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Multiple Multiplicative Fault Diagnosis for Dynamic Processes via Parameter
Similarity Measures

Hsiao-Ping Huang,* Cheng-Chih Li, and Jyh-Cheng Jeng

Department of Chemical Engineering, National Taiwan UniVersity, Taipei 106, Taiwan, ROC

In this paper, a systematic approach that employs novel parameter similarities is proposed to detect, isolate,
and identify multiplicative faults in a multi-input multi-output (MIMO) dynamic system. These multiplicative
faults are usually difficult to deal with using conventional statistics-based methods. Similarity measures based
on impulse response sequences of dynamic elements are defined. By using the proposed similarity measures,
the overall and local faults, including dead time, gain, and other dynamic parameters in a multivariate process,
can be detected and isolated. The method has the potential to be used for on-line fault diagnosis. Simulated
numerical and industrial examples are used to demonstrate the methodology.

1. Introduction

Process abnormalities are usually classified into additive or
multiplicative faults according to the effects on a process. In
general, additive faults affect processes as unknown inputs to
the processes. Sensor failures and unknown disturbances such
as actuator malfunctions or leakages in pipelines are of this
type.1-3 Multiplicative faults usually have important effects on
the process dynamics.4,5 Mathematically, they appear as pa-
rameter or structure changes in a parametric or nonparametric
process representation (e.g., model). Fouling, clogging, and/or
surface contamination are of this category. Detection of such
faults can be formulated as detection of abrupt parameter
changes at unknown time instants. The book of Basseville and
Nikiforov4 gives a thorough review on the definitions and the
methods of approach for the detection of such parameter changes
with a main focus on the parametric statistical tools such as
log-likelihood ratios, efficient scores, and so forth. In general,
the abrupt changes in such parameters will cause changes in
the impulse response sequences of the process. A more direct
way to detect and isolate such multiplicative faults is to evaluate
the similarities between the impulse response sequences before
and those after abrupt parameter changes.

Pattern matching has often been applied to classify data sets
with similar features for diagnosing the abnormalities in the
collected data samples. Similarity measures emphasizing dif-
ferences in the statistical properties between data sets have been
reported in the literature. These measures are defined by making
use of norms or weighted norms of Fourier or wavelet
transformed data.6,7 Krzanowski8 proposed a prototype principal
components analysis (PCA) based similarity measure. Later,
Singhal and Seborg9 modified this prototype to consider the
relative importance of each principal component (PC). There
are also some other types of similarity measures based on PCA
transformation. Johannesmeyer et al.10 proposed an alternative
similarity index which counts the number of alarms in different
data sets to measure their similarity. Singhal and Seborg11 also
introduced a distance-based similarity measure by considering
the Mahalanobis distance between the weighted centers of two
data sets; this distance-based measure is useful to distinguish
data from different operation levels. Kano et al.12 introduced a
dissimilarity measure based on eigen-decompositions of data
sets for process monitoring. This measure is effective for
catching the variance/covariance changes from two data sets.
Because most of the aforementioned similarity measures are

scaled to range from zero to unity, several combined similarity
measures (e.g., linear combinations of indices) have also been
proposed and discussed.9-11,13 Most of the above-mentioned
measures focus only on the similarity of statistical properties
(e.g., distances, covariance structures, etc.) among data sets but
not the similarity of functional relationships between the
variables. For instance, consider two sets of data that are
collected from the same process which is run under different
input conditions. The distance-based measure usually finds
dissimilarity between the data and fails to find that the process
is essentially similar. This is because that the PCA-based
measure is good for catching the variance/covariance similarity
between two data sets but does not detect the differences in the
relationships of the variables in a dynamic process.

Comparing the developments mentioned, relatively few papers
that study the diagnosis of multiplicative faults are found in
the open literature.14-17 Motivated by this deficiency of the con-
ventional measures, in this paper, parameter similarity measures
for static or dynamic processes are presented. The parameters
that characterize a static system are generated by conventional
least-squares analysis. On the other hand, the parameters that
characterize a dynamic system are identified by making use of
an effective subspace algorithm.18,19 The similarity measures
based on these parameters are then defined for static and
dynamic systems. By making uses of these parameter similarity
measures, process changes can be accurately detected, isolated,
and identified within a certain level of confidence.

The organization of the remaining sections for this paper is
as follows. A brief review of conventional PCA-based and
distance-based similarity measures is presented in section 2. Two
simple numerical examples are given to demonstrate the
weaknesses and deficiency of these measures in the problem
of multiplicative fault diagnosis. In section 3, the basic idea of
parameter similarity between two static processes is proposed,
and the features of this definition are also discussed. Parameter
estimation for the dynamic process is presented in section 4.
Some statistical properties of these identified parameters are
also given. Section 5 presents the most important part of this
proposed method. Different types of parameter similarities for
diagnosing multiplicative faults are defined. A systematic
procedure for multiple multiplicative fault diagnosis is proposed
by making use of these defined similarities. Extensions of the
proposed fault diagnosis method to on-line application will be
presented in section 6. Simulated numerical and industrial applica-
tions are given in section 7 to demonstrate the effectiveness
and practicality of the method in diagnosing multiplicative faults.
Concluding remarks based on the results are given in section 8.
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2. Conventional Similarity Measures for Data Sets

Similarity measures are used to assess the degree of similarity
between the data set of interest and a template data set. This
section reviews the basic formulations of the PCA-based and
distance-based similarity measures and examines their ap-
plicability to fault diagnosis using simple numerical examples.

2.1. PCA-Based Similarity Measures.PCA is a mature tool
for analyzing multivariate data by projecting original variable
space into a reduced-dimension space.20 The orthonormal
projecting matrix consists of loading vectors. These principal
loading vectors stand for the most important directions of
variability of the data.21 Mathematically, PCA can be expressed
by the following equations.

where X and T are the matrices of the original and the
transformed variables, respectively,P is the corresponding
loading matrix,Λ is a diagonal and semi-positive-definite matrix,
which is the estimated covariance matrix of the variables in
the transformed space. Usually, onlynLV PCs are selected to
represent the variability of the original data set.

