 3x2 ax. h ax, 
of the desired characteristic equation of H(B), then the 
Bass-Gura formula (Kailath, 1980) can be used to ah h ah af3 k3 afi x2 ---- ~. ---- 
derive the following: ax2 h ax, ax. h ax, x3 

X 

flT = (a, - a,) (R; ‘)TP1. (21) 

Therefore, when the poles of the reduced-order sliding x kn ah ah k afl [11 X” 
---- 

observer are assigned, the designed switching gains ax2 klaxz --lax, ax, 

can be calculated as 

k, = k,/I = k,PTR; ‘(a, - a,)T. (22) 

Furthermore, to eliminate undesirable chattering 
effect, it is practical to replace the sign function in 
eq. (7) by a saturation function, sat(s/$), which is 
defined as 

sat(s/4) = 
{ 

44 if Is/4 < 1 

sgn(W if Is/4 I > 1. 
(23) 

It is clear that by using the sliding condition for the It has been shown that the switching gains, 

state corresponding to the measured output, state 
ki, 2 < i < n, are calculated according to eq. (22), 

xi is forced to lie on a sliding surface. As a result, the 
hence enabling matrix H(%) to have specific eigen- 

reduced-order observer has invariant dynamic poles values in the LHP. Therefore, the stability of the 

and is guaranteed to converge asymptotically. On the reduced-order observer for nominal case, i.e. 6f = 0, 

other hand, it should be noted that this approach can be guaranteed. 

would inevitably introduce tracking error. Hence, The issue of robustness of the observer concerns 

a trade-off between tracking accuracy and control whether or not x^, diverges in the presence of modeling 

power has to be achieved by suitably choosing the errors. From eqs (17) and (25), it can be defined that 

boundary layer thickness 4 (Slotine and Sastry, 1983). i, = H(f)%, + 6, 

4. NOMINAL CONVERGENCE AND ROBUSTNESS Further, the solution for .C7, can be expressed as 

Substituting xi, corresponding to the measured s , output, onto a defined sliding surface, we further show r7, = eH’$(0) + eHctmr)S, dr. (26) 
that even for the remaining states the observer is 0 

stable and is robust to modeling errors. If il%,(O)/I < a and there exist b, e and N such that 
Let the Lyapunov function I/ be of the form 

II afll G @ + Ne-“‘Ml + II k, II/k,) (27) 
V(1) = !{2’: + 2; + .‘. + n;}. (24) 

then we have 
Then we have 

b N --E* 
ripi) = II .il + 5z2.k2 + ... +x’,.&. 

11 f, /I < ae-““’ + - + - e 
An 1, - E 

(28) 
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where -A,,, (i., > 0) represents the greatest eigen- 
value of H(f), I/ ?& 11 is the vector norm of 8, and a, b, 
N and E are all positive constants. The derivation of 
eq. (28) is given in the Appendix. It may hence be 
concluded that 

(i) iii,/1 would remain bounded, if (/Sf(l Q 
(h + Ne-“‘)/(l + likJ/kl), b > 0 and 0 < F: < i,. 

(ii) l/%,(1 + 0. if h = 0, 116f(l d (Ne-“Ml + llk,ll!k,) 
and 0 < c < i,,. 

In other words, the estimation errors of the reduced- 
order observer remain bounded if //6f /I is bounded as 
given in eq. (27). 

5. SLIDING OBSERVERS FOR MULTI-OUTPUT SYSTEMS 

For multi-output systems, the construction of slid- 
ing observer can be derived directly from the SISO 
system by approximately the same way as described 
above. Nevertheless, the method of finding switching 
gain matrix K would require more sophisticated 
mathematical manipulations. For process control, 
however, we are more interested in formulating the 
problem as follows. 

Instead of using a full matrix, we assign a block 
diagonal form to K in eq. (5). In other words, we can 
renumber the system and divide the system into sev- 
eral subsystems. Within each subsystem, the state 
estimations are corrected by a sign function based on 
the same output. The key issue would be the assign- 
ment of each pivot switching gain that would keep the 
output on its sliding surface, and the reduced-order 
system to have invariant dynamic modes. We will 
illustrate these procedures by using a system which 
has two outputs. First, according to the system 

k = f(x, u) 

y = cx 

we can renumber the states such that 

Partition the vector x into x0 and xb, so that 

? = [a, b* “’ z&J 

i* = [,?, &+I “’ .<.]‘. 

