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Abstract—Sliding observers are considered as nonlinear state estimators with good robustness
to bounded modeling errors. In this paper we have developed sliding observers for process
control. The observer is hence designed so as to possess invariant dynamic modes which can be
assigned independently to achieve the desired performance. Convergence of the estimating
algorithm is formulated by using Lyapunov stability theorems. Conditions for robustness to
modeling errors are derived by analyzing the norms of estimation errors. For process control,
servo-tracking and disturbance rejection for chemical reactors have been discussed by making
use of this sliding observer. Simulation examples to demonstrate the construction and perfor-
mance of this proposed sliding observer for chemical process control are also presented. © 1997

Elsevier Science Ltd. All rights reserved
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1. INTRODUCTION

Various methods for designing nonlinear controllers
have been reported in the literature. Unless they are
using ad hoc designs, most of the nonlinear controllers
such as those using feedback linearization (Hunt et al.,
1983; Kravaris and Chung, 1987), GMC (Lee and
Sullivan, 1988) and many others require the feedback
of state variables to implement the control strategies.
In practice, however, complete state feedback is im-
practical in most applications. Although direct inte-
gration, i.e. open-loop observer, can be used to esti-
mate the required state feedback and works well for
a few applications, a closed-loop observer with feed-
back correction is still desirable, especially, when the
system consists of modeling error(s) or pure inte-
grator(s).

Although the theories and applications for linear
systems are well developed, development of observers
for nonlinear systems still provides an open area for
research. Till now, development of observers for non-
linear systems has encountered many difficulties, such
as: requirement of extensive computational efforts,
coupling with controllers, uncertainty in the perfor-
mance or robustness, restrictive conditions to be satis-
fied, etc. Some of the major difficulties encountered in
the development of observers, which are reported in
literature, have been reviewed by Misawa and Hed-
rick (1989).
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In the last decade, attention has been focused on
applying the transformed canonical forms for design
(Bestle and Zeitz, 1983; Keller, 1987, Kantor, 1989;
Ding et al, 1990, etc). For most of the nonlinear
systems, such a transformation can be defined
through Lie derivatives of the output which is a func-
tion of state variables (Gibon-Fargeot et al., 1994;
Alvarez-Ramirez, 1995). However, the resulting ca-
nonical forms are not strictly linear and the trans-
formations thus involve exogenous inputs and a finite
number of their derivatives. In case of simple systems,
such difficulties involved in the transformations could
be easily resolved. However, for systems having di-
mensions greater than two, solution of the coordinate
transformations and existence of such transforma-
tions appear to be the bottleneck.

Recently, another type of observers that also use
sliding mode have been reported. In the early work of
Slotine et al. (1987), the observer was constructed for
a second-order nonlinear dynamic system involving
only single measurement. The extensions of such ob-
servers to nth-order and multi-output systems have
also been addressed in the literature. Further develop-
ment in this field of sliding observer was made by
Misawa (1988). Canudas and Slotine (1991) have
further applied such observers in robot manipulators.
In all the studies mentioned above, a framework
similar to a Luenberger observer was used by appen-
ding a switching function with constant gains as
part of feedback corrections. To obtain such gains,
different procedures have been proposed (Misawa
and Hedrick, 1989). These procedures require certain



788 Gow-Bin Wang et al.

conditions to be satisfied or optimized with singular
values which depend on the scaling factors. Thus, the
procedures developed for determining the switching
gains are complicated and the performance issue of
the observers is also not addressed.

It is the purpose of the present paper to design
sliding observers for control of nonlinear chemical
processes. In chemical process control, measurements
of indirect outputs are usually used to infer the key
outputs which are rather difficult to be measured
on-line. The sliding observer presented here is used to
force these indirect but measurable outputs to lie on
specified sliding surfaces, so that the resulting esti-
mated states can be used to implement the nonlinear
feedback control more efficiently. In order to design
the observer independently, time-varying gains for the
switching functions are used to keep the dynamic
modes of these estimated states invariant regardless of
the position of the states. For formulating the nominal
convergence of the estimating algorithm, Lyapunov
stability analysis has been used. Conditions for its
robust stability are also derived herein. To demon-
strate the potential use of this sliding observer, rejec-
tion of unknown disturbance by using a feedforward-
like control is illustrated. Similar use for the model-
based predictive control may be investigated in future
research. Simulations for the application of chemical
reactor control are given as illustrations for the poten-
tial uses of such sliding observers.

2. MATHEMATICAL FORMULATION
Consider a general nonlinear system as

x = f(x, u)

y = h(x)

where x € R" is a vector of state variables, u € R™ is the
input vector and y € R” is the output vector.

To construct the nonlinear observers for the system
given in eq. (1), it is essential to devise a correcting
function ® such that, integration of the following
equation would produce estimates of x, i.e. X:

(1)

% =f(& u) + Oy — ¥
2
¥ = h(x).

As has been mentioned earlier, many nonlinear ob-
servers have been reported in the literature. Although
not exhaustive, various methods of approach along
with their disadvantages for the few reported nonlin-
ear observers are summarized in Table 1. To over-
come some major obstacles in the construction of
nonlinear observer for process control, a sliding ob-
server is presented here.

We will assume that the Jacobian matrix of h, ie.
J(h(x)), exists and is of full rank for all x € X, so that eq.
(1) can now be transformed into the following system:

z=f*(z,u)
3)
y=Cz

where C =[I, 0] and X is an open subset of R".

Using eq. (3), z is partitioned into

7= [Zb} with 2=y )
z

so that an observer of the following form is con-
structed:

i="f*zu + K)o 8]

where K is a time-varying gain matrix and ¢ is given
as follows:

sgn(y; — £y
sgn(yz — )

sgn(y, — £,)
and the sign function, sgn(t), is defined as

1 ift>0

sgn(t) = { .

if t <O.