Krzanowski8 first defined a PCA similarity measure for
assessing the similarity between two data sets. LetX(I) andX(II)

denote two data sets collected from separated runs I and II,
respectively. They contain the same number of variables but not
necessarily the same number of observations. One assumes that, in
each data set,nLV PCs, which describe at least 95% of the total
variance, are selected. Consequently, the corresponding loading
matrices,P(I) and P(II) , span the reduced spaces of the two
original data sets. The PCA similarity measure is calculated from
the squared cosine values of angles between the loadings; that is,

whereθij is the angle between theith loading vector of setX(I)

and thejth loading vector of setX(II) .
In eq 2, the firstnLV loadings of each data set are equally

weighted in the calculation ofSPCA. But this equal weighting
computation might be inappropriate because the amount of
variance described by each of thenLV loadings varies signifi-
cantly. For this reason, Singhal and Seborg9 modified this
ordinary PCA similarity measure by weighting loadings with
corresponding eigenvalues as follows.

whereΛ(I) andΛ(II) are matrices consisting of eigenvalues that
correspond to the loading matricesP(I) andP(II) , respectively.

On the basis of these definitions, the range of these PCA-
based similarity measures is from zero to unity. Let us consider
the following linear static process model:

Let Σx and Σy designate cov(x,x) and cov(y,y), respectively.
The covariance and the correlation matrices,F, of x andy can
be derived as follows22

From eq 5, it is apparent that the covariance matrix depends on
Σx and the correlation structure is independent ofΣx. In case
the covariance matrix of variables is considered for eigen-
decomposition in computing the similarity, the result will be
sensitive to theΣx change. On the other hand, if the correlation
matrix is considered for eigen-decomposition, the similarity
measure will be insensitive toΣx change. In both cases, the
computed PCA-based similarity measures may be difficult to
detect or distinguish between a model change versusΣx change.
In a simplest case where possibility of model change is excluded,
however, use of the covariance matrix for eigen-decomposition
may detect the covariance change inΣx, but this may not be
really helpful, as process change is very common in real
operations.

2.2. Distance-Based Similarity Measure.For data sets with
similar covariance structures but different operating levels, the
PCA-based similarity measures may fail to indicate their
differences. For this, Singhal and Seborg11 proposed a distance-
based similarity measure which is most useful for this purpose.

The weight centers ofX(I) andX(II) are evaluated as the sample
means.

in which Nk is the numbers of samples contained in data sets
X(k). The Mahalanobis distance23 between the center ofX(I) and
the center ofX(II) is then calculated as

whereΣI
† is the pseudo-inverse of the covariance of data set

X(I).
By assuming that the distance,φ, follows a standard normal

distribution, the distance similarity measure is defined by
following expression.

The corresponding value of the error function in eq 8 can be
evaluated by the table of standard normal distribution or by a
commercially available software package such as Matlab or
SAS.

2.3. Evaluation of Conventional Similarity Measures.In
this subsection, two illustrative numerical examples will be used
to illustrate the PCA-based and distance-based similarity
measures with their capability in detecting process changes. The
effectiveness of each method is assessed by its accuracy and
consistency. The data used in these illustrations are generated

X ) TPT + E

cov(T) ) Λ ) diag(λ1 λ2 ‚‚‚ λnLV
)

(1)

SPCA )
1

nLV
∑
j)1

nLV

∑
i)1

nLV

cos2 θij

) 1
nLV

trace((P(I))TP(II)(P(II))TP(I))

(2)

SPCA
λ )

∑
j)1

nLV

∑
i)1

nLV

{λi
(I)λj

(II) cos2 θij}

∑
j)1

nLV

∑
i)1

nLV

λi
(I)λj

(II)

)
trace((Λ(I))1/2(P(II))TP(II)Λ(II)(P(II))TP(I)(Λ(I))1/2)

trace(Λ(I)Λ(II))

(3)

y ) Ax (4)

cov([xy ]) ) [Σx ΣxA
T

AΣx Σy ] and F([xy ]) ) [I AT

(AT)-1 I ] (5)

xj(k) ) 1
Nk

X(k)1T, k ∈ {I,II } (6)

φ ) [(xj(I) - xj(II))TΣI
†(xj(I) - xj(II))]1/2 (7)

Sdist ) 1 - ∫-φ

φ 1

x2π
e-z2/2 dz (8)

4518 Ind. Eng. Chem. Res., Vol. 46, No. 13, 2007



by the multivariate random number generator in Matlab with
different seeds.

2.3.1. Illustration 1. This example will illustrate the fact that
an unchanged static relationship will have a different output
variance/covariance structure when input variance/covariance
structure changes. These changes are common and may occur
in real plants. For example, the input flow streams (e.g., cold/
hot streams) to a process unit (e.g., a heat exchanger) at different
levels of valve opening may have different variance/covariance
structures as a result of nonlinear valve characteristics. These
valve opening levels may have to be manipulated to meet
different heat loads.

Let Z(i) ∈ R200×4, i ∈ {1,2} designate two data sets, each with
200 samples and 4 variables. These samples are collected from
the same linear static process expressed as follows.

whereB is a matrix of parameters and the two vectorsx(i) and
e(i) designate the independent variables and measuring errors,
respectively.

In this case, one assumes that the magnitudes of independent
variables are different and that the operating regions change
slightly in each run. Mathematically,x(i) ande(i) are specified
as follows.

whereµx
(1) ) 0, µx

(2) ) 1, µe
(1) ) µe

(2) ) 0, Σx
(1) ) diag([1 10]),

Σx
(2) ) diag([10 1]), andΣe

(1) ) Σe
(2) ) I . Note that0, 1, and I

are zero vector, unity vector, and identity matrix, respectively.
The scatter plots of these two realization sets are depicted in
Figure 1, and these plots also implicitly show the significantly
different principal directions of these two data sets, which are
produced from the same system.

The ordinary PCA, modified PCA, and distance similarity
measures evaluated from eqs 2, 3, and 8 for these two data sets
are listed in the first column of Table 1. In this illustration, the
operation level is changed. So, distance-based measure indicates
very well the dissimilarity between the data sets. The other two
measures also detect the dissimilarity. But they fail to tell if
the change is resulted from input or from the process. Recall
that these two data sets are from the same static processes.

2.3.2. Illustration 2. Let Z(1), Z(2) ∈ R200×4 designate two
data sets with 200 samples and 4 variables in each, where the
samples are collected from two different linear static processes
as follows:

where B(1) ) [0.7 0.3; 0.2 0.8] andB(2) ) 2B(1) )
[1.4 0.6; 0.4 1.6].

In this example, one assumes that (x(1), x(2)) and (e(1), e(2))
are random vectors having the same probability distributions;
they are designated by the following.