The observer is then formulated as follows: 

2 = f”(P, S*, u) + k” sgn(y, - .cl) 

i* = f*(P. B*, u) + k* sgn(y( - a,) 

where 

(29) 

(30) 

k” = [k, k2 ... k,_JT and kh=[kpk,+, ... k.]‘. 

Thus, we can assign two sliding surfaces as 

.Sl = .?I and s2 = X,. 

The resulting reduced-order system now becomes 

where 

k; = [k2 k3 .‘. k,-,I’ and kf = [k,+, k,+, ..’ 

Therefore, we have a reduced observer pair as 

knl r. 

and K. as 

(33) 

We can further derive k’: and k,b from the following 
equality: 

detjsl - A, + K,C,} = n (S - ni) 
i=l 

(34) 

where ii, i = 1,2, ... , n - 2, are the specified eigen- 
values. Solving eq. (34) for deriving kz and k! would 
need tedious algebraic manipulations if n is higher 
than three. Chen (1984) has provided three effective 
methods to find K,. 

Although there may be different ways of partition- 
ing the observer into the subsystems as given in 
eq. (30), however, there is little change in the reduced- 
order system given in eq. (31) except for the changes in 
configuration of K, matrix. Hence, different decompo- 
sitions would result in the same set of columns for the 
observability matrix of [A,, C,] pair. The changes in 
the system due to different partitioning of subsystems 
are in fact changes in the eigenvectors of (A, - K,C,) 
which are associated with each dynamic mode (Chen, 
1984; Lewis, 1992). 

While formulating the observer for chemical pro- 
cesses, wherein state variables can obviously be classified 
into non-interacting groups, we can take advantage of 
this method of partitioning. Thus, eq. (30) becomes 

in = f”(P”, II) + k”sgn(yl - 2,) 

i* = f”(i”. S*, u) + k* sgn(y, - $). 
(35) 

Hence, we shall have 

det(sl - A, + K,C,) = det sI - V,:f; 
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Fig. 1. The serial CSTR system. 

In other words, the computations for k: and kg can 
now be decoupled. Each of the k: and kf can be 
calculated individually by using eq. (22) for each of the 
subsystems. In the following, we will illustrate this 
proposed sliding observer with an example of estima- 
tion of a chemical reaction system. 

Example (State estimationfor a serial chemical re- 
action system): Figure 1 shows the serial continuous- 
stirred tank reactor (CSTR) system, belonging to the 
multi-output case and studied by Henson and Seborg 
(1990). The dynamic behavior of this system can be 
governed by the following equations: 

Cl = +(C, - Cl) - koCl exp 
1 ( > 

- g 
1 

T~=+(T,- T1)+ 
(- ~WOCl exp E 

( > 

-- 

1 PC, RTI 

+O.Olu[l -exp(-%)1(7,1-x4 

it3 = x1 - x3 - kOx,exp 

It is apparent that this reacting system has two 
measurable outputs, i.e. it can be split into two sub- 
systems. Therefore, to estimate the concentrations 
in the reactor, one can design the sliding observer as 
follows: 

+ k1 sgn(Z,/$) 

C?, = $(Cl - C,) - koCz exp (37) 

The nominal values of the parameters of this serial 
CSTR system are given in Table 2. The state variables 
x, system output y and manipulated input u are de- 
fined as follows: 

x&CC1 T1 C2 T21T, yp[T1 T2 T 
)  upq,. 