Further, let Z* = z° — 7° lie on sliding surfaces by
applying sliding conditions. The switching gain
matrix, K, is formulated in order to keep the dynamic
poles of 7 =2° — 7® invariant at desired constant
values, which would lead to a good performance.
Convergence of the estimating algorithm is for-
mulated by using Lyapunov stability theorems and
the robustness to modeling errors are derived via
analysis of norms. Incorporation of such a sliding
observer into a closed loop for process control is
addressed in the following.

3. SLIDING OBSERVER FOR SISO SYSTEMS
In the following text, for convenience, we shall use

x, instead of z, to denote the state in eq. (3). Consider
a SISO nonlinear system of the following form:

x = f(x, u) ©

y =X

where x = [x; x5 --- x,]" is a state vector and u is an
external input. The function f(x, ) in eq. (6) is subject
to a norm-bounded modeling error.

The sliding observer for this SISO system becomes

Xy =filk, u) + ky sgn(x; — £;)

£, = folk, u) + kysgn(x, — £;)

™
$n = folR, ) + k,sgn(x; — %,).
Let X;=x; — X;,i =1, 2, .-, n; then the above equa-
tion becomes
%1 = Afy + 8f, — ky sgn(%y)
%1 = Afs + 8fy — kasgn(%y)
8

Xn = Af, + 3, — kusgn(xy)
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where Af; = fi(x, u) — fi(X, u) and Jf; is the modeling
error due to structural deviation.
We can define a sliding function in terms of X, as

s=X 1 (9)
and a sliding condition for X, as either

1d

e

2dts < —nls| (10)
or

d

4= — nsgn(s) (11

where 7 is a positive constant. In order to drive X to
its sliding surface, dx,/dt should have a sign opposite
to that of X,. To do so, we can assign the value to k, as

ki zn+F. 12)

Here, we assume that the dynamic uncertainty is ex-
plicitly bounded, i.e.

A1 + il < F 13)

where F is a positive constant. Thus, inequality (12)
can make the variant trajectories point towards the
surface s(t) = 0, where the tracking estimation error
Xy 1S zero.

Applying the concept of equivalent dynamics in
accordance with Filippov (Slotine and Li, 1991), the
convex combination of the dynamics on both sides of
the surface s(t) leads to

£ = 3(Af + 8+ k) + (1 =) (Afy + 8 — ky)
X2 = 7(Afz + 0fs + ka) + (1 —7) (Afs + 0f, — ko)

(14)
Xo = Y(Afy + O + ko) + (1 — ) (Af, + 3, — ko).

When k; is determined from eq. (12), we have
§=%=0,ie

YOS+ + k) + (1 —7) (Afy + 8y —k) =0,
Hence, the value of y is given as

ki — Afy — oy

7:

Substituting eq. (15) into eq. (14) gives the reduced-
order sliding observer dynamics in the form of

%2 = Afy + 0fy — (ky/ky) (Afy + Of1)
%3 = Afs + ofy — (ka/ky) (Af: + 8f1)

(16)
Xo = Ao+ Of, — (ko/ky) (Afi + 8f2).

By linearizing locally with respect to the point at X,
eq. (16) can be treated as a state observer with the
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following total differential form:

o ke Ofi |, oy k2 Ofi |
‘{a_xz k_laxz}"2+ +{6x,, ks 6x,,}x"

N (5fz - ',j— 5f1>

L AP Y
An 1 n

2
©

(17)

AL R N | A T A
M 0xs Ky 0xg ox, ks ox, | "

+ (5]’,, —:—:5f1>.

In the following, we first neglect the structural modeling
error terms. Linearization is made on the basis of each
point of the estimated states, instead of a fixed point of
equilibrium, hence, the deviations considered for lin-
earization are X;s, rather than considering how far they
are away from the fixed point. Consequently, this would
be less restrictive compared to the extended linearization
method of Baumann and Rugh (1986).

Let
X:Z )’Ez
%=| " |=H®) |’ (18)

where X, e R""! and

B _kdh % kO
0x, kyOx, 0x, k, 0x,
6 k% ks
H(®)2 0x;  ky 0x, 0x, ky 0x,
o ki dfi o ke Ofy
[0x2 kidxy  Ox, kidx, |

e RO X0, (19)

To keep the eigenvalues of the observer invariant, the
switching gains, k,2[k, ky --- k,]", can be directly
calculated by a specific formula depicted below. From
eq. (19), it becomes

0%, ax, | | (k2/ky) o o
D=1 : ", : : B2 A
HER= 1 ] [axz axn]
o Y| Lkatkr)
0x, 0x,
éVx,fr_ﬁvll(,fl
éA,—ﬁc,. (20)
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Let a,2[a, as --- a,] be the coefficient vector of the
characteristic equation of A,, i.e.

det(s —A,)=s"" 4+ a,5" 2 +ays" 3+ -~ +4,=0.
Also, define

Py =[c] Afef (AD)%¢] - (A7) %] 7!

and
1 0 0
a, 1 -0 0
R, = : A
Q-2 Gp-3 - 1 0
-y Gn-z - Gy 1

If a,2[a; o3 -+ a,] is set to be the coefficient vector
of the desired characteristic equation of H(X), then the
Bass-Gura formula (Kailath, 1980) can be used to
derive the following:
ﬁT = (& —a) (R I)TPI . (21)
Therefore, when the poles of the reduced-order sliding
observer are assigned, the designed switching gains
can be calculated as
k, = ki =k PIR; (2, — a)". (22)
Furthermore, to eliminate undesirable chattering
effect, it is practical to replace the sign function in
eq. (7) by a saturation function, sat(s/¢), which is
defined as

g6 if |s/él<1
sat(s "’)_{sgn(s/@ itygl>1 )

It is clear that by using the sliding condition for the
state corresponding to the measured output, state
x, is forced to lie on a sliding surface. As a result, the
reduced-order observer has invariant dynamic poles
and is guaranteed to converge asymptotically. On the
other hand, it should be noted that this approach
would inevitably introduce tracking error. Hence,
a trade-off between tracking accuracy and control
power has to be achieved by suitably choosing the
boundary layer thickness ¢ (Slotine and Sastry, 1983).