The scatter plots of these two realization sets are shown in Figure
2, and the PCA-based and distance-based similarity measures
are evaluated using eqs 2, 3, and 8 and listed in the second
column of Table 1. In this illustration, the model is changed.
The PCA-based measures may interpret the change is from input
magnitude. Because these measures are insensitive to the input
magnitude, they indicate a high similarity as expected. The
distance-based measure indicates that the operation level is

Figure 1. Scatter plots of illustration 1: (a, b) plots of data set 1 and (c, d) plots of data set 2.

Table 1. PCA, Modified PCA, and Distance Similarity Measures for
Illustration 1 and Illustration 2

illustration 1 illustration 2

SPCA 0.8993 0.9224
SPCA

λ 0.2829 0.9255
Sdist 0.0494 0.9702

y(i) ) Bx(i) + e(i); B ) [0.7 0.3; 0.2 0.8]

z(i) ) [y(i)T
x(i)T

]T (9)

x(i) ∼ N(µx
(i), Σx

(i))

e(i) ∼ N(µe
(i), Σe

(i))
(10)

y(i) ) B(i)x(i) + e(i)

z(i) ) [y(i)T
x(i)T

]T
(11)

x(1), x(2) ∼ N(0, diag([3 2]))

e(1), e(2) ∼ N(0, I )
(12)
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unchanged only. That means they are difficult to detect or the
source of change (i.e., model or input) is difficult to distinguish.

3. Parameter Similarities for Linear Static Processes

The following linear regression model is usually used to the
describe linear functional relationship between input and output
variables in static and multivariate processes.

or

whereY ∈ RN×ny, X ∈ RN×nx, B ∈ RNx×ny, andE ∈ RN×ny are the
response, effect, parameter, and residual matrices, respectively.
The integersN, ny, and nx designate the number of samples,
response variables, and effect variables, respectively. If the
ordinary least-squares (OLS) method is applied to estimate these
parameters, the parameter matrix and its variance structure
estimates could be computed by the following24

in which the valueσi
2 could be estimated directly from the

residual vectorEi as follows:24,25

Let {X(I), Y(I)} and{X(II) , Y(II)} denote two data sets withNI

andNII samples, respectively. Their corresponding parameters
and parameter variances, designated asB(k) andσi

2,(k) ) [σi1
2,(k)

‚‚‚ σinx

2,(k)]T, i ∈ {1,‚‚‚,ny}, k ∈ {I,II }, can be estimated directly
using eq 15. A pooled parameter variance can be used to
compare the similarity of parameters in different sets. Letσj2,(I,II)

denote the pooled variance of parametersâij
(I) and âij

(II) . A
pooled variance of the data sets is then defined as follows:22,26

Let Br(I,II) with elementsâij
r (I,II) be defined as the difference

betweenB(I) andB(II) ; that is,

The hypothesis thatâij
(I) is similar to âij

(II) can be tested by
examining if the following inequality holds:

where σj ij
(I,II) is the pooled standard deviation of parameter

âij
r (I,II) âij

(I), and cv g0 is the threshold based on the selected
confidence.

Then, a violating number is defined as follows:

whereδv(•) is a function which satisfies

Finally, the similarity measure of these two data sets I and II
based on their characteristic parameters can be given by

In eq 22,nt is the total number of parameters inBr(I,II). In
accordance with eqs 19 and 22, the features of this defined
parameter similarity are listed as follows.

1. The range of this similarity is from zero to unity, that is,

Figure 2. Scatter plots of illustration 2: (a, b) plots of data set 1 and (c, d) plots of data set 2.

Y ) [y1 y2 ‚‚‚ yny
] ) XB + E (13)

yi ) Xâi + Ei, i ∈ {1,2,‚‚‚,ny} (14)

B ) (â1,â2,‚‚‚,ân) ) (XTX)-1XTY

var(âi) ) diag((XTX)-1σi
2) ) σi

2
(15)

σi
2 ) 1

(N - nx)
Ei

TEi (16)

σj ij
2,(I,II) ) 1

NI + NII - 2
((NI - 1)σij

2,(I) + (NII - 1)σij
2,(II)) (17)

Br(I,II) ) B(I) - B(II) (18)

-cvσj ij
(I,II) e âij

r (I,II) e cvσj ij
(I,II) (19)

nv(I,II) ) ∑
j)1

nx

∑
i)1

ny

δv(|âij
r (I,II) | - cvσj ij

(I,II) ) (20)

δv(ê) ) {1, if ê g0
0, if ê < 0

(21)

Sstatic(I,II) ) 1 -
nv(I,II)

nt
, nt ) nx × ny (22)

0 e Sstatice 1
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2. Multiplicative faults can be detected by this similarity. For
instance, a process model change can be detected ifSstatic is not
close to unity.

3. Dissimilar parameters of processes can be isolated using
eq 19.

4. The difference or ratio of dissimilar parameters can be
regarded as the fault magnitude in that parameter.

4. Parameters for Dynamic Processes

For a dynamic system, the process dynamics can be repre-
sented by an expression similar to that of a static system. That
is,

in which Y i is an output vector, matrixH i is the parameter
matrix, andEi is the residual matrix. MatrixH i can be estimated
from the sets of input and output data by the following:

where

and

Notice thati ∈{1,2,‚‚‚,ny}, j ∈{1,2,‚‚‚,nu}, andN ) 2m + n -
1, which is the total number of samples. The numbern should
be much greater than the selected numberm. The notation (•)†

is the pseudo-inverse operator for a matrix. MatrixH ij
f is a

lower triangular Toeplitz matrix as follows:

Define hij
0 as the transpose of the last row ofH ij

f in a reverse
order, that is,

The last (m - 1) elements in parameter vectorhij
0 form the

impulse response sequence from thejth input to the ith
output.18,19

We take the transpose of eq 23 to yield

The above representation is similar to the equation form for
static systems in eq 13. Letzi, Oi, andEi denote the last column
vectors of the matrices (Y i

f)T, H i
T, andEi

T, respectively. On the
basis of eq 14, one can expresszi as

Similar to the analysis procedure for static processes in section
3, the variance structure ofæi can be estimated using eq 15 as

where σj
2 is the estimated variance ofEi, which can be

evaluated using eq 16.
Let Σi designate the estimated covariance matrix ofæi, that

is,

Becausehij
0 is a subset ofæi from element (j - 1)m + 1 to

elementj × m in reverse order, the covariance structure ofhij
0

can be extracted fromΣi by the following:

where rev(•) is defined as a reverse operator for a matrix as

Let hij be the lastm - 1 elements ofhij
0, and then it is the

impulse sequence of thejth input and theith output of this
process, that is,

Similarly, the covariance and variance structures forhij could
be expressed as follows:

Y i ) H iΓi + Ei (23)

H i ) Y iΓi
T(ΓiΓi

T)† (24)

Γi ) [(U1
f )T ‚‚‚ (Unu

f )T | (Ul
p)T ‚‚‚ (Unu

p )T | (Y i
p)T]T

∈ R(2nu+1)m×n

H i ) [H i1
f ‚‚‚ H inu

f | H i1
p ‚‚‚ H inu

p | H i0
p ]T ∈ Rm×(2nu+1)m

Y i
p ) [yi(1) yi(2) ‚‚‚ yi(n)

yi(2) yi(3) ‚‚‚ yi(n + 1)

l l ‚‚‚ l
yi(m) yi(m + 1) ‚‚‚ yi(m + n - 1)] ∈ Rm×n

Y i
f ) [yi(m + 1) yi(m + 2) ‚‚‚ yi(m + n)

yi(m + 2) yi(m + 3) ‚‚‚ yi(m + n + 1)

l l ‚‚‚ l
yi(2m) yi(2m + 1) ‚‚‚ yi(2m + n - 1)] ∈ Rm×n

Uj
p ) [uj(1) uj(2) ‚‚‚ uj(n)

uj(2) uj(3) ‚‚‚ uj(n + 1)

l l ‚‚‚ l
uj(m) uj(m + 1) ‚‚‚ uj(m + n - 1)] ∈ Rm×n

Uj
f ) [uj(m + 1) uj(m + 2) ‚‚‚ uj(m + n)

uj(m + 2) uj(m + 3) ‚‚‚ uj(m + n + 1)

l l ‚‚‚ l
uj(2m) uj(2m + 1) ‚‚‚ uj(2m + n - 1)] ∈ Rm×n

(25)

H ij
f ) [0 0 ‚‚‚ 0 0

hij(1) 0 ‚‚‚ 0 0
hij(2) hij(1) ‚‚‚ 0 0
l l ‚‚‚ l l
hij(m - 1) hij(m - 2) ‚‚‚ hij(1) 0] ∈ Rm×m (26)

hij
0 ) [0 hij(1) ‚‚‚ hij(m - 1)]T ∈ Rm (27)

(Y i
f)T ) Γi

TH i
T + Ei

T

) Γi
T[(H i1

f )T ‚‚‚ (H inu

f )T | (H i1
p )T ‚‚‚ (H inu

p )T | (H i0
p )T]T + Ei

T

(28)

zi ) Γi
Tæi + Ei (29)

var(æi) ) diag((ΓiΓi
T)†σi

2) (30)

Σi ) (ΓiΓi
T)†σi

2 (31)

cov(hij
0) ) rev(Σi((j - 1)m + 1:j × m, (j - 1)m + 1:j × m))

(32)

rev([a11 a12 ‚‚‚ a1q

a21 ‚‚‚ ‚‚‚ l
l l ‚‚‚ l
ap1 ‚‚‚ ‚‚‚ apq]) ) [apq ap(q-1) ‚‚‚ ap1

a(p-1)q ‚‚‚ ‚‚‚ l
l l ‚‚‚ l
a1q ‚‚‚ ‚‚‚ a11] (33)

hij
0 ) [0 hij

T]T (34)
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The averaged parameter variance for all elements inhij can be
given by

The process dead time for sub-model (i,j), designated asdij, is
taken as the integerk such that

where σij ) xσij
2 and cv is the threshold with prescribed

confidence.
When using the aforementioned criterion to specify dead

times, the resulting dead times will be sensitive to outliers at
the very beginning of the computedhij sequence. A more robust
estimation for this process dead time in sub-model (i,j) can be
determined as follows.

On the basis of the aforementioned derivations, a nonparametric
model for a dynamic system can be evaluated. Some features
of this mathematical representation include the following:

1. The model structure does not need to be known in advance.
2. The number of parametersm in a model is adjustable for

required accuracy or available observations of measurements.
3. The dead times of processes can be estimated straightfor-

wardly from the evaluated parameter vectors.
4. The corresponding variances of parameters can be analyti-

cally estimated using the conventional regression analysis.

5. Similarity Measures for Dynamic Processes

In this section, a variety of definitions of similarities between
dynamic processes will be proposed. They can be basically
classified into two categories, overall similarity and the sub-
model similarities. The overall similarity is a lumped overall
assessment of a dynamic model that consists of several sub-
models, and the sub-model similarities refer to similarities
specific to each sub-model. Moreover, resolution-enhanced
overall and sub-model similarities will also be developed using
a weighted factor method. Because identification of a process
model with closed-loop data is still an open problem, the
estimation of parameters in a dynamic system (e.g., eq 23)
requires open-loop pseudo-random binary sequence (PRBS)
input excitations. Nevertheless, these PRBS excitations may be
incorporated into a closed-loop system so that the fault detection
and isolation can be carried on without drastically disturbing
the system. This will be addressed later.

Let {U(I), Y(I)} and {U(II) ,Y(II)} be two dynamics data sets
with sample numberNI andNII at run I and run II, respectively.
Assume the sampling time of these two sets is the same. Using
eq 24, one can compute their characteristic parameter vectors
from each input and output pair. Moreover, the variance and
covariance structures are estimated through eq 35 to yield

wherek ∈ {I,II }, i ∈ {1,2,‚‚‚,ny}, and j ∈{1,2,‚‚‚,nu}. In this
study, one assumes the number of elements computed in each
impulse sequence from run I and run II is equal tom.

From eq 23, the outputyi at time instantk can be expressed
as follows:

whereuj(k) ) [uj(k - 1) ‚‚‚ uj (k - m)]T andgi(k) is the residual.
5.1. Overall Similarity. To define the overall similarity, a

pooled variance of parametershij
(I) and hij

(II) is first estimated
using the data from run I and run II. That is,22

Furthermore, the scaled parameter vectorhh ij using the pooled
variance is then defined in eq 42:

wherehh ij
(k) ) hij

(k) × (σj ij
(I,II) )-1 andσj ij

(I,II) ) (σj ij
2,(I,II))1/2.

