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Nonparametric Identification for Control of MIMO Hammerstein Systems

Jyh-Cheng Jeng and Hsiao-Ping Huang*

Department of Chemical Engineering, National Taiwan UniVersity, Taipei 106, Taiwan

A new nonparametric method to identify multivariable Hammerstein models is presented. The Hammerstein
model is characterized by a combination of a linear dynamic subsystem and an algebraic nonlinear function.
There could be many different models that give the same input-output realization. The purpose of this
identification is to find out one among those models for controller design. This identification uses a sequence
of specially designed test signals for excitation. The linear dynamic subsystem is identified as a finite sequence
of impulse response (FIR), and the static nonlinearity is identified as a multi-input-multi-output (MIMO)
functional mapping. By making use of this special test signal, the FIR sequence can be estimated under a
single-input-single-output (SISO) framework. Moreover, the identification for linear subsystem can be
decoupled from that for the nonlinear static part. This nonparametric model can be used for model predictive
control applications.

1. Introduction

Most of the dynamics of chemical processes are nonlinear in
nature. In order to be able to describe the global behavior of
the system, many research activities have been focused on
developing methods for modeling and identification of such
nonlinear systems. One of the most frequently used nonlinear
models is the Hammerstein model, which is composed of a
nonmemory function as the static nonlinearity part followed by
a linear dynamical subsystem. Because of this model structure,
the model expressions of the process are not unique, especially,
for multi-input-multi-output (MIMO) systems.

Many methods for modeling and identification of Hammerstein-
type systems published in the open literature focused on the single-
input-single-output (SISO) systems. Only a few exceptions dealt
with the MIMO systems (e.g., Verhaegen and Westwick;1 Al-
Duwaish and Karim;2 Patwardhan et al.;3 Rollins et al.;4 Laksh-
minarayanan et al.5). The methods for identification of MIMO
Hammerstein system differ mainly in the way the static nonlinearity
is represented and the optimization problem finally formulated. In
parametric approaches, the static functional nonlinearity is ex-
pressed in terms of polynomials, neural networks, and some
expansions of basis functions. A priori process knowledge is
required to select an appropriate functional form. Regardless of
the parametrization of system, the resulted optimization problem
(sometimes nonconvex) is usually difficult to deal with, especially
the global convergence of the estimated parameters. The use of
Narendra-Gallman algorithm for the identification5,6 allows the
prediction error to be separately linear in each set of parameters
that characterize the linear and nonlinear parts. But it requires
iterative procedures and could lead to divergent results in some
cases. To develop noniterative algorithms, particular basis functions
have been used to represent the static nonlinearity,7,8 and a linear
regression problem for a parameter matrix containing product of
the model parameters can be formulated. This parameter matrix is
estimated with least-squares estimation, and the model parameters
are then calculated by singular value decomposition of the
parameter matrix. Although the optimization problem was simpli-
fied, parametrization of static nonlinearity is still required. Recently,
Lee et al.9 proposed a method using a special test signal that enables
decoupling the dynamic linear part and the static nonlinear part

for identification. But, it is applicable only to the case where
nonlinearities are in terms of polynomial.

Motivated by the difficulties encountered in identifying an
MIMO Hammerstein model, a new nonparametric method is
presented in this paper. Parametrization of systems is not
required, and complicated optimization problems are avoided.
By using special test signals designed for this purpose, the
identification of multivariable linear subsystem can be carried
out under a SISO framework and can be decoupled from that
of the static nonlinear function. As mentioned, due to the two-
part structure of the process, models for input-output realization
may not be unique; but they are all in equivalence. Among them,
the one that has best linear dynamic characteristics could be
used to develop the model predictive control for the process.
In this paper, the identification as well as its application to model
predictive control (MPC) will be illustrated.