4. NOMINAL CONVERGENCE AND ROBUSTNESS
Substituting x,, corresponding to the measured
output, onto a defined sliding surface, we further show
that even for the remaining states the observer is
stable and is robust to modeling errors.
Let the Lyapunov function V be of the form
VE) =3{zf+ 25 +

-+ X2 (24)

Then we have

V)= Ry %1+ %g-Ka + o + Fp %

Thus, if x; is in sliding mode, we would have £,=0
and all the first time derivatives of X;, i > 2, will be
given by eqs (8) and (16) so that

VR) = %2 X0+ - + %, %,
= %,[Afs + 9f2 — kpsgn(X )] + -
+ %, [Afy + 3fu — kusgn(Xy)]

= {le:Afz - 'I;—: Af1:| + fz[éfz - z—j 5f1:|}

+ o4 {g,,[Af,, - ll:_ AflJ + i,,liéf,, —gléfl]}

=[X; X3 - %]

(% kO U k]
0x;  ky 0x, 0x, ky ox,
h kdh  h ki |[E
0xy  ky 0x, 0x, ky 0x, %3
x .
A oh  kadfi | D
0x,  ky 0x, ox, ky 0x,
_ 6 ]
5fz—k—15fi
ks
oy — 28
fE g x| BTRY
kn
% % ]

>

XTH(R)X, + X19,. (25)
It has been shown that the switching gains,
k;,2 <i<n, are calculated according to eq. (22),
hence enabling matrix H(X) to have specific eigen-
values in the LHP. Therefore, the stability of the
reduced-order observer for nominal case, ie. 6f =0,
can be guaranteed.

The issue of robustness of the observer concerns
whether or not X, diverges in the presence of modeling
errors. From eqs (17) and (25), it can be defined that

%, = HX)X, + 6,.

Further, the solution for X, can be expressed as

t
%, = ef'%,(0) + '[ eflt=9§ dr.

0

(26)

If | %,(0)]| < a and there exist b, ¢ and N such that

ofl < (b + Ne™™)/(1 + |k, |i/k,) (27)
then we have
b N
1%, <ae™** + Z;, + pa—- e @ (28)
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where — A, (4, > 0) represents the greatest eigen-
value of H(X), | X, || is the vector norm of X, and g4, b,
N and ¢ are all positive constants. The derivation of
eq. (28) is given in the Appendix. It may hence be
concluded that

(i) 1%/l would remain bounded, if || <
(b + Ne /(1 + ||k, |/ky), b>0and 0 < & < /,,.

(i) 1%, =0.if b =0, |5f] <(Ne™™/A1 + [Kk,li/ky)
and 0 < ¢ < A,

In other words, the estimation errors of the reduced-
order observer remain bounded if {|0f| is bounded as
given in eq. (27).

5. SLIDING OBSERVERS FOR MULTI-OUTPUT SYSTEMS

For multi-output systems, the construction of slid-
ing observer can be derived directly from the SISO
system by approximately the same way as described
above. Nevertheless, the method of finding switching
gain matrix K would require more sophisticated
mathematical manipulations. For process control,
however, we are more interested in formulating the
problem as follows.

Instead of using a full matrix, we assign a block
diagonal form to K in eq. (5). In other words, we can
renumber the system and divide the system into sev-
eral subsystems. Within each subsystem, the state
estimations are corrected by a sign function based on
the same output. The key issue would be the assign-
ment of each pivot switching gain that would keep the
output on its sliding surface, and the reduced-order
system to have invariant dynamic modes. We will
illustrate these procedures by using a system which
has two outputs. First, according to the system

x = f(x, u)
y=Cx (29)
we can renumber the states such that
yi=x
Y, =X,.
Partition the vector x into x* and x?, so that
X = [k X5 o X"
X=X, Xpey o %N
The observer is then formulated as follows:
R = f9(%% %°, u) + K?sgn(y; — %
Xt = fb((ﬁ“. %, u)) + K sggn((ilf - i,l)) G0
where
kf="[k k, - k1" and k’=[k k,+, - k"

Thus, we can assign two sliding surfaces as

s;=%; and s, =X,

The resulting reduced-order system now becomes

X [Vefr Vel ([
x| | Vef? Vef? |[ %
k'

—_ 0 A f
— k 1 kh Vx,f‘l
0 — |1Vl

k,

Vx':fl i‘rl
Vol ][x"] G

ke]".

where
ki =[k; ky -+ k11" and kj = [k, 1 kysa

Therefore, we have a reduced observer pair as

Vel V! Vefi Ve
A,=[ RO }and C,=[ ok 'f‘] (32)

Vefl Vef? Vafe Vef
and K, as
k
=0
K, = ’; Kb (33)
k,

We can further derive k¢ and k® from the following
equality:
n—2

det{sl — A, +K,C.} = [[ s —4)

i=1

(34)

where 4;,i=1,2,---,n — 2, are the specified eigen-
values. Solving eq. (34) for deriving k? and k® would
need tedious algebraic manipulations if n is higher
than three. Chen (1984) has provided three effective
methods to find K,.

Although there may be different ways of partition-
ing the observer into the subsystems as given in
eq. (30), however, there is little change in the reduced-
order system given in eq. (31) except for the changes in
configuration of K, matrix. Hence, different decompo-
sitions would result in the same set of columns for the
observability matrix of [A,, C,] pair. The changes in
the system due to different partitioning of subsystems
are in fact changes in the eigenvectors of (A, — K,C,)
which are associated with each dynamic mode (Chen,
1984; Lewis, 1992).