The deviations of the two sets of parameters are then
computed directly using eq 43.

Consequently, the violating numbernij
v(I,II) for sub-model (i,j)

between run I and run II can be counted as follows:

whereδv(•) is an index function which has been specified in
eq 21 andcv is a threshold with a specified confidence level.
Notice that the residues are weighted withω, 0 e ω e 1. The
resolution of similarity measures betweenhij

(I) andhij
(II) can be

enhanced by this weight assigned to the parameters. In eq 44,
the residues in eq 43 are weighted into two parts. The residues
in the first part are usually weighted more than those in the
second part. The number of terms in the first part is determined
by a cutoff numbermij which is defined as the following:

where

Σij ) cov(hij)

) rev(Σi((j - 1)m + 1:j × (m - 1), (j - 1)m + 1:j ×
(m - 1))) ∈ R(m-1)×(m-1)

(35)
σij

2 ) var(hij) ) diag(Σij) ∈ Rm-1

σij
2 ) 1

m - 1
1Tσij

2 (36)

dij ) k if |hij(k)| e cvσij and |hij(k + 1)| > cvσij (37)

dij ) k if |hij(k)| e cvσij and

|hij(k + 1)|,|hij(k + 2)| > cvσij

(38)

H(k) ) [h11
(k) ‚‚‚ hij

(k) ‚‚‚ hnynu

(k) ] ∈ Rm(k)×(nynu)

var(hij
(k)) ) σij

2,(k) and σij
2,(k) ) 1

m(k)
1Tσij

2,(k)

(39)

cov(hij
(k)) ) Σij

(k)

yi(k) ) ∑
j)1

nu

{hij
Tuj(k)} + gi(k) (40)

σj ij
2,(I,II) ) 1

NI + NII - 2
((NI - 1)σij

2,(I) + (NII - 1)σij
2,(II)) (41)

Hh (k) ) [hh11
(k) ‚‚‚ hhnynu

(k) ], k ∈ {I,II } (42)

Hh r(I,II) ) Hh (I) - Hh (II) (43)

nij
v(I,II) ) ∑

k)1

mij
(I)

(δv(|hhij
r (k)| - cv) × ω) +

∑
k)mij

(I)+1

m

(δv(|hhij
r (k)| - cv) × (1 - ω))

(44)

Eij(mij)

Eij(m)
g λ and

Eij(mij - 1)

Eij(m)
< λ (45)

Eij(l) ) ∑
k)1

l

{hij(k)}2 (46)
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and λ is a number between 0 and 1. The factorω is usually
assigned to be greater than 0.5 because a heavier weight on the
first part is desirable.

Finally, the total violating numbernv(I,II) for whole param-
eters inHh r(I,II) becomes

The overall similarity between data setI and data setII can be
expressed as

in which nt,(I) is the weighted number of parameters inHh r(I,II)
as defined by

Note here that the values ofSt(I,II) and St(II, I ) may be
different becausemij

(I) and mij
(II) may be different. The main

purpose of the overall similarity is to detect the occurrence of
multiplicative faults in a dynamic system. If the valueSt(I,II)
is not close enough to unity, this indicates that the process has
changed between run I and run II.

5.2. Sub-Model Similarities. 5.2.1. Similarity for Detection
of Sub-Model Changes.The similarity measure of sub-model
(i,j) is defined for each dynamic element in the process. Similar
to the overall similarity, it is defined as follows:

The main purpose of this similarity measure is to isolate which
sub-model has faults. IfSij(I,II) is far from unity, there is
potential process model change in sub-model (i,j). On the
contrary, the possibility of the existence of a multiplicative fault
in sub-model (i,j) is low if Sij(I,II) is very close to unity.

5.2.2. Similarity for Detection of Dead Time Change.In
this subsection, the similarity on two dead-time-free parameter
vectorshij

(I) andhij
(II) will be defined. Let vectorshij

(I),d andhij
(II),d

denote the dead-time-free parameter vectors after exclusion of
dead time, and they are all cut short to have an equal number
of elements,mij

d, so thathij
(I),d, hij

(II),d ∈ Rmij
d.

Then, the scaled parameter vectors using pooled variance are
computed as

Similarly, the corresponding residual vector is as

Because the dead time elements inhij have been removed in
the construction ofhij

d, the corresponding separation pointmij

should be shifted by the following.

Consequently, the violating number for sub-model (i,j) after dead
time exclusion could be redefined using the format of eq 44:

Finally, the similarity on the dead-time-free sub-models (i,j)
would be

The major usage of this similarity measure is to detect possible
dead time changes in the sub-model (i,j). In this case, a change
will lead to anSij(I,II) far from unity and anSij

d(I,II) close to
unity. The magnitude of this fault in dead time can be estimated
as

5.2.3. Similarity for Detection of Gain Changes.This
similarity measure is used to identify the change of gain in sub-
models (i,j). The process gain is estimated by the sum of all
elements in an impulse response sequence assuming thatm
approaches infinity. For sequencehij, let Kij designate a scaled
factor as follows.

Then, the original parameter vectors are scaled using the above
scaled factors as

wherei ∈ {1,2,‚‚‚,ny} andj ∈ {1,2,‚‚‚,nu}. Because the original
vector is scaled by a constant factor, its corresponding parameter
and averaged parameter variances become

Consequently, the pooled variance of these gain scaled parameter
vectors would be expressed as

Finally, scale the dead-time-free part of the vectors using their
pooled variance to obtainhh ij

(k),Kd:

It should be noted that the lengths ofhh ij
(I),Kd andhh ij

(II),Kd are all
truncated to have the same numbermij

d. The corresponding
residuals are

nv(I,II) ) ∑
j)1

nu

∑
i)1

ny

nij
v(I,II) (47)

St(I,II) ) 1 -
nv(I,II)

nt,(I)
(48)

nt,(I) ) ∑
j)1

nu

∑
i)1

ny

(mij
(I) × ω + (m - mij

(I)) × (1 - ω)) (49)

Sij(I,II) ) 1 -
nv(I,II)

mij
(I) × ω + (m - mij

(I)) × (1 - ω)
(50)

hh ij
(k),d ) hij

(k),d × (σj ij
(I,II) )-1, k ∈ {I,II } (51)

hh ij
r,d(I,II) ) hh ij

(I),d - hh ij
(II),d (52)

mij
b ) mij - dij (53)

nij
v,d(I,II) ) ∑

k)1

mij
b,(I)