Hence, the dynamic model of the serial CSTR in 
dimensionless form gives 

i1 = 1 -x1 -koxlexp 

4, = T, - XI2 + k”(- AH) i,exp 
( > 

- -$ 

+o.olu[l -:+Jii:- a,) 

+ k2 sgnGdd4 

+ k3 sgn(W4) 

(39) 

where &g x4 - &. The switching gains kz and k4 are 
determined according to eq. (12). The other two 
switching gains can be directly calculated according 
to eq. (22). 
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Table 2. Nominal parameter values for the 
serial CSTR system 

where X is an open subset of R”. The operator M is 
defined as 

Variable Nominal value M'hi(X, U) = hi(X) 

4 
v, = v, 

C f 
T/ 
T cf 
k, 

E/R 
(- AH) 
P = I', 
cp = c PC 

u/4, = UA, 

100 l/min 
1001 

1 mol/l 
350 K 
350 K 

7.2 x 10” min- ’ 
10,000 K 

4.78 x lo4 J/mol 
1000 g/l 

0.239 J/g K 
1.67 x lo5 J/min K 

M’hi(X, U) = T [f(X, u)] 

Mkhi(x, u) = &M*-‘hi(x, u) 1 T f(x, u) 

^I T 
+ g M’-‘hi(X, U) 1 i (42) 

For this simulation case, the process input is given as 

1 

90 l/mm if 0 < t < 5 min 
u= 

100 l/min if t > 5 min. 
(40) 

Initial conditions for the true states and the estimated 
states are set as CO.085 442 0.005 4501T and 
CO.05 442 0 4501T, respectively, and the switching 
gains of the measurable outputs are set as k2 = 80 and 
k4 = 25. A suitable boundary layer thickness $J = 0.01 
is also selected. It is apparent that the values of species 
concentrations should either be positive or zero. 
Hence, when the estimated concentration values, i.e. 
ii and i3, are lower than zero, they are set to be zeros. 
Estimation results, which are depicted in Figs 2 and 3, 
demonstrate the performance of the proposed sliding 
observer for state estimations. 

6. APPLICATION TO PROCESS CONTROL 

The sliding observers developed in the previous 
section offer advantages such as: ease of construction 
and on-line implementation, robustness to modeling 
errors and guaranteed convergence. However, prior 
to applying such an observer to process control, two 
issues need to be resolved. One is the observability of 
states in the closed-loop and other is the stability after 
combination. 

For the former, consider a nonlinear system as 
given in eq. (I), its local observability at x E X depends 
on whether the following condition is satisfied (Keller, 
1987): 

ran1 

la 
> 

T 
\% M” - ‘h(x, u) 

wherei=1,2 ,..., pandk=1,2 ,..., n. 

It can be clearly seen that the rank of this observ- 
ability matrix would be a function of x and u. For 
open loop use, the values of u can be freely assigned. 
Nevertheless, in closed-loop control, it is important to 
note that the control inputs are no longer free vari- 
ables. However, since u cannot be explicitly separated 
from x, it becomes difficult to determine whether it is 
feasible to construct an observer for closed-loop con- 
trol under certain feedback law. 

A simplified expression for local observability con- 
dition at each local point of (x, u) can be given for 
non-affine systems as follows: 

Rank 

The above condition is a direct result of the assump- 
tion that at (x, u) the system is locally observable and 
hence the system can be locally linearized by using the 
PBH rank test. To construct an observer for closed- 
loop control, it is however necessary to examine the 
observability condition of eq. (41) over a domain of 
x as well as that of feasible control input. 

Some special cases having simpler observability 
condition are as follows: 

Input afJine systems: A large number of dynamic 
processes have the system equations in form of 

x = f(x) + g(x)u 

y = h(x). 

(44) 

For such systems, a sufficient condition for local ob- 
servability at some x0 E X would be to find n indepen- 
dent row vectors among the following (Vidyasagar, 
1993): =n (41 