While formulating the observer for chemical pro-
cesses, wherein state variables can obviously be classified
into non-interacting groups, we can take advantage of
this method of partitioning. Thus, eq. (30) becomes

%% = %" u) + k?sgn(y, — %)

. (35)
xP = x4 1%, u) + kPsgn(y, — £)).
Hence, we shall have
det{sl — A, + K,C,} = det{sl — Veff
k; : k! :
+ L Vaf pdet<sl —Vaf? + TV f
kl r r k/ r
n—2
=[]~ 4 (36)
i=1
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Fig. 1. The serial CSTR system.

In other words, the computations for ki and k? can
now be decoupled. Each of the k® and k! can be
calculated individually by using eq. (22) for each of the
subsystems. In the following, we will illustrate this
proposed sliding observer with an example of estima-
tion of a chemical reaction system.

Example (State estimation for a serial chemical re-
action system): Figure 1 shows the serial continuous-
stirred tank reactor (CSTR) system, belonging to the
multi-output case and studied by Henson and Seborg
{1990). The dynamic behavior of this system can be
governed by the following equations:

%)

Vi(cf —Cy) — koC,4 exp<

1

(— AH)koCy
Cp

; q
Ty = (T, ~ T
1 Vl(f )+

pccpc
pepVs

+

¢y =-(C) = Ca) — ko exp( (37)
v,

A4
Ty = AT, — T2) +
2= (T = T3)

PcCpe
pCpVZ

+

" RT,
E
exp|l — =——
P\ T RT,
UA
qc[l - eXp<— . )] (Tep — Th)
qcPCpc
E
RT,
(—AH)koC, ox E
Cp p RTz
el
c — €X -
qePCpc
U4
x [T1 T, + exp<— : )(ch - Tl)].
qcpccpr:
The nominal values of the parameters of this serial
CSTR system are given in Table 2. The state variables
x, system output y and manipulated input u are de-
fined as follows:

x&[C, T, C; T,T, y&I[T, T.1%, u%qc-

Hence, the dynamic model of the serial CSTR in
dimensionless form gives
B E
RXZ

E
X1 €Xp —K
2

X1 =1—x; — kox; exp(

ko(— AH)

)62=Tf—xz+ -
14

UA,

PeCpct

+ 0.0lulil -~ exp(—

E
X, — X3 — KoX3 exp( —

&)
(

}(ch - Xz)

(38)

ko(— AH
X4=X2—X4+L(‘—-)'
Cp

UA
+ 0.0Iu[l — exp(—
pcC
A,

+ep( v
xpl —
peC

c

)(ch — X2)].

PCu

It is apparent that this reacting system has two
measurable outputs, i.e. it can be split into two sub-
systems. Therefore, to estimate the concentrations
in the reactor, one can design the sliding observer as
follows:

3 . . E .
X =1— 2%y —koX; exp(— R)?2> + kqsgni{Xy/¢)
$,=T;—% +k0(—AH))2ex E
Y= drm pCp 1eXP RX;
UA
+ 0.01{1 — exp(—— ! )](ch — %)
PcCpcli
+ kz sgn(%s/9)
PO . E <
X3 =X — X3 — ko%s exp(— R: ) + ki sgn(xs/¢)
Xa
(39)
i s s ke(—AH) ( E)
X4 =Xy — X4 + ——— X3€Xp| — 5=
pCy Rx,4
UA
+ 0.0Iu[l — exp(—— 2 >] [322 — %4
PeCpclh

+ exp<—— vA, )(ch - fz):l + kasgn(Xa/)
pccpcu

where %4 2 x4 — X4. The switching gains k; and k, are

determined according to eq. (12). The other two

switching gains can be directly calculated according

to eq. (22).
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Table 2. Nominal parameter values for the
serial CSTR system
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where X is an open subset of R". The operator M is
defined as

Variable Nominal value
q 100 1/min
V, =V, 1001
C, 1 mol/1
T, 350K
T, 350K
ko 7.2x10'° min~!
E/R 10,000 K
(— AH) 4.78 x 10* J/mol
p=p 1000 g/1
Cp=Cpe 0.239J/gK
UA, =UA, 1.67 x 10° J/min K

M®hi(x, u) = hi(x)

o T
M'hi(x, ) = x hi(x)] [f(x, w]

-2 T
Mkhi(x’ u) = 5X_Mk*1hi(x9 u)] f(X, ll)

+

wherei=1,2,...

i T
[—‘ M"_lh,-(x, ll):| u
du

,pand k=12, ... n

For this simulation case, the process input is given as

90 1/min
100 1/min

t < Smin

if 0<
(40)
>

if £ > 5 min.

Initial conditions for the true states and the estimated
states are set as [0.085 442 0.005 450]T and
[0.05 442 0 4501, respectively, and the switching
gains of the measurable outputs are set as k; = 80 and
k4 = 25. A suitable boundary layer thickness ¢ = 0.01
is also selected. It is apparent that the values of species
concentrations should either be positive or zero.
Hence, when the estimated concentration values, i.e.
%1 and X3, are lower than zero, they are set to be zeros.
Estimation results, which are depicted in Figs 2 and 3,
demonstrate the performance of the proposed sliding
observer for state estimations.

6. APPLICATION TO PROCESS CONTROL

The sliding observers developed in the previous
section offer advantages such as: ease of construction
and on-line implementation, robustness to modeling
errors and guaranteed convergence. However, prior
to applying such an observer to process control, two
issues need to be resolved. One is the observability of
states in the closed-loop and other is the stability after
combination.