(δv(|hhij
r,d(k)| - cv) × ω) +

∑
k)mij

b,(I)+1

mij
d

(δv(|hhij
r,d(k)| - cv) × (1 - ω))

(54)

Sij
d(I,II) ) 1 -

nij
v,d(I,II)

mij
b,(I) × ω + (mij

d - mij
b,(I)) × (1 - ω)

(55)

dij
f (I,II) ) dij

(I) - dij
(II) (56)

Kij ) ∑
k)1

mij

{hij(k) × ω} + ∑
k)mij+1

m

{hij(k) × (1 - ω)} (57)

hij
K ) hij × (Kij)

-1 (58)

σij
2,K ) σij

2 × (Kij)
-2

σij
2,K ) σij

2 × (Kij)
-2

(59)

σj ij
2,(I,II),K ) 1

NI + NII - 2
((NI - 1)σij

2,(I),K + (NII - 1)σij
2,(II),K)

(60)

hh ij
(k),Kd ) hij

(k),d × (σj ij
(I,II),K)-1 k ∈ {I,II } (61)

hh ij
r,Kd(I,II) ) hh ij

(I),Kd - hh ij
(II),Kd (62)

Ind. Eng. Chem. Res., Vol. 46, No. 13, 20074523



Thus, the violating number of these dead-time-free vectors can
be determined by

Likewise, the similarity for detection of gain changes is given
as

If Sij(I,II) and Sij
d(I,II) are all far from unity butSij

Kd(I,II) is close
to unity, the change of gain in the sub-model (i,j) will be
isolated. The magnitude of this fault in the gain can be estimated
as

Some basic features of these defined similarities for dynamic
processes are summarized as follows:

1. The range of these similarities are all from zero to unity,
that is,

2. Multiplicative faults can be detected using overall similarity
St.

3. Abnormal subsystems can be isolated by sub-model
similarity Sij.

4. Changes in dead times of a process can be identified from
the similaritySij

d.
5. Changes in gains of a process can be identified from the

similarity Sij
Kd.

In summary, after defining these similarity measures for
process characteristics, a unified multiplicative fault detection,
isolation, and identification procedure via these indices is
proposed in the following steps.

1. Identify the parameters of processH(k) and estimate their
variance and covariance structuresσij

(k) and Σij
(k) using the

methods describe in section 4 for the given data pairs{U(k),
Y(k)}, wherek ∈ {I,II }, i ∈ {1,‚‚‚,ny}, andj ∈ {1,‚‚‚,nu}. Go to
step 2.

2. If the overall similaritySt(I,II) is not close to unity, a
possible multiplicative fault exists in whole system. Go to step
3 for fault isolation.

3. If sub-model similaritySij(I,II) is not close enough to unity,
a process change exists in sub-model (i,j) has been isolated; go
to step 4 for process dead time fault identification. Otherwise
go to step 6.

4. If the similarity Sij
d(I,II) is close enough to unity, a fault

related to the dead time in sub-model (i,j) is identified. Its
magnitude can be estimated using eq 56. Then go to step 6.
Otherwise go to step 5 for process gain fault identification.

5. If the similaritySij
Kd(I,II) is close to unity, a process gain

fault in sub-model (i,j) is identified, and its magnitude can be
estimated by eq 65. Go to step 6. Otherwise a process change
related to dynamics or a mixture of dead time, gain, and dynamic
characteristics is identified. For the multiplicative fault related
to the change of dynamics, a parsimonious process model might
be required for identifying the corresponding root causes.

6. Repeat steps 3-5 until all pairs of impulse sequences of
sub-models are all examined.

6. Extensions to On-Line Process Change Diagnosis

The similarity measures between dynamic data sets described
in section 5 can be easily performed for on-line multiplicative
fault diagnosis. In this section, a procedure for on-line imple-
mentation procedure will be presented in detail. As mentioned
previously, the estimation of parameters needs open-loop PRBS
excitations. These PRBS excitations can be generated by the
system as shown in Figure 3. The conventional loop monitors
the output during start-up or when a large disturbance occurs.
When the system output is controlled within a normal region
around its target value, the control task can be taken over by
the second loop which monitors the mean of the output. A PRBS
signal is introduced, and the relay is activated. The PRBS has
a large magnitude to override the algebraic sign of the summed
input to the relay and give a smaller PRBS output in turn to
excite the process for parameter estimations. In this way, the
process is under control while the process is excited by a
substantial PRBS input. The data can then be collected for
similarity evaluation on the basis of the presented method.
Anytime during the on-line stage, if the system detects a trend
of mean change in terms of a Studentt test (e.g.,t > tR), that
means the process has been subjected to some unknown
disturbance or process change. Upon this, the outer loop will
be monitoring this mean and produce proper bias to the relay
to compensate for the change and bring the mean back to zero.
The compensating bias in the relay indicates that some fault
has occurred. A new set of parameters together with their
variance/covariance matrices can be calculated, and the similar-
ity indices can be applied. This identification process has been
demonstrated in a paper by Jeng and Huang.19 In the following,
the on-line implementation of the fault detection and isolation
will be addressed.

Figure 3. External loop incorporated to a conventional control system for PRBS excitation.

nij
v,Kd(I,II) ) ∑

k)1

mij
b,(I)

{δv(|hhij
r,Kd(k)| - cv) × ω} +

∑
k)mij

b,(I)+1

mij
d

{δv(|hhij
r,Kd(k)| - cv) × (1 - ω)}

(63)

Sij
Kd(I,II) ) 1 -

nij
v,Kd(I,II)

mij
b,(I) × ω + (mij

d - mij
b,(I)) × (1 - ω)

(64)

Kij
f (I,II) )

Kij
(I)

Kij
(II)

(65)

0 e St, Sij, Sij
d, Sij

Kd e 1
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The first step toward on-line implementation is the identifica-
tion of the parameters and their variance and covariance
structures from a given normal operating data set as a
benchmark.

where U(0) and Y(0) are the input and output data matrices,
respectively, from a nominal process withN samples, that is,

The parameters, variances, and covariance are estimated from
a data set withN samples at time instantk for a similarity check
with the benchmark model, that is,

where

For simplicity, the parameter variance and covariance structures
are adopted from those of normal data to reduce the computa-
tional cost. In other words,

If necessary, the recursive least-squares algorithm could be
applied to eqs 68 and 70 to evaluate the corresponding impulse
sequences iteratively.24,27 Then, the following similarity mea-
sures can be computed directly from their definitions as
mentioned in the previous section.