2. Problem Formulation

A Hammerstein system is schematically represented as the one
in Figure 1. The system consists of a static nonlinear function F(•)
followed by a linear time-invariant (LTI) dynamic element G(q).
Let H(l) ∈ Rm×n with elements {hij(l)}i)1,2,..., n;j)1,2,..., m be the FIR
matrix of G(q) and F(•):Rmf Rm be a nonlinear vector functional
mapping. The Hammerstein representation of the process is then
given by

y(k))∑
l)0

L-1

H(l)v(k- l)+ e(k)

v(k))F(u(k)) (1)

where u(k), v(k) ∈ Rm, y(k), and e(k) ∈ Rn, are the system input,
intermediate input, output, and noise, respectively. The constant L
is the longest length among all of the impulse sequences, hij(l).
Based on a series of input u(k) and output y(k), the identification
problem is formulated as the one to find H(l) and F(•) that can
predict ŷ(k), from u(k), with least sum of squared errors to the

* To whom correspondence should be addressed. E-mail: huanghpc@
ntu.edu.tw. Tel: 886-2-2363-8999. Fax: 886-2-2362-3935. Figure 1. Structure of the Hammerstein model.
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observation y(k). In this paper, the inputs are specially designed
so as to enable sequentially estimations of H(l) and F(•). No
parametrization for both the functional nonlinearity and the LTI
element is required at this stage. The only assumptions needed are
that the LTI element is stable and the nonlinear function has a
value of zero at the origin, i.e., F(0) ) 0.

For simplicity, formulation is based on a 2 × 2 system.
However, extension to a general m × m system is straightfor-
ward without difficulty.

3. Identification of LTI Subsystem

If input and output data of a LTI linear MIMO system are
available, a FIR matrix can be found using the linear least-squares
(LS) method.10 Nevertheless, in such a Hammerstein system, input
(i.e., v(k)) to the linear subsystem is dummy and not measurable.
But, if the static nonlinear function is driven by a two-level signal
switching between zero and a nonzero constant, the resulting v(k)
will be a two-level signal between zero and another nonzero
constant. By this way, the LS method can be applied to estimate
the FIR sequence. For this reason, a specially designed test signal
to excite the linear subsystem is thus required.

3.1. Process Excitation. The test signal is generated by
modulating each input with multistage inputs. In each stage,
say stage J, uJ(k) is a pseudorandom binary signal (PRBS) which
switches between zero and a nonzero constant in a random
manner while keeping all other inputs being zero (i.e., uj(k) )
0, j * J). The excitation signals are as shown in Figure 2. The
number of such excitations equals the number of input variables.
It follows that each dummy input (Vj(k), j ) 1,2,..., m) at the
Jth stage is a PRBS switching between zero and a nonzero
constant as well. Notice that each Vj(k) is synchronized to uJ(k).

As we will show in the following, such a test signal makes the
identification of LTI element possible.

3.2. Estimation of FIR Matrix. Consider the LTI element
in a 2 × 2 Hammerstein process. We denote a PRBS input that
has levels at a and b as PRBS(a,b). The inputs at the first stage
for excitation are u1(k) ) PRBS(uj1,0) and u2(k) ) 0. As a result,
the intermediate inputs at this stage are

V1(k)) PRBS(f1(u1, 0), 0)

V2(k)) PRBS(f2(u1, 0), 0) (2)

Then, at the second stage, u1(k) ) 0, u2(k) ) PRBS(uj2,0) and
thus we have

V1(k)) PRBS(f1(0, u2), 0)

V2(k)) PRBS(f2(0, u2), 0) (3)

The switch times of V1(k) and V2(k) is always synchronized to
those of u1(k) and u2(k) in each of the two stages, respectively.
The input-output relationship of eq 1 can be written, provided
R1, R2 * 0, as

y(k))∑
l)0

L-1 [h11(l) h21(l)
h12(l) h22(l) ][ f1(u(k- l))

f2(u(k- l)) ]
)∑

l)0

L-1 [h11(l)

R1

h21(l)

R2

h12(l)

R1

h22(l)

R2
][R1f1(u(k- l))
R2f2(u(k- l)) ] (4)

Figure 2. Inputs for the identification of the LTI subsystem.

Figure 3. Inputs for the identification of static nonlinearity.

Figure 4. Realization model of the Hammerstein system.

Figure 5. Control structure of the Hammerstein system.

Figure 6. Impulse response of LTI subsystem in example 1.
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Equation 4 shows that the nonlinear functions in F(•) can be
scaled by any nonzero constants because the LTI subsystem
can compensate it accordingly. Thus, we can designate f1(uj1,0)
as uj1 and f2(0,uj2) as uj2, which means R1 ) uj1/f1(uj1,0) and R2 )
uj2/f2(0,uj2). Consequently, the dummy inputs at these two stages
are defined as follows. At the first stage, V1(k) ) u1(k) and V2(k)
) p2 u1(k), where p2 ) R2f2(uj1,0)/uj1. Similarly, at the second
stage, V1(k) ) p1u2(k) and V2(k) ) u2(k), where p1 ) R1f1(0,uj2)/
uj2. Notice that the values of uj1 and uj2 are given by the excitation
signals, while the values of p1 and p2 are parameters to be
specified.