For the former, consider a nonlinear system as
givenin eq. (1), its local observability at x € X depends
on whether the following condition is satisfied (Keller,

1987):
_ T A
<i M°h(x, u)>
0x

rank

(

9
ox

0

L(('Jx

-

d

0x

T
M" th(x, u))

M h(x, u)>T

T
M2h(x, u)>

=n

(41)

It can be clearly seen that the rank of this observ-
ability matrix would be a function of x and u. For
open loop use, the values of u can be freely assigned.
Nevertheless, in closed-loop control, it is important to
note that the control inputs are no longer free vari-
ables. However, since u cannot be explicitly separated
from x, it becomes difficult to determine whether it is
feasible to construct an observer for closed-loop con-
trol under certain feedback law.

A simplified expression for local observability con-
dition at each local point of (x,u) can be given for
non-affine systems as follows:

Al — _6_ f(x, u)
ox
P =n VA
—h
e (x)

Rank (43)

The above condition is a direct result of the assump-
tion that at (x, u) the system is locally observable and
hence the system can be locally linearized by using the
PBH rank test. To construct an observer for closed-
loop control, it is however necessary to examine the
observability condition of eq. (41) over a domain of
x as well as that of feasible control input.

Some special cases having simpler observability
condition are as follows:

Input affine systems: A large number of dynamic
processes have the system equations in form of

x = f(x) + g(x)u
y = h(x).

For such systems, a sufficient condition for local ob-
servability at some X, € X would be to find »n indepen-
dent row vectors among the following (Vidyasagar,
1993):

(44)

0
|:——— L, ---L,h(xe), s20, 1<i<p,
ox

vy, o, vse {fig, e, gm}]- (45)
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Fig. 2. Estimation results of the serial CSTR system under sliding observer with observer poles
Po1 =Ppoz = —5.

As the vector u does not explicitly appear in the above
formulation, to construct an observer for closed-loop
system, it would be required to examine the observ-
ability condition over a given domain of x only.

State affine systems: For some chemical reaction
systems (Gibon-Fargeot et al., 1994), the dynamic
equations can be described by the following equa-
tions:

X = Au(t), y@)x + bu(t), y(t)

y =cx.

(46)

The observability, for this kind of systems, would
depend on whether or not the (4, ¢) pair is observable.

The other criterion to be considered while using the
observer for nonlinear process control is whether in-
corporation of the proposed sliding observer into
a control system would cause only stability problem.
To answer this question, we shall consider a general
observer of eq. (2). The closed-loop system will then be

governed by the following equations:
x = f(x, u)

x = f&u) + Oy — ) 47

y=¢x

where ® designates a correcting function which is
used in the observer. If we define the difference be-
tween the true states and the estimated states as

X=x—X
then the above governing equations become
x = f(x, u)

(48)
% = f(x, u) — f(%, u) — D(cX).

In linear systems, it is easy to show that X and x have
independent dynamic modes, and the dynamic modes
of the overall system would be a combination of both
sets. Thus, incorporating a stable observer into
a stable state feedback control system would result in
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Fig. 3. Estimation results of the serial CSTR system under sliding observer with observer poles
Po1 =Por= —2.

the formulation of a stable closed-loop system. In
general, it is difficult to reach such a conclusion for
nonlinear systems. However, it is essential to know
that, if the estimated states converge asymptotically to
their true values with bounded transient errors, then
whether a stable state feedback system remains stable
after incorporating the proposed sliding observer.

According to the result given in the previous sec-
tion, eq. (48) for the system that uses the proposed
sliding observer now becomes

X = f(x, u(x — X))
;&r = (Vx,fr - ﬁvx,fl)ir

It can be obviously seen from eq. (50) that X, is
independent of x. On the other hand, eq. (49) can be
linearized with respect to X at the point of X =0, ie.
X =X, as

{49)
(50)

% = fx, u(x — %) = fix, u() + 2
Ou 0X |g=0

X + o(X

2),

Moreover, within the neighborhood of some equilib-
rium point x,, we can further derive that

of ¢
% = Flxo, u(xo)) + (fo + 7%3> (x — %)
UOX ) |x=x,
+ W (0, %) (x = Xo) + 0(X?) (51)

of éu

= foxﬁx - A
( | "+8u6‘x

+ Wixo, i)) (x = Xo)

where

W (%0, ) 2V, (Q(X)X) = V@i o 5, X1 + Villa|s = %2
+ o+ Vil 2 xXn

and

A Of du

)_..__

_5u5)~( X=0

Qx =[9:(x) q2(x) - @.(x)]. (52)



798

Let
of 0

Ao, N2Vl o + o 2e|  + W(ko, )
OU OX |x = x,
(53)
2 A(xo) + Wi(xg, X).
where

Alxo, 0) = A(xo).

The local stability of this system can be guaranteed
by studying the eigenvalues of the following linearized
matrix at the equilibrium point x,:

A(xg, X) = A(Xo) + W(xo, X).

It is known that, without loss of generality, one can set
Xo as 0. Thus, we have

A(0, %) = 4(0) + W (0, %).

Notice that the ideal system, whose all states are
accessible, is stable such that all the eigenvalues of
A(0) lie in the LHP. The effect of the observer on its
stability is limited to the extra term, W (0, X). The
stability of this observer-based closed-loop system
should be discussed in light of the following theorem.

Theorem (Perturbation theorem for the eigenvalue,
Stewart and Sun, 1990). Let A be a simple eigenvalue of
the matrix A, with right and left eigenvectors v and w,
and let A = A + E be a perturbation of A. Then there
exists a unique eigenvalue 1 of A such that

H

- o’ Ev
A=A+ — + o(||E||})
oy

(54)

Based on the above theorem, we have

H

~ ~ o'Wy
A[A] = A[A] — v

+o(lWl?). (55

We can therefore conclude that if

oWy
ofly

max

i

<Al Vi (56)

the incorporation of this sliding observer would not
affect its nominal stability which is derived from the
ideal system. As can be seen from eq. (51), as X ap-
proaches zero as time passes, the observer based sys-
tem will convert to an ideal system.