Finally, on-line updating of these measures can be imple-
mented based on the similarity measures.

Remarks.1. Because we need redundant impulse sequences
obtained from normal cases for estimating the statistics of
similarity measures, the greater the number of redundant

sequences the better. But, from statistical point of view, three
to five should be required at least.

2. The number of samples should be greater than the
parameters that can sufficiently represent the dynamics in the
system.

3. In general, it is suggested that the sampling rate should
not greater than 1/10 of the smallest time constant in the system.

7. Illustrative Examples

In this section, two simulated case studies are used to
demonstrate the efficacy of the presented multiplicative fault
diagnosis approach. The first case is a non-squared numerical
multi-input multi-output (MIMO) system with different sce-
narios of parameter changes, and the proposed parameter
similarity measures are applied to identify the root causes of
abnormalities. In the second application, the developed on-line
process change monitoring procedure is conducted on an
industrial 2× 2 distillation process. From the corresponding
monitoring charts of parameter similarities, the multiplicative
faults can be detected, isolated, and identified. The processes
in these illustrative case studies are all assumed to be operated
under open-loop excitations for convenience. If the process
model can be identified with feedback controls using some
closed-loop process identification algorithm, the introduced
multiplicative faults in these systems could also be detected and
isolated directly with the use of these proposed parameter
similarity measures.

7.1. Example 1.A transfer function model is frequently used
as a basic description of a dynamic system for a variety of
purposes, such as controller design, process control, control
performance assessment28,29and data reconciliation, and so forth.
In this example, a 4× 2 dynamic system (two inputs and four
outputs) with the following nominal transfer function matrix is
considered.

The nominal dynamic process is expressed as follows:

wherey(s), u(s), ande(s) are outputs, inputs, and measurement
errors, respectively. Assuming that the measurement errors
follow independently and identically distributed (i.i.d.) Gaussian
distributions with zero mean and unit variance, that is,e ∼
N(0,I ) and assuming that the nominal plant is excited with
normally distributed random inputs,

Table 2. Fault Scenario for Example 1 (2× 4 Numerical Case)

transfer function fault type nominal faulty transfer function fault type nominal faulty

G11 N/A N/A N/A G12 N/A N/A N/A
G21 dead time 6 8 G22 dead time 11 7
G31 gain -5 -10 G32 gain -20 -10
G41 dynamics 6s + 1 12s + 1 G42 dynamics 18s + 1 10s + 1

G0(s) ) [ 3(6s + 1)

(3s + 1)(10s + 1)
e-s 10(25s + 1)

(5s + 1)(50s + 1)
10

(2s + 1)2
e-6s 12

(5s + 1)2
e-11s

-5
(5s + 1)(3s + 1)

e-5s -20
(8s + 1)(2s + 1)

e-3s

15
6s + 1

e-2s -30
18s + 1

e-5s
] (75)

y(s) ) G0(s) u(s) + e(s) (76)

u0 ∼ N(0,[3 0
0 2]) (77)

{U(0),Y(0),m}98
parameters

estimation
{H(0),{σ11

(0) ‚‚‚ σnynu

(0) },{Σ11
(0) ‚‚‚ Σnynu

(0) }}

(66)

U(0) ) [u(0) u(1) ‚‚‚ u(N - 1)]T ∈ RN×nu

Y(0) ) [y(0) y(1) ‚‚‚ y(N - 1)]T ∈ RN×nu

(67)

{U(k),Y(k),m}98
full

para.est.
{H(k),{σ11

(k) ‚‚‚ σnynu

(k) },{Σ11
(k) ‚‚‚ Σnynu

(k) }}
(68)

U(k) ) [u(k) u(k + 1) ‚‚‚ u(k + N - 1)]T ∈ RN×nu

Y(k) ) [y(k) y(k + 1) ‚‚‚ y(k + N - 1)]T ∈ RN×nu

(69)

{U(k),Y(k),m}98
simplified

para.est.
{H(k)} (70)

1. Overall similarities

St
0(k) ) St(0,k) (71)

2. Similarities for isolation of sub-models

Sij
0(k) ) Sij(0,k) (72)

3. Similarities for detection of dead time changes

Sij
0,d(k) ) Sij

d(0,k) (73)

4. Similarities for detection of gain changes

Sij
0,Kd(k) ) Sij

Kd(0,k) (74)
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The sampling time is set as 1 s, and 600 samples are collected
from this nominal system during the excitation period. A list
of the process changes is given in Table 2, andGij refers the
entry (i,j) in eq 75. Consequently, the corresponding transfer
function matrix of the faulty system would be as follows:

For diagnosing multiplicative faults, the inputs for this case are

A total of 500 realizations are collected as comparative samples,
and the scatter plots of the data sets from the nominal and the
faulty systems are shown in Figure 4. The signal structure of
the measurement errors and the sampling time for the faulty
system (eq 78) are all assumed to be the same as the those of
the nominal system (eq 75).

The similarity measures with factorsm ) 30, λ ) 0.75, and
ω ) 0.9 are prescribed to analyze these two data sets (nominal
and faulty). The evaluated overall similarity is 0.5095, and this
index shows that the parameters of these two sets are different.
One might conclude that there exists process changes in this
plant using this index. The remaining sub-model similarities
for subsystems in this process are listed in Table 3. From the
first row of Table 3, the sub-model similarity measures forG11

andG12 are equal to 1, and it shows that these two subsystems
are normal. On the contrary, the other sub-model similarities
are not close to unity, and multiplicative faults, which exist in
G21, G22, ..., G42 must be isolated one by one.

After removing the dead time elements from the correspond-
ing parameter vectors, the similarities for detection of dead time
changes, that is, row 2 of Table 3, indicate that subsystemsG21

andG22 have different dead times because their corresponding
similarity measures are close to unity after removal of the dead
time. The evaluated fault magnitudes using eq 56 are-2 and 4
s for G21 andG22, respectively.

Furthermore, if parameter vectors are scaled down using their
associated gain scaling factors, the similarities for detection of
gain changes (row 3, Table 3) reveal that the gain has changed
in subsystemsG31 andG32. The estimated fault magnitudes using
eq 65 are 0.4923 and 1.8157 forG31 andG32, respectively.