A 2 × 2 input-output realization of the LTI element in eq
1) can be written as

y1(k))∑
l)0

L-1

[h11(l)V1(k- l)+ h12(l)V2(k- l)]+ e1(k)

y2(k))∑
l)0

L-1

[h21(l)V1(k- l)+ h22(l)V2(k- l)]+ e2(k) (5)

In the first stage, from eq 5, it becomes

y1(k))∑
l)0

L-1

[h11(l)+ p2h12(l)]u1(k- l)+ e1(k))

∑
l)0

L-1

h1
(1)(l)u1(k- l)+ e1(k)

y2(k))∑
l)0

L-1

[h21(l)+ p2h22(l)]u1(k- l)+ e2(k))

∑
l)0

L-1

h2
(1)(l)u1(k- l)+ e2(k) (6)

Figure 7. Plot of nonlinearity in example 1: (a) true process; (b) model 1; (c) model 2.
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And, in the second stage

y1(k))∑
l)0

L-1

[p1h11(l)+ h12(l)]u2(k- l)+ e1(k)

)∑
l)0

L-1

h1
(2)u2(k- l)+ e1(k)

y2(k))∑
l)0

L-1

[p1h21(l)+ h22(l)]u2(k- l)+ e2(k)

)∑
l)0

L-1

h2
(2)u2(k- l)+ e2(k) (7)

where

h1
(1)(l)) h11(l)+ p2h12(l)

h2
(1)(l)) h21(l)+ p2h22(l)

h1
(2)(l)) p1h11(l)+ h12(l)

h2
(2)(l)) p1h21(l)+ h22(l) (8)

With eq 6, h1
(1)(l) and h2

(1)(l), for l ∈ [0,1,..., L - 1], can be
obtained from a conventional SISO least-squares estimation10

with available data from (u1,y1) and (u1,y2) at the first stage.
Similarly, with eq 7, h1

(2)(l) and h2
(2)(l) can be thus obtained with

known data from (u2,y1) and (u2,y2) at the second stage. Rewrite
eq 8 in matrix form as

Q(l))H(l)P (9)

where

Q(l)) [h1
(1)(l) h1

(2)(l)

h2
(1)(l) h2

(2)(l) ]
H(l)) [h11(l) h12(l)

h21(l) h22(l) ]
P) [1 p1

p2 1 ] (10)

So

H(l))Q(l)P-1, l) 0, 1, . . . , L- 1 (11)

Since the elements in Q(l) are estimated, the impulse response
matrix H(l) can be computed by eq 11, provided that values of
p1 and p2 are given. Notice that the product of p1 and p2 must
not equal to 1 (i.e., the matrix P cannot be singular).

Remark. A practical issue for FIR identification is the number
of data that should be used to arrive at an accurate model. PRBS
has a pulse-like autocorrelation function which closely ap-
proximates the delta function from an ideal white noise. Thus,
least-squares identification using PRBS can result in a model
with similar accuracy to that resulted from white noise excita-
tion. Furthermore, if the data number (N) is an integer multiple
of the period of the PRBS, then the pulse-like autocorrelation
function still results, even when the number of data points is
relatively small.11 According to our experience in this study, N
is chosen as an integer multiple of the period of the PRBS with
N > 5L, where L is the length of FIR to be estimated.

4. Identification of Nonlinearity

With a set of given values of p1 and p2, (denoted as p̃1 and
p̃2), the FIR matrix of the LTI subsystem is estimated by eq 11
as

H̃(l))Q(l)P̃-1 (12)

The obtained H̃(l) and output y(k) can then be used to compute
the unobserved intermediate variable, ṽ(k), that corresponds
to the given u(k). With a sufficient number of such cor-
respondence u(k) and ṽ(k) data pairs, it will be able to establish
a nonlinear functional mapping between the two variables by
interpolation.