Although the stability of such an observer-based
system cannot be said to be totally independent of the
observer, the stability condition can be achieved more
easily since this sliding observer provides the guaran-
teed convergence as in the previous analysis. As a re-
sult, if the control using full state feedback is globally
stable within a defined domain of x, it should be
possible to incorporate a carefully designed observer
which will not cause a stability problem. Conse-
quently, design of the state feedback control and the
observer can be implemented separately. In other

Gow-Bin Wang et al.

words, one can design a stable control system by
assuming that all state variables are fed back. A slid-
ing observer as depicted above can then be construc-
ted. Following this guideline, we illustrate in the fol-
lowing subsections the use of such a sliding observer
for controlling chemical processes.

6.1. Setpoint tracking of chemical reactor control
It is known that all control systems are nonlinear to
a certain extent. Hence, the development and applica-
tion of nonlinear control algorithms are attracting
great attention in the recent years. Here, we utilize the
GLC structure to deal with the servo control problem
of an isothermal CSTR. The GLC approach was first
proposed by Kravaris and Chung (1987) for obtaining
the linear relationship between the transformed inputs
and process outputs for nonlinear systems (Bequette,
1991). Therefore, the linear control theory, which is
well-developed for the linear systems, can be utilized
to complete the controller design.
For a minimum phase nonlinear system with rela-
tive order r, the state feedback control law
v — Lih(x
u=—yt &) (57)
LgL f h(x)
can directly transform the original nonlinear system
into
¥ =0 (58)
Furthermore, the new manipulated input v is set to be
v=— Oy —f, 2
- = sz - Gl(y - ,Vsp)~ (59)

The closed-loop transfer function (CLTF) of the sys-
tem can then be obtained by combining eqs (58) and
(59) as

y(s) 0y

= . 60
Vp(8) 8+ 0,57 1+ - + 0540, (60

It may be mentioned here that most of the nonlinear
control techniques utilize state feedback compensator
laws. Hence, the employment of state observers
becomes necessary. In the following, we solve the
estimation and control problems of the chemical reac-
tion system by applying the sliding observer de-
veloped above.

Let us consider a well-mixed CSTR with isothermal
reaction as

A=B->C

By denoting the concentrations of species A, B and
C as x4, x; and x,, respectively, material balances for
this CSTR are described by the following dimension-
less equations:

X, = 1 — X1 —D1X1 +D2x%

)fz = Dlx; —x; — D;x3 — D3x3 +u (61)

X3 = D3X2 - X3

y = h(x) = x;.
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Since the system has relative order r = 2, according to
eqs (58) and (59), we have

y=v=—03—0:(y — ys) (62)

Then the corresponding nonlinear control law de-
rived from eq. (57) gives

U=

—2D3%,(D, X, — X, — Dz’eﬁ) + (Dsf;zz -y~ 92(D3ﬁ§ -y —0y— ysp)

in form of
%=1 =%, — D& + D%} + ky sat(%s/¢)
%, = D%y — %5 — D83 ~ Dax} + u + ky sat(Zs/9)

. (65)
)‘(‘,\3 = D3X\% — .)23 + k3 Sat(i3/¢)

2D,%,

where 6, and 6, are tuning parameters of the GLC
approach. The overall closed-loop transfer function is
thus obtained from eq. (60) as

y(s) _ 6,
ysp(s) 52 + 023 + 01 .

(64)

Furthermore, the estimated values of the unmeasur-
able states, £; and %5, in the nonlinear control law, i.e.
eq. (63), are provided by the proposed sliding observer

(63)

where X3 = x3 — X3 and the switching gains are deter-
mined from eqgs (12) and (22).

During the simulations, we choose the process
parameters as Dy, =3, D, = 0.5 and D; = 1 and set
the initial conditions of the true states x(0) and the
estimated states £(0) as [0.356 0.921 0.848]" and
[0.5 1.0 0.848]", respectively. Two tuning parameters
of the GLC approach are placed at 8; =4 and 9, = 4.
In this study, the control objective is to make the

1 1 LI 1 1
T po1 = poz = —4.0 —
0.05 I g Por =po2=—15----7]
\\
-
A 1 1 A 1 1 1
2 3 4 5 6 7 8 9 10

Dimensionless Time

T I e T ™7 T
Po1 =poz = —4.0 — 7]
Por =poz=—1.5 -1
2 01} -
-0.12 B . -1
014 F .
-0.16 | -
018 L= B N | 1 11 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Dimensionless Time
0 ) a T T T | g
T Po1 = po2 = —4.0 —
-0.0005 | Py Po1 =por = —1.5 -
-0.001 - =
T3 i ;
-0.0015 |- - -
-0.002 . - -
-0.0025 - i 1 1 i 1 1 1 1 1
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5 6 7 8 9 10

Dimensionless Time

Fig. 4. Results of estimation errors for the isothermal CSTR system under sliding observer with observer
poles pp; = po> = —4 and — 1.5.
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dimensionless concentration x; track its setpoint
Vsp = 0.75 as soon as possible. Let the switching gain
k3 = 1.5 and the boundary layer thickness ¢ = 0.01.
From the results of estimation errors shown in Fig. 4,
it is clear that the unmeasurable concentrations can
be effectively estimated by the proposed sliding ob-
server. The servo control responses shown in Fig. 5
demonstrate the tracking performance of this sliding
observer. Furthermore, it may be noted that the as-
signed poles of the reduced-order sliding observer do
influence the convergence rate for state estimation.

Moreover, when the modeling errors occur due to
parametric uncertainty, the proposed sliding observer
can still perform well by setting this parameter as an
unknown state variable.