(45) 
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:lik_-_::r 

0 1 2 3 4 5 6 7 8 9 10 
Time (min) 

~~~~ 

t@-y+yy 

0 1 2 3 4 5 6 7 8 9 10 
Time (min) 

Fig. 2. Estimation results of the serial CSTR system under sliding observer with observer poles 
Pm = Pm = - 5. 

As the vector u does not explicitly appear in the above governed by the following equations: 
formulation, to construct an observer for closed-loop 
system, it would be required to examine the observ- % = f(x, u) 

ability condition over a given domain of x only. P = f(2, u) + cD(y - j) (47) 

State afine systems: For some chemical reaction y = cx 

systems (Gibon-Fargeot et al., 1994), the dynamic where @ designates a correcting function which is 
equations can be described by the following equa- used in the observer. If we define the difference be- 
tions: tween the true states and the estimated states as 

g = W(r)* YW + b(e), Y(t)) (46) 
2=x-f 

y = cx. then the above governing equations become 

The observability, for this kind of systems, would ir = f(x, u) 

depend on whether or not the (A, c) pair is observable. 
(48) 

The other criterion to be considered while using the 
P = f(x, u) - f($ u) - (D&i). 

observer for nonlinear process control is whether in- In linear systems, it is easy to show that 12 and x have 
corporation of the proposed sliding observer into independent dynamic modes, and the dynamic modes 
a control system would cause only stability problem. of the overall system would be a combination of both 
To answer this question, we shall consider a general sets. Thus, incorporating a stable observer into 
observer of eq. (2). The closed-loop system will then be a stable state feedback control system would result in 
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Fig. 3. Estimation results of the serial CSTR system under sliding observer with observer poles 

PO1 = PO2 = - 2. 

the formulation of a stable closed-loop system. In Moreover, within the neighborhood of some equilib- 
general, it is difficult to reach such a conclusion for rium point x0, we can further derive that 
nonlinear systems. However, it is essential to know 
that, if the estimated states converge asymptotically to 
their true values with bounded transient errors, then i=f(x”.u(xo))+(“,f+~~)~~=~(x-x,l 

whether a stable state feedback system remains stable 
after incorporating the proposed sliding observer. + W(xo,2)(x - x0) + o(i? (51) 

According to the result given in the previous sec- 
tion, eq. (48) for the system that uses the proposed 

^ 

sliding observer now becomes 
=Z V,f,, .\,] +Ee 

Sui?x \_1” 
+ W(x,, 2) 

> 
(x -- xg) 

(49) where 

(50) 
W(xo> ~,~V,(Q(xF) = Vxq, Iy z x0% + V,q, Ix = x,.G 

It can be obviously seen from eq. (50) that g7, is 
independent of x. On the other hand, eq. (49) can be + “’ + vxq”I.=.,~” 

linearized with respect to 2 at the point of i = 0, i.e. 
P = x, as and 

i = f(x, u(x - 2)) = f(x, u(x)) + E ; _ = 1 + o(2). 
x cl 

Q(x)+; _~ = cw) 9b4 ... m)i. (52) I / X-0 
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Let 

A(x,,1)~V,fJ.=., +:g _ + W(x,, 3 
x - 7.” I 

(53) 
p ‘4(x,) + W(x0, 5). 

where 

Al(xa, 0) = ,4(x,). 

The local stability of this system can be guaranteed 
by studying the eigenvalues of the following linearized 
matrix at the equilibrium point x0: 

A(x,, %) = ,4(x,) + W(xo, 2). 

It is known that, without loss of generality, one can set 
x0 as 0. Thus, we have 

A(0, 2) = A(0) + W(0, 2). 

Notice that the ideal system, whose all states are 
accessible, is stable such that all the eigenvalues of 
A(0) lie in the LHP. The effect of the observer on its 
stability is limited to the extra term, W(O,r?). The 
stability of this observer-based closed-loop system 
should be discussed in light of the following theorem. 

Theorem (Perturbation theorem for the eigenvalue, 
Stewart and Sun, 1990): Let 3, be a simple eigenvalue of 
the matrix A, with right and left eigenvectors v and w, 
and let A = A + E be a perturbation of A. Then there 
exists a unique eigenvalue 1 of .& such that 

X=n+ 