4.1. Excitation for Static Nonlinearity. In order to define
the nonlinear functional relationship between u(k) and ṽ(k), the
above-mentioned u(k) must cover the whole possible space of
input variables. In addition, higher density of data pairs has to
be used in the region where high model accuracy is desired. If
there is not enough a priori knowledge about the process, signal
with uniform density in the whole region is recommended. For
this purpose, if the numbers of levels of u1 and u2 for excitation
are n1 and n2, respectively, then the test signal contains a total
of n1 × n2 pairs which are all the combinations of values of u1

and of u2. Notice that each pair lasts for one sampling interval
only. For example, u1 ) {-1,0,1} and u2 ) {-2,-1,0,1,2},
then there are 15 pairs in the test signal as shown in Figure 3.
The sequence of these steps can be randomly ordered.

4.2. Estimation of Nonlinear Mapping. Assume the intro-
duced multistep signal contains n + 1 steps, i.e., u(k), k ) 0,
1,..., n, and u(k) ) 0 for k > n. Then, based on H̃(l) and ṽ(k),
the LTI subsystem of eq 5 can be rewritten in a matrix form:

η) Φ̃υ̃+ e (13)

where

Φ̃) [Φ̃11 Φ̃12

Φ̃21 Φ̃22
], υ̃) [υ̃1

υ̃2 ], η) [η1

η2 ], e) [e1

e2 ]
(14)

with

Φ̃ij ) [ h̃ij(0) 0 · · · 0

h̃ij(1) h̃ij(0) · · · 0

l l ··· l

h̃ij(n) h̃ij(n- 1) · · · h̃ij(0)

l l ··· l

h̃ij(n+ L- 1) h̃ij(n+ L- 2) · · · h̃ij(L- 1)
] , h̃ij(l)) 0 for lg L

υ̃j ) [Ṽj(0) Ṽj(1) · · · Ṽj(n) ]T

ηi ) [yi(0) yi(1) · · · yi(n+ L- 1) ]T

ei ) [ei(0) ei(1) · · · ei(n+ L- 1) ]T

Notice that if the LTI element has time delay, the all-zero
rows in Φ̃ and η have to be removed. Since the row number of
Φ̃ is always larger than the column number and all elements of
Φ̃ are identified, we can now estimate the unobserved inter-
mediate variable υ̃ by the method of least-squares, i.e.

υ̃) (Φ̃TΦ̃)-1Φ̃Tη (15)

Thus, the nonlinearity is identified as the mapping from u(k) to
ṽ (k) thus obtained, that is, F̃(•):u(k) f ν̃^ (k). Notice that we
also have two known points of F̃(uj1,0) ) [uj1 p̃2uj1]T and F̃(0,uj2)
) [p̃1uj2 uj2]T.

Having the FIR sequence and the nonlinear function, it will
be able to predict the output from the given input, u(k). The
model up to this stage has been identified. In general, this
nonlinear function may be represented by an artificial neural
network for interpolations. Or, it can be modeled as a multi-
variable polynomial with cross terms. For example, consider

Ind. Eng. Chem. Res., Vol. 47, No. 17, 2008 6643



the nonlinear mapping to be represented by multivariable
polynomials with order M as the following:

νi
˜̂ ) fi

ˆ(u1, u2;θi))∑
j)0

M

θi,ju1
M-ju2

j (16)

The parameters can be estimated by regression

θi
/) arg min

θi
∑
k)0

n

{fi
ˆ(u1(k), u2(k);θi)- νi

˜̂ (k)}2 (17)

Remarks. According to eq 13, n + L data points are used
for the identification of nonlinearity. The selection of n may
depend on the complexity of the nonlinearity, the range of the
operating region, and the desired model accuracy.

4.3. Measurement Noise. If the noise e is random and white,
ν̃^ in eq 15 is an unbiased estimate of υ̃. Moreover, if the
number of rows in Φ̃ approaches infinity, ν̃^ is a consistent
estimate of υ̃. To increase the row number of Φ̃, we can proceed
to test using the signal of which the steps are identical to those
of previously used input, but the sequence is randomly
scrambled. In this way, more equations for the unknown υ̃ can
be set up in eq 13 and hence a more consistent estimate of υ̃
could result. However, this is at the cost of prolonged experiment
time. In case of strong noise level, it is suggested that the
measurement is first passed through a filter to reduce the effect
of noise and maintain accurate identification of model without
extra test. Another way to deal with the noise is fitting the
estimated data set with a nonlinear function because the noise
will be filtered out by the fitting procedure.