6.2. Disturbance rejection for chemical reactor control

The presence of unknown disturbance in the pro-
cess would prevent X; from converging to zero. As
a result, the estimated states deviate from their true
values which, in turn, would degrade the control per-
formance. One way to reject such unknown distur-
bance is to include it in the observer as an extra state
variable. For constant disturbance, this extra state
serves as an integrator, i.e. for SISO systems, we have

X=f(xyxn+1 =da M), -)&n+1 =0’ Yy =X (66)

where d is an unknown disturbance. A sliding ob-
server can be constructed to estimate the unmeasured

states, xj, -
bance.

The matrix that corresponds to H(X) in eq. (19)
would now become

» Xp+1, including the unknown distur-

H*(ﬁr9£n+l) =
Vx,fr - ﬂ[vx,fl] Vx,,ﬂf, - p[vx,,ﬂfl] (67)
—y[Vi /il — Y[V i1 |

The existence of parameter sets of f and Y of such
a system would depend on the observability pair
(A*, c*) of the following nature:

Vx fr Vx fr
A% = ¥ n+1 i
01 x{n—1) lel

V,‘(,,+14f1]'

(68)

c* =V /i

If the pair (V, f,, V. f,) is observable, a necessary and
sufficient condition for this augmented system to be

observable is
Vi, WX
rank | V7 o - (69)
V"n+1f’ V"n+1f1
Equation (69) is a result of applying the observability
condition (Morari and Stephanopoulos, 1980) to

the (A*, c*) pair. For multi-output systems, the

| T T T T T T T
0.9 ) po1 = poz = —4.0 — 7
por=poz=—1.5
0.85 B
T3
0.8 i
~—
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L4 po1 = poz = —4.0 — 7
po1 =poz=—15 -
1.2 + .
U -

1 ! 1

L 1 1 1 1

0 1 2 3 4

5 6 7 8 9 10

Dimensionless Time

Fig. 5. Servo control responses of the isothermal CSTR system under sliding observer with observer poles
Po1 = Po> = —4and — L5.
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number of unknown disturbances to be included in an
observer is at the most equal to the number of system
outputs.

In the following example, we consider a well-mixed
CSTR with first-order, irreversible, exothermic reac-
tion. Material and energy balances for such exother-
mic CSTR are described by

dC ¢ E
HT = ‘I;(Cf — C) — kOCexp<— ﬁ)
dT ¢ (— AH) E
- _1 - T _ =
P (T, ) + o, koCexp RT (70)
Uda (7, — 1),
pc,V

where C and T represent the reactant exit concentration
and reactor temperature, respectively. Let the four im-

portant dimensionless parameters be denoted as

E UA
D4 = o D5 = 4
RTy PCpq (71)
koVe D+ (— AH)C;oDy
Dg = ——, TE T
q pe, Ty

The corresponding dimensionless variables are de-
fined as

C T-T C
Xy ==, X3= fD4, d1=—f‘,f=‘q‘f
Cf() Tf Cf() Vv
(72)
T.— Ty
u=—<—1DDs, y=C  yu=T
T,

where d, represents the unknown disturbance and
Cjo is the nominal value of the feed composition.
After introducing the dimensionless quantities given

0~025 ¥ 1 ) T T T T T
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0.02 I por =poz =15 -
open-loop observer —
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Zq [~
0.01 /- i
0.005 . i
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Fig. 6. Results of estimation errors for the exothermic CSTR system under sliding observer with observer
poles ppo; = po; = — 4 and — 1.5 and under the open-loop observer.
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Fig. 7. Results of disturbance rejection of the exothermic CSTR system under sliding observer with
observer poles pp; = pp, = —4 and — 1.5 and under the open-loop observer.

above, the resulting normalized model is governed as

. X2
=d; — x; — Dgxyexp| —————
X1 1 1 6X1 P<1 n xz/D4>

. X
X2 = D6D7x1 CXp(l—_-*_—%) — (1 + D5)X2 +u
(73)
Y =X, Vm = X2.

In this case, the unknown disturbance d, is regarded
as another state variable. According to eq. (73), we
have

. X
Xy =x3—x1 — Dex; eXP<ﬁxZT>éf1(X)
2/P4

where y,, is the system measurement and

X2
X} = x3 — X1 — Dgx;ex D Ea—
Silx) 3 1 6X1 p<1 +x2/D4)

fa(x) = DgDx, CXP< ) — (1 +Ds)xy (79

X2
1 + XZ/D4
gax) = 1.

We may now apply the GLC structure to solve the
concentration control problem of the exothermic
CSTR. The relative order r of this CSTR is equal to 2;
thus, let

jr:y: —ezyﬁel(y_ysp)~ (76)

Then the corresponding nonlinear control law can be
directly derived from eqs (74) and (76):

v = {0, — 1 — Dgexply, /(1 + y,/D)1} f,(X) — {DeX,(1 + y,/D, )" 2exply, /(1 + Yu/ D)1} (%) + 0,(%, — Vsp)
Dg3y(1 + y/D4)” *exp[y,/(1 + y,/Du)]

>—(1 +Ds)x, +u
(74

2
Xy = DD _—
X2 6 7X1CXP<1 ¥ x2/Ds

21,(x) + ga(x)u

X3 =0, V=X, Vm = Xa.

(717)

where 0, and 6, are tuning parameters of the GLC
approach. The overall closed-loop transfer function
can be obtained directly from eq. (76) as

¥y _ 0,
Vsp(S) 2+ 0,5 +6,

(78)
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Furthermore, the estimated values of the unmeasur-
able states, £, and X3, in the nonlinear control law,
given by eq. (77), are provided by the proposed sliding
observer in form of

%, = %3 — %, — D%, exp(——1 " ; D > + ky sat(X,/¢)
2, 4
P . X2 .
= D¢D —— | —(1+D
X2 el)7Xy exp<1 T fz/D4> { 5)X,
{79

+ u + kysat(X,/¢)
%3 = + kysat(%,/¢).

where X, = x, — X, and the switching gains are deter-
mined from eqs (12) and (22).