oHEv 
gHy + o(llEl12) 

Based on the above theorem, we have 

X[A] = )*[A] -z + 4l Wl12). (55) 

We can therefore conclude that if 

oHWv 
max 7 < I~il Vi il I WV 

the incorporation of this sliding observer would not 
affect its nominal stability which is derived from the 
ideal system. As can be seen from eq. (51), as f ap- 
proaches zero as time passes, the observer based sys- 
tem will convert to an ideal system. 

Although the stability of such an observer-based 
system cannot be said to be totally independent of the 
observer, the stability condition can be achieved more 
easily since this sliding observer provides the guaran- 
teed convergence as in the previous analysis. As a re- 
sult, if the control using full state feedback is globally 
stable within a defined domain of x, it should be 
possible to incorporate a carefully designed observer 
which will not cause a stability problem. Conse- 
quently, design of the state feedback control and the 
observer can be implemented separately. In other 

words, one can design a stable control system by 
assuming that all state variables are fed back. A slid- 
ing observer as depicted above can then be construc- 
ted. Following this guideline, we illustrate in the fol- 
lowing subsections the use of such a sliding observer 
for controlling chemical processes. 

6.1. Setpoint tracking of chemical reactor control 
It is known that all control systems are nonlinear to 

a certain extent. Hence, the development and applica- 
tion of nonlinear control algorithms are attracting 
great attention in the recent years. Here, we utilize the 
GLC structure to deal with the servo control problem 
of an isothermal CSTR. The GLC approach was first 
proposed by Kravaris and Chung (1987) for obtaining 
the linear relationship between the transformed inputs 
and process outputs for nonlinear systems (Bequette, 
1991). Therefore, the linear control theory, which is 
well-developed for the linear systems, can be utilized 
to complete the controller design. 

For a minimum phase nonlinear system with rela- 
tive order r, the state feedback control law 

u= 
v - Ljh(x) 
L,Lj- ‘h(x) 

can directly transform the original nonlinear system 
into 

y”’ = a. (58) 

Furthermore, the new manipulated input v is set to be 

r = - #gJ- 1) _ tj_ry”-2’ 

- - 02Y - Qlb - Ys,). (59) 

The closed-loop transfer function (CLTF) of the sys- 
tem can then be obtained by combining eqs (58) and 
(59) as 

Y(S) Ql -= 
ys,(s) s’ + t&s’-’ + “’ + e,s + e1 

(60) 

It may be mentioned here that most of the nonlinear 
control techniques utilize state feedback compensator 
laws. Hence, the employment of state observers 
becomes necessary. In the following, we solve the 
estimation and control problems of the chemical reac- 
tion system by applying the sliding observer de- 
veloped above. 

Let us consider a well-mixed CSTR with isothermal 
reaction as 

A=B+C. 

By denoting the concentrations of species A, B and 
C as xi, x2 and x3, respectively, material balances for 
this CSTR are described by the following dimension- 
less equations: 

iii = 1 - xi - &Xi + D,4 

& = Dlxl - x2 - D2xf - D3x: + u 

i3 = D3x: - x3 

y = h(x) = x3. 

(61) 
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Since the system has relative order r = 2, according to in form of 
eqs (58) and (59), we have P, = 1 - x^l - DlzZl + D& + kl sat&/+) 

j;=v= - &J; - Hl(Y - YJ (62) $2 = DIP1 - 22 - D& - D& + u + k2 sat(Z,/4) 

Then the corresponding nonlinear control law de- 
rived from eq. (57) gives 23 = D3x*$ - g3 + k3 sat&/$) 

(65) 

U= 
- 2D,~,(D,P, - i2 - D$;) + (D$; - y) - fQD$; - y) - Bl(y - y,,) 

2D,.u*, (63) 

where f31 and e2 are tuning parameters of the GLC where & = x 3 - 2, and the switching gains are deter- 
approach. The overall closed-loop transfer function is mined from eqs (12) and (22). 
thus obtained from eq. (60) as During the simulations, we choose the process 

Y(S) 01 parameters as D, = 3, D2 = 0.5 and D3 = 1 and set 
-= 
Y,&) sz + 02s + 81’ 

(64) the initial conditions of the true states x(O) and the 