Because no proposed similarity measure can improve the
similarities ofG41 andG42, one might conclude that the dynamic
characteristics of these two subsystems are substantially dif-
ferent.

7.2. Example 2.Wood and Berry30 presented a 2× 2 transfer
function model for a distillation column to separate methanol
and water (WB system). The two outputs are the mole fraction
of methanol in the distillate and in the bottom. The two inputs
are the reflux flow and vapor boil-up rate, respectively. The
following WB column system is used to produce the simulated
data:

Consequently, the nominal dynamic process can be expressed
as follows:

wherey(s), u(s), ande(s) are outputs, inputs, and measurement
errors, respectively. In this case, the measurement errors are
i.i.d. Gaussian random variables with zero mean and variance
0.5, that is,e ∼ N(0,0.5I ).

Figure 4. Scatter plots of example 1: (a-c) plots of the nominal data set and (d-f) plots of the faulty data set.

Table 3. Sub-Model Similarities for Diagnosing Multiple
Multiplicative Faults in Example 1 (2 × 4 Numerical Case Study)

G11 G12 G21 G22 G31 G32 G41 G42

Sij 1 1 0.6091 0.4899 0.3433 0.2857 0.3721 0.4241

Sij
d 1 1 1 1 0.1124 0.1633 0.2059 0.1947

Sij
Kd 1 0.8714 1 1 1 0.9082 0.1618 0.3540

G*(s) ) [ 3(6s + 1)

(3s + 1)(10s + 1)
e-s 10(25s + 1)

(5s + 1)(50s + 1)
10

(2s + 1)2
e-8s 12

(5s + 1)2
e-7s

-10
(5s + 1)(3s + 1)

e-5s -10
(8s + 1)(2s + 1)

e-3s

15
12s + 1

e-2s -30
10s + 1

e-5s
] (78)

u* ∼ N([11],[5 -4
-4 4 ]) (79)

G(s) ) [ 12.8
16.7s + 1

e-s -18.9
21s + 1

e-3s

6.6
10.9s + 1

e-7s -19.4
14.4s + 1

e-3s] (80)

y(s) ) G(s) u(s) + e(s) (81)
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This process is assumed to be operated under supervised open
loop conditions and be continuously excited by a sequence of
Gaussian random variables. The input is given as follows.

Other basic properties of this system are as follows:
1. Sampling time is set as 1 s.
2. A total of 1800 observations (including nominal and faulty

data) are collected.

After operating normally for 800 s, some multiplicative
changes, as listed in Table 4, are introduced at time instant 800.
The scatter plots of the nominal data set (800 realizations) and
the faulty data set (1000 realizations) are shown in Fig-
ure 5.

The first 600 samples of data are used to identify the system
parameter vectors and to specify the parameter variances, that
is,

Figure 5. Scatter plots of example 2: (a, b) plots of the nominal data set and (c, d) plots of the faulty data set.

Figure 6. Overall similarity for example 2 (WB process).

Table 4. Fault Scenario for Example 2 (WB System)

transfer function fault type nominal faulty transfer function fault type nominal faulty

G11 dead time 1 7 G12 gain -18.9 -9.5
G21 dynamics 10.9s + 1 21s + 1 G22 N/A N/A N/A

u ∼ N(0,[3 0
0 2]) (82)

U(0) ) U(1:600,:), Y(0) ) Y(1:600,:) (83)
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A moving-window approach is used to collect the corre-
sponding data sets at a specific time instant, and the parameter
vectors are also estimated for them, that is,

Because of this, one finds the following:

1. If k e 200, the collected data are all nominal.

2. If 200< k e 800, the faulty data start to enter the collected
data set to replace some of the normal data.

3. If k > 800, the collected data are all faulty.

It should be noted here that simplified parameter estimation
(eq 70) is used in this example. In this case, similarity measures

with factorsm ) 30, λ ) 0.75, andω ) 0.9 are prescribed to
compare the parameter vectors at time instantk and 0.

The evaluated overall similarity is depicted in Figure 6, and
it shows that the change of process model begins aroundk )
200. Figure 7 shows the sub-model similarity for these four
subsystems. The multiplicative faults are correctly and clearly
isolated inG11, G12, andG21. After the transition period 200<
k e 800, the similarities for identification of dead time changes,
which are illustrated in Figure 8, show that the type of fault in
G11 is the change of dead time. Likewise, the similarities for
identification of gain changes in Figure 9 illustrate that the fault
in G12 is a change of gain after the transition period 200< k e
800. Because no proposed sub-model similarity measure can
make the similarity ofG21 close to unity, one might conclude

Figure 7. Sub-model similarities for isolating faulty subsystems for example 2 (WB process).

Figure 8. Similarities for identifying dead time changes for example 2 (WB process).

U(k) ) U(k + 1:k + 600,:), Y(k) ) Y(k + 1:k + 600,:) (84)
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that there was a change of process dynamics in the subsystem
G21. On the contrary, the sub-model similarities forG22 are all
close to unity as seen from Figures 7-9; this clearly shows
that the subsystemG22 has no multiplicative fault.

8. Conclusions

The safety and performance of an industrial plant are
important subjects for research. Among these, changes in the
operation conditions and process dynamics of a system are
important information for the operation and control of a plant.
Any prompt and automatic detection and isolation of such
process changes (or faults) from the recorded measurements will
be beneficial. Currently, multiplicative faults of a system are
usually diagnosed using a model-based approach. This approach
is difficult for systems whose process model cannot be ac-
curately identified and is restricted to some special model
formats. Moreover, conventional similarity measures do not take
into account the dynamics of the process and are not applicable
to analyze the faults relevant to process dynamics. In this paper,
a variety of parameter similarity measures are defined for
detection, isolation, and identification of such dynamic faults.
With the use of these defined parameter similarity indices, a
unified fault diagnosis procedure is developed to analyze the
possible root causes of process changes. In addition, this
proposed diagnostic procedure can be implemented on-line for
the purpose of real-time multiplicative fault monitoring. This
proposed method has been tested with two simulated applica-
tions with good performance in handling multiple and multi-
plicative faults. Notice that the simple PCA-based approaches
do not require system excitation but have limited capability in
fault detections. This presented approach provides a unified and
efficient solution for multiplicative fault diagnosis in multivariate
dynamic systems. It requires more computations and system
excitation and, thus, offers more. It can be a complement to
the existing PCA-based measures to have a wider application
range in terms of fault detections.
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