5. Tuning Matrix P̃ for Model-Based Control

According to the identification algorithm presented in sections
3 and 4, the resulting Hammerstein model is given in Figure 4
in a nonparametric form. In this model, the LTI element consists
of two blocks, Q(l) and P̃-1, where Q(l) is defined by several
identified SISO FIR sequences. Based on the given P̃, the
associated intermediate variable ṽ is estimated and then a
nonlinearity F̃(•) results accordingly. Generally, the values of
p̃1 and p̃2 can be arbitrarily given (provided p̃1 p̃2 * 1), so that
these two components of a MIMO Hammerstein model are not
unique. In other words, for a given input-output set, many
combinations of different static nonlinearity F̃(•) and LTI
subsystem H̃(l) may have identical outputs. Therefore, it gives
engineers the flexibility to choose a model representation for
better control. In the proposed model shown in Figure 4, this
flexibility is achieved by selecting the values at the off-diagonal
entries of P̃. By a proper selection of this P̃ matrix, parametric
models are developed for model-based control uses.

A control structure for Hammerstein type nonlinear process
is as shown in Figure 5, where GC can be a conventional PID
controller or an MPC controller.12 Assume the nonlinearity F̃(•)
is invertible so that the design of GC depends only on H̃(l).
Thus, the off-diagonal elements of P̃ can be determined to meet
the desired characteristic imposed on the LTI subsystem H̃(l).
Two cases with different purposes of design are discussed in
the following:

Steady-State Decoupling. If the system is square, the matrix
P̃-1 can be aimed to serve as a steady-state decoupler for Q(l),
i.e., the LTI subsystem H̃(l) is “self-decoupled” at steady state.
Let Ki

(j) ) ∑l)0
L-1 hi

(j)(l) be the steady-state gain of the dynamics
described by hi

(j)(l) and K be the steady-state gain matrix of
Q(l) in eq 10 with

K) [K1
(1) K1

(2)

K2
(1) K2

(2) ] (18)

By eq 12, if P̃ is chosen as P̃d such that KP̃d
-1 is a diagonal

matrix, the linear subsystem described by H̃(l) is decoupled at
steady state. In other words, a steady-state decoupler, P̃d

-1, has
been automatically embedded into the model. Let D ) KP̃d

-1.

Figure 8. Process and model outputs to random input in example 1

Figure 9. Output response to multistep inputs in example 2.

Figure 10. Impulse response of LTI subsystem in example 2.
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The off-diagonal elements of P̃d are obtained by solving the
equation

{Dij}i)1,2, . . . ,n;j)1,2, . . . ,m;i*j ) 0 (19)

For a 2 × 2 system, the resulting P̃d is

P̃d ) [1 K2
(1)/K2

(2)

K1
(2)/K1

(1) 1 ] (20)

Diagonal Dominance. The diagonal dominance of a MIMO
model is usually desired because it means slight interactions
between loops, so that the design of multiloop decentralized
controller would be easier. To this end, the off-diagonal elements
of P̃ can be estimated by solving the following optimization
problem to reduce the loop interactions

{p̃1
/, p̃2
/}) arg min

p̃1,p̃2(w1

|h˜ 12|2

|h˜ 11|2
+w2

|h˜ 21|2

|h˜ 22|2
) (21)

where w1 and w2 are weighting factors of two loops and h̃ij )
[h̃ij(0) h̃ij(1) · · · h̃ ij(L - 1) ]T. Alternatively, similar to steady-
state decoupling, P̃ can also be estimated to maximize the
diagonal dominance of the LTI model at a certain frequency ω
by letting

P̃dd ) [1 K2
(1)(ω)/K2

(2)(ω)

K1
(2)(ω)/K1

(1)(ω) 1 ] (22)

where

Ki
(j)(ω)) |∑ l)0

L-1
hi

(j)(l)e-jlω|
Remark. As mentioned, the nonparametric input-output

realization model of Hammerstein process is not unique. The
model can be made unique if a priori knowledge about the LTI
element in terms of transfer function matrix is incorporated.
For example, the linear elements in the LTI subsystem is of
ARX form with known order (rij,sij) and delay dij, i.e.