For comparisons, an open-loop observer is used to
estimate the unmeasurable states by directly integrat-
ing the following differential equations:

<>

1= )?3 - )21 - D(,,xAl exp<1—+—ym—/b——>
YmiPa

(80)
0.

e

Il

3

For the exothermic CSTR, the four process para-
meters in eq. (71) are chosen as D, =5, Ds = 0.5,
Dg =1 and D, =2. Initial conditions for the true
states x(0) and the estimated states %(0) are set as
[0.5 0 1.05]" and [0.5 0 1.0]%, respectively. It should
be noted that, in this example, the control objective is
to make the dimensionless concentration x,; remain
on its setpoint y,, = 0.5 in the face of the unknown
disturbance. By applying the GLC approach, the two
tuning parameters are set as 6; = 4 and 0, = 4. Fur-
ther, the switching gain k, and the boundary layer
thickness ¢ are set to be 1.5 and 0.01, respectively.
Figure 6 reveals the existence of offset for estimation
of the states for load change since the open-loop
observer cannot provide correct estimated states. On
the other hand, the response results shown in Fig. 7
demonstrate good robustness features of the reduced-
order sliding observer in face of existence of an un-
known disturbance.

7. CONCLUDING REMARKS

A sliding observer, which behaves like a reduced-
order observer, is presented. This observer has been
shown to overcome some major difficulties involved
in constructing nonlinear observers for state estima-
tions, especially for nonlinear process control. To
achieve this, the switching gains in the observer are
made to be time-varying. Convergence of the estima-
tion is analyzed by using Lyapunov stability the-
orems. Robustness conditions, which would guaran-
tee the observer to have a bounded error norm when
facing modeling error, are also derived. The advant-
ages of this proposed sliding observer include: simple
and less restrictive design and construction, no need
of extensive computations during its implementation,

no requirement of canonical transformation, achieve-
ment of desired performance by allocating the ob-
server poles, knowledge of convergence and robust-
ness of the estimation to the designer, etc. Potential
uses of this sliding observer towards servo-tracking
and disturbance rejection for process control are dis-
cussed. Estimation of unmeasurable states and con-
trol of chemical reactor are illustrated.

Acknowledgement

Financial support from the National Science Council of
the Republic of China(NSC-84-2214-E002-036) is gratefully
acknowledged.

NOTATION

a, b positive constants

Ay, As, Ay heat transfer area

A, matrix in eq. (20) or eq. (32)

A(x,, %) matrix in eq. (53)

Cp heat capacity

c, vector in eq. (20)

C concentration

C, matrix in eq. (32)

d disturbance

D,~D, process parameters of the reaction sys-
tem

E activation energy

f.g vectors of nonlinear functions

F positive constant

Af defined as f(x, u) — (X, u)

h output functions

H(X) matrix in eq. (19)

AH heat of reaction

J Jacobian matrix

ko specific reaction rate constant

K time-varying gain matrix

L Lie operator

M operator defined in eq. (42)

N positive constant

Po1s Po2 poles of the reduced-order sliding ob-
server

P, inverse of the transpose of the observabil-
ity matrix of [A,, ¢,] pair

q feed flow rate

Q(x) matrix in eq. (52)

r relative order

R ideal gas constant

R real scalar field

R" n-dimensional real vector field

R, lower triangular Toeplitz matrix with
first column [1 as -+ a,-; a,_ ]

s sliding surface

sat saturation function

sgn sign function

t time

T temperature

u input vector

U overall heat transfer coefficient

v transformed control variable

V reactor volume

V(x) Lyapunov function candidate
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Wi(x, X) defined as V, (Q(x) X)
X state vector

y output vector

Vm measured output

z state vector

Greek letters

Eloy 03 - ]

vector defined in eq. (20)

coefficient in eq. (15)

modeling error due to structural devi-
ation

vector defined in eq. (25)

positive constant

posttive constant

tuning parameters of the GLC approach
eigenvalues

vector

density

vector defined in eq. (5)

correcting function in eqs (2) and (47)
boundary layer thickness

positive constant

vector

&‘%'@ﬂ

g
-

g9 T T oI o

Subscripts
r reduced-order system

Superscripts
“ estimated value
deviation value
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APPENDIX A: DERIVATIONS FOR EQ. (28)

From eq. (17), we have
%, = HX, + 6,. (A1)

Thus, we can solve that

1

%, = e¥1%,(0) + J eHi-0 § dg. (A2)
o
Let || X,(0))| < a; we have
1% 1| < alle™| +j fe®e=218,) dz
o
14
< ae +J e~ | 3| dr (A3)
0

where — 4, (4, > 0) is the greatest eigenvalue of H(X). From
eqs (20), (22) and (25), it is known that

Gl

8, = of, — —Kk,. (Ad)
ky
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Then it can be derived that

J k,
181 < 1o, +|kﬁ Ikl < ||5fﬂ<1 +“_kj> (AS)
1 1

Therefore, if there exist b, N and & such that

[6f] < (b + Ne ™)1 + ik, I/ki)

where b, N and ¢ are all positive constants and ¢ < 4, we

shall obtain

1
1%, 1| < ae™ " + e"l""J e’ [b + Ne *]dr
0

N

. b .
=ae "t 4 — (1 —e ) 4

om o = £

(e*et

b N
=qae” +)—(1 —e ) ——gH [
.

m m

; b
Sae™ M 4 — -
Im m—

Hence, it is proved that | X, | is bounded.
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