estimated states $0) as CO.356 0.921 0.8481T and 

Furthermore, the estimated values of the unmeasur- [0.5 1.0 0.8481T, respectively. Two tuning parameters 
able states, $I and &, in the nonlinear control law, i.e. of the GLC approach are placed at @I = 4 and e2 = 4. 
eq. (63), are provided by the proposed sliding observer In this study, the control objective is to make the 
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Fig. 4. Results of estimation errors for the isothermal CSTR system under sliding observer with observer 
poles pal = poz = - 4 and - 1.5. 
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dimensionless concentration x3 track its setpoint 
y,, = 0.75 as soon as possible. Let the switching gain 
k3 = 1.5 and the boundary layer thickness C$ = 0.01. 
From the results of estimation errors shown in Fig. 4, 
it is clear that the unmeasurable concentrations can 
be effectively estimated by the proposed sliding ob- 
server. The servo control responses shown in Fig. 5 
demonstrate the tracking performance of this sliding 
observer. Furthermore, it may be noted that the as- 
signed poles of the reduced-order sliding observer do 
influence the convergence rate for state estimation. 

Moreover, when the modeling errors occur due to 
parametric uncertainty, the proposed sliding observer 
can still perform well by setting this parameter as an 
unknown state variable. 

6.2. Disturbance rejectionfor chemical reactor control 
The presence of unknown disturbance in the pro- 

cess would prevent fi from converging to zero. As 
a result, the estimated states deviate from their true 
values which, in turn, would degrade the control per- 
formance. One way to reject such unknown distur- 
bance is to include it in the observer as an extra state 
variable. For constant disturbance, this extra state 
serves as an integrator, i.e. for SISO systems, we have 

states, xZr . . ..x.+,, including the unknown distur- 
bance. 

The matrix that corresponds to H(%) in eq. (19) 
would now become 

~*(%,.-&+I) = 

V&f, - Bcvx,fll V++,f, - Bcvx”+,fi1 
- * CVJI 1 - IcIcvx”+,fil 1 

. (67) 

The existence of parameter sets of p and $ of such 
a system would depend on the observability pair 
(A*, c*) of the following nature: 

A* = 

[ 

Vx,f, VX” + , fr 
0 ’ 1 xcn- 1) 0 1X1 1 (68) 

c* = CVx,h vr”+,.fil. 

If the pair (VJl, V,,f,) is observable, a necessary and 
sufficient condition for this augmented system to be 
observable is 

k =f(x,x,+1 = 44, ~,+,=O, .v=x1 (66) 
Equation (69) is a result of applying the observability 

where d is an unknown disturbance. A sliding ob- condition (Morari and Stephanopoulos, 1980) to 
server can be constructed to estimate the unmeasured the (A*, c*) pair. For multi-output systems, the 
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Fig. 5. Servo control responses of the isothermal CSTR system under sliding observer with observer poles 
pOl = p02 = -4 and - 1.5. 
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number of unknown disturbances to be included in an 
observer is at the most equal to the number of system 
outputs. 

In the following example, we consider a well-mixed 
CSTR with first-order, irreversible, exothermic reac- 
tion. Material and energy balances for such exother- 
mic CSTR are described by 

dC q - = v (C, - C) - k&exp 
dt 

+~(Tc- n 

where C and T represent the reactant exit concentration 
and reactor temperature, respectively. Let the four im- 

portant dimensionless parameters be denoted as 

D = koVemD” 
bP 

q ’ 
D 

7 
= (- AfW,oD, 

PC,Tf 

(71) 

The corresponding dimensionless variables are de- 
fined as 

C 
x1 =-) 

T - T, 

CfO 
x2=- 4, D 

T, 
dl cc,, ,+ 

CfO 

Tc - T, 
(72) 

u = ~ D4D5, 
Tf 

y = c, J’,,, = T 

where d, represents the unknown disturbance and 
Cfo is the nominal value of the feed composition. 
After introducing the dimensionless quantities given 
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Fig. 6. Results of estimation errors for the exothermic CSTR system under sliding observer with observer 