Gij(q))
yi(t)

Vj(t)
)

Bij(q)q-dij

Aij(q)

)
(bij,0 + bij,1q

-1 + bij,2q
-2 + · · · + bij,sij

q-sij)q-dij

1- aij,1q
-1 - aij,2q

-2 - · · · -aij,rij
q-rij

(23)

The corresponding FIR sequence, for l > (dij + sij) satisfies the
following relation:

hij(l)) aij,1hij(l- 1)+ aij,2hij(l- 2)+ · · · + aij,rij
hij(l- rij)

(24)

Thus, the off-diagonal elements of P̃ can be determined such
that the condition in eq 24 is satisfied. Although the parameters
aij are unknown, they can be computed from h̃ij(l) by the method
of least-squares, if the off-diagonal elements of P̃ are given.
That is

aij ) (Γij
TΓij)

-1Γij
T�ij (25)

where

aij ) [aij,1 aij,2 · · · aij,rij ]
T

�ij ) [h̃ij(dij + sij + 1) h̃ij(dij + sij + 2) · · · h̃ij(L) ]T

Γij ) [h̃ij(dij + sij) h̃ij(dij + sij - 1) · · · h̃ij(dij + sij - rij + 1)

h̃ij(dij + sij + 1) h̃ij(dij + sij) · · · h̃ij(dij + sij - rij + 2)

l l ··· l

h̃ij(L- 1) h̃ij(L- 2) · · · h̃ij(L- rij)
]

Notice that �ij, Γij, and aij are functions of the off-diagonal
elements of P̃. Thus, these off-diagonal elements can be
determined by solving an optimization problem. For example,
a 2 × 2 system, it is

{p̃1
/, p̃2
/}) arg min

p̃1,p̃1(∑i)1

2

∑
j)1

2

|�ij -Γijaij|2) (26)

As a result, a unique representation of the Hammerstein model
is obtained. If the model order and delay are unknown, the above
optimization problem can be solved repetitively using different
sets of (rij,sij,dij) until the residual is smaller than required.

6. Simulation Example

Example 1. Consider a nonlinear process described by the
Hammerstein system as follows:

G(q)) [ 0.1q-1 + 0.2q-2

1- 1.2q-1 + 0.35q-2

q-1

1- 0.7q-1

0.3q-1 + 0.2q-2

1- 0.8q-1

q-1 + 0.5q-2

1+ 0.4q-2
]

F(u)) [u1
3 - u1u2 + 2u2

2

0.582(e(u1+u2) - 1) ]

Figure 11. Plot of nonlinearity in example 2.

Figure 12. Process and model outputs to random input in example 2.
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The inputs for estimation of FIR matrix are chosen as u1(k)
) PRBS(1,0), u2(k) ) 0 at the first stage and u1(k) ) 0, u2(k)
) PRBS(1,0) at the second stage. The input for identification
of the nonlinearity is a multivariable multistep signal which
covers all the combination of u1 ) u2 ) {-2:0.2:2}, i.e., a total
of 21 × 21 ) 441 pairs. The sampling interval is taken as 1.
To simulate the measurement noise, random white noise is added
to the output, with |e1(k)| e 0.2 and |e2(k)| e 0.2. First, the
matrix Q(l) is identified from the PRBS test. Here, two models
with different characteristics for the LTI subsystem are used
for illustration. First, the order (rij,sij) of ARX dynamics for
the LTI subsystem is assumed known (model 1). The results
obtained by eq 26 are p̃1 ) 1.973 and p̃2 ) 0.965. Notice that
their exact values are p1 ) 2 and p2 ) 1. In the second one,
steady-state decoupling is imposed on the LTI subsystem (model
2), and the results computed from eq 20 are p̃1 ) 0.592 and p̃2

) 1.357. The impulse response sequences of these two models
together with that of original process are shown in Figure 6.
Based on the two LTI models, two corresponding input-output
mappings of the nonlinearity are thus estimated from the test
of multistep signal. These mappings have been fitted with
multivariable polynomials as shown in Figure 7. The outputs
of original Hammerstein system and two identified models to
random input are simulated as shown in Figure 8. As mentioned
previously, although these two representations of the Hammer-
stein model are quite different, both of them can produce very
similar outputs to that of the original system.