poles pal = po2 = - 4 and - 1.5 and under the open-loop observer. 
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PC?1 = PO2 = -4.u - - 
PO] =po2= -1.5 - 

open-loop observer - 

0 1 2 3 4 5 6 7 8 9 10 
Dimensionless Time 

-0.93 I I I I I I I I I 

po1 = po2 = -4.0 - - 
po1 = PO.2 = -1.5 - 

open-loop observer - 

-1.03 L I I I I I I I I I 
0 1 2 3 4 5 6 7 8 9 10 

Dimensionless Time 

Fig. 7. Results of disturbance rejection of the exothermic CSTR system under sliding observer with 
observer poles po, = poz = - 4 and - 1.5 and under the open-loop observer. 

above, the resulting normalized model is governed as where y, is the system measurement and 

f*(x) = x3 - x1 - D,s~w(, +z2,D,) 

Y = Xl> ym=x2. 

In this case, the unknown disturbance dl is regarded 
as another state variable. According to eq. (73), we 
have 

1, =x3--, -D6s,exp(l +~,D,)efl(x) 

We may now apply the GLC structure to solve the 
concentration control problem of the exothermic 
CSTR. The relative order r of this CSTR is equal to 2; 
thus, let 

ji=v= - @2J; - B,(Y - Ysp). (76) 

Then the corresponding nonlinear control law can be 
directly derived from eqs (74) and (76): 

u= 
(‘3, - 1 - D6 evCy,lU + ~,lD,)l~f,(~) - {D64U + ym/D4 IF2 wCy,JU + ~,dJD,)l)f~(x*) + @A4 - Y,,) 

D,W + y,/D,)~ZewCy,lU + ~,lD,)l 
(77) 

i2=D6D,x,exp(l+~2,D,)-(l+D,)xl+u where O1 and B2 are tuning parameters of the GLC 
approach. The overall closed-loop transfer function 

(74) can be obtained directly from eq. (76) as 

&f,(x) + 92w 
Y(S) 4 -zz 

ij = 0, 
(78) 

y = Xl, Y, = x2. Y&l s2 + e2s 4 81 
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Furthermore, the estimated values of the unmeasur- no requirement of canonical transformation, achieve- 
able states, i1 and &, in the nonlinear control law, ment of desired performance by allocating the ob- 
given by eq. (77), are provided by the proposed sliding server poles, knowledge of convergence and robust- 
observer in form of ness of the estimation to the designer, etc. Potential 

(1 +$o,) 

uses of this sliding observer towards servo-tracking 

4, = ?3 - ?I - DbPl exp + kl sat&/41 
and disturbance rejection for process control are dis- 
cussed. Estimation of unmeasurable states and con- 
trol of chemical reactor are illustrated. 

&=D,W,exp(l +tl,D,)-(l +D5)i2 Acknowledgement 

(79) Financial support from the National Science Council of 

+ u + k2 sat&/$) the Republic of China(NSC-84-2214-E002-036) is gratefully 
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j3 = + k3 sat(ZZ/4). 

where Z2 = x2 - z?~ and the switching gains are deter- 
mined from eqs (12) and (22). 

For comparisons, an open-loop observer is used to 
estimate the unmeasurable states by directly integrat- 
ing the following differential equations: 

For the exothermic CSTR, the four process para- 
meters in eq. (71) are chosen as D4 = 5, D5 = 0.5, 
D6 = 1 and D7 = 2. Initial conditions for the true 
states x(0) and the estimated states a(O) are set as 
CO.5 0 1.051T and CO.5 0 l.OIT, respectively. It should 
be noted that, in this example, the control objective is 
to make the dimensionless concentration x1 remain 
on its setpoint ysp = 0.5 in the face of the unknown 
disturbance. By applying the GLC approach, the two 
tuning parameters are set as o1 = 4 and e2 = 4. Fur- 
ther, the switching gain k2 and the boundary layer 
thickness 4 are set to be 1.5 and 0.01, respectively. 
Figure 6 reveals the existence of offset for estimation 
of the states for load change since the open-loop 
observer cannot provide correct estimated states. On 
the other hand, the response results shown in Fig. 7 
demonstrate good robustness features of the reduced- 
order sliding observer in face of existence of an un- 
known disturbance. 

7. CONCLUDING REMARKS 

A sliding observer, which behaves like a reduced- 
order observer, is presented. This observer has been 
shown to overcome some major difficulties involved 
in constructing nonlinear observers for state estima- 
tions, especially for nonlinear process control. To 
achieve this, the switching gains in the observer are 