Example 2. Consider a distillation column with 30 trays for
the separation of a binary mixture as it was used by Benallou
et al.13 and Horton et al.14 The column is described by 32
nonlinear ordinary differential equations and is assumed to have
a constant molar overflow as well as a constant relative volatility
of 1.6. The feed stream is introduced at the middle of the column
on stage 17 and has a composition of xF ) 0.5. The reflux ratio
(RR) and the vapor boilup (V) are the input variables (u1 and
u2), and the distillate composition (xD) and bottom composition
(xB) are used as output variables (y1 and y2). The steady-state
values of these four variables are RR ) 3, V ) 0.8, xD ) 0.935,
and xB ) 0.065.

The proposed method is used to identify a Hammerstein
model based on simulation data with a sampling time of 10s.
The operating region for this system was chosen to be (15%
around the steady-state vales. The exciting signals for the
estimation of FIR matrix are u1(k) ) PRBS(0.225,0), u2(k) ) 0
at the first stage and u1(k) ) 0, u2(k) ) PRBS(0.06,0) at the
second stage. Then, a multivariable multistep signal which
covers all the combination of u1 ) {-0.45:0.045:0.45}, u2 )
{-0.12:0.012:0.12} is used to estimate the nonlinearity. Colored
noises, w(k), with autoregressive dynamics of order 1 (i.e., w(k)
) 0.8 w(k - 1) + e(k)) are added to the outputs to simulate a
more realistic scenario. The noise-to-signal ratio (NSR), defined
as the following, is around 20%.

NSR) mean (abs (noise))
mean (abs (signal))

Figure 13. Nonlinear MPC results in example 3.
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The output response to multistep inputs is shown in Figure
9. Based on the excitation of PRBS, the matrix Q(l) is first
identified. We assume that all dynamics of the LTI subsystem
are represented as ARX of order (1,1) without time delay, and
the parameters are found as p̃1 ) -0.213 and p̃2 ) -0.014.
The identified impulse response sequences are shown in Figure
10. Based on this LTI model, the corresponding input-output
mappings of the nonlinearity are thus estimated from the test
of multistep signal. This mapping has been fitted with multi-
variable polynomials of order 5, as shown in Figure 11. The
simulated response of the identified Hammerstein model is
compared with the actual response in Figure 12, where a good
agreement between them can be observed. For the purpose of
comparison, random signals covering the operating region were
used to excite the process, and a linear model (FIR matrix) is
thus identified using the least-squares estimation. The simulated
response of the identified linear model is also shown in Figure
12. Clearly, the predictive capability of the Hammerstein model
outperforms that of the linear model.

Example 3. To demonstrate that different model representa-
tions can be used for nonlinear control application, a Hammer-
stein process with simple nonlinearity as follows is considered.

G(q)) [ -0.112q-1 - 0.058q-2

1- 1.05q-1 + 0.136q-2

0.59q-1

1- 0.607q-1

0.85q-1

1- 0.717q-1

0.098q-1

1- 0.95q-1
]

F(u)) [u1
2 + 2u2

2u1 - u2
2 ]

The operating region is u1, u2 ∈ [-1 1], and the sampling
interval is 1. Three identified Hammerstein models with different
characteristics for the LTI subsystem (i.e., ARX of known order,
steady-state decoupling, and diagonal dominance) are used for
the nonlinear MPC design given in Figure 5. The control horizon
and prediction horizon are taken as 2 and 5, respectively, in all
simulations. Each input and output is equally weighted. The
closed-loop responses are shown in Figure 13. It can be seen
that all the identified models can be used for control design
with satisfactory responses. Nevertheless, better control perfor-
mance is found when the model with diagonally dominant
dynamics for the LTI subsystem is used.

7. Conclusion

In this paper, a new method has been presented to identify
and model MIMO Hammerstein systems. By the proposed
special test inputs, the identifications of LTI subsystem and
nonlinearity are separated, so that iterative procedures are
avoided. Because the proposed method is a nonparametric one,
the parametrization of system is not required in advance and

thus the representation of model is not unique. With the
identified nonparametric realization of the system, engineers can
have the flexibility in modeling Hammerstein systems to meet
their demands by adjusting a few parameters. Simulation results
have shown that an accurate model can be identified by the
proposed method. Furthermore, different model representations
can be used to describe the behavior of a Hammerstein system
and can be used for control design.

Note Added after ASAP Publication: The version of this
paper that was published on the Web July 30, 2008 has errors
in it that were associated with eq 2. The corrected version of
this paper was reposted to the Web August 5, 2008.
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