made to be time-varying. Convergence of the estima- 
tion is analyzed by using Lyapunov stability the- 
orems. Robustness conditions, which would guaran- 
tee the observer to have a bounded error norm when 
facing modeling error, are also derived. The advant- 
ages of this proposed sliding observer include: simple 
and less restrictive design and construction, no need 
of extensive computations during its implementation, 

R 
R 
R” 
R, 

sat 
sgn 

T 
u 
u 

V 
VW 

a, b 
AI, A2r -41 

A, 

A”(x,, 3 

CP 

Cl. 

C 
c, 
d 
DI-D7 

E 
f, g 
F 
Af 
h 

H(k) 
AH 
J 
ko 
K 
L 
M 
N 
PO19 PO2 

Pl 

NOTATION 

positive constants 
heat transfer area 
matrix in eq. (20) or eq. (32) 
matrix in eq. (53) 
heat capacity 
vector in eq. (20) 
concentration 
matrix in eq. (32) 
disturbance 
process parameters of the reaction sys- 
tem 
activation energy 
vectors of nonlinear functions 
positive constant 
defined as f(x, u) - f(f, u) 
output functions 
matrix in eq. (19) 
heat of reaction 
Jacobian matrix 
specific reaction rate constant 
time-varying gain matrix 
Lie operator 
operator defined in eq. (42) 
positive constant 
poles of the reduced-order sliding ob- 
server 
inverse of the transpose of the observabil- 
ity matrix of [A,, c,] pair 
feed flow rate 
matrix in eq. (52) 
relative order 
ideal gas constant 
real scalar field 
n-dimensional real vector field 
lower triangular Toeplitz matrix with 
first column [l a2”. an_2 a,_,] 

sliding surface 
saturation function 
sign function 
time 
temperature 
input vector 
overall heat transfer coefficient 
transformed control variable 
reactor volume 
Lyapunov function candidate 
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W(x,, 2) defined as V,(Q(x) %) Kailath, T. (1980) Linear Systems. Prentice-Hall, 
X state vector Englewood Cliffs, NJ, U.S.A. 

Y output vector Kantor, J. C. (1989) A finite dimensional nonlinear 

Ym measured output observer for an exothermic stirred-tank reactor. 

2 state vector Chem. Engng sci. 44, 1503-1510. 
Keller, H. (1987) Non-linear observer design by trans- 

Greek letters 
formation into a generalized observer canonical 
form. Int. J. Control 46, 1915-1930. 

a 4 [XI c!s ” cr”] 

B vector defined in eq. (20) 
Kravaris, C. and Chung, C. B. (1987) Nonlinear state 

feedback synthesis by global input/output lineariz- 
Y coefficient in eq. (15) ation. A.1.Ch.E. J. 33, 592-603. 
bf modeling error due to structural devi- Lee, P. L. and Sullivan, G. R. (1988) Generic 

ation model control (GMC). Comput. Chem. Engng 12, 

& vector defined in eq. (25) 573-580. 

1 positive constant Lewis, F. L. (1992) Applied Optimal Control and Es- 

; 
positive constant timation. Prentice-Hall, Englewood Cliffs, NJ, 

tuning parameters of the GLC approach 
U.S.A. 

eigenvalues 
Meditch, J. S. and Hostetter, G. H. (1974) Observers 

A for systems with unknown and inaccessible inputs. 
V vector Int. J. Control 19, 473-480. 
P density Misawa, E. A. (1988) Nonlinear state estimation using 
d vector defined in eq. (5) sliding observers. Ph.D. thesis, Massachusetts Insti- 
@ correcting function in eqs (2) and (47) tute of Technology, Cambridge, U.S.A. 

; 

boundary layer thickness Misawa, E. A. and Hedrick, J. K. (1989) Nonlinear 
positive constant observers - a state-of-the-art survey. ASME J. 

w vector Dyn. System Measurement Control 111, 344-352. 
Morari, M. and Stephanopoulos, G. (1980) Part II: 

Subscripts structural aspects and the synthesis of alter- 

r reduced-order system 
native feasible control schemes. A.I.Ch.E. J. 26, 
232-246. 

Superscripts 
* 

estimated value 
deviation value 
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Then it can be derived that 

116,II < IlSfJ +F Ilkrll < 116f/J 

Therefore, if there exist h: N and E such that 

=ae-“m’+JL(l -e-“my+ 
‘%i 

. (A5) 
[, _ e-‘“m-“l] 

IIWI G (b + Ne-VI + lIk,ll/%) 

where h, N and E are all positive constants and E < i,,, we 
shall obtain 

h N < ue-““I’ + _ +_e-“’ 
i. --E (A@ 

4n m 

Hence, it is proved that /Ii, 11 is bounded. 

I( %,I1 < ae-“m’ + e-“m’ 
s 

e”-’ [h + Ne-&*I dr 
0 


