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Multiple Multiplicative Fault Diagnosis for Dynamic Processes via Parameter

Similarity Measures
Hsiao-Ping Huang,* Cheng-Chih Li, and Jyh-Cheng Jeng
Department of Chemical Engineering, National Taiwan &émsity, Taipei 106, Taiwan, ROC

In this paper, a systematic approach that employs novel parameter similarities is proposed to detect, isolate,
and identify multiplicative faults in a multi-input multi-output (MIMO) dynamic system. These multiplicative
faults are usually difficult to deal with using conventional statistics-based methods. Similarity measures based
on impulse response sequences of dynamic elements are defined. By using the proposed similarity measures,
the overall and local faults, including dead time, gain, and other dynamic parameters in a multivariate process,
can be detected and isolated. The method has the potential to be used for on-line fault diagnosis. Simulated
numerical and industrial examples are used to demonstrate the methodology.

1. Introduction scaled to range from zero to unity, several combined similarity

Process abnormalities are usually classified into additive or Méasures (e.g., linear combinations of indices) have also been
multiplicative faults according to the effects on a process. In Proposed and discuss&d:'** Most of the above-mentioned
general, additive faults affect processes as unknown inputs toMeasures focus only on the similarity of statistical properties
the processes. Sensor failures and unknown disturbances suckf-9-» distances, covariance structures, etc.) among data sets but
as actuator malfunctions or leakages in pipelines are of this "0t the similarity of functional relationships between the
typel-3 Multiplicative faults usually have important effects on  Variables. For instance, consider two sets of data that are
the process dynamié$ Mathematically, they appear as pa- _coIIected fr_o_m the same process which is run under dlffer_ent
rameter or structure changes in a parametric or nonparametridnPut conditions. The distance-based measure usually finds
process representation (e.g., model). Fouling, clogging, and/or@ssmllar!Iy bet\{veen the qlatg and fails to find that the process
surface contamination are of this category. Detection of such IS essentially similar. This is because that the PCA-based
faults can be formulated as detection of abrupt parameter Méasure is good for catching the varlance/covar!ance S|m|I_ar|ty
changes at unknown time instants. The book of Basseville andP&tween two data sets but does not detect the differences in the
Nikiforov# gives a thorough review on the definitions and the relationships of the variables in a dynamic process.
methods of approach for the detection of such parameter changes Comparing the developments mentioned, relatively few papers
with a main focus on the parametric statistical tools such as that study the diagnosis of multiplicative faults are found in
log-likelihood ratios, efficient scores, and so forth. In general, the open literaturé!~'” Motivated by this deficiency of the con-
the abrupt changes in such parameters will cause changes irventional measures, in this paper, parameter similarity measures
the impulse response sequences of the process. A more direcfor static or dynamic processes are presented. The parameters
way to detect and isolate such multiplicative faults is to evaluate that characterize a static system are generated by conventional
the similarities between the impulse response sequences beforéeast-squares analysis. On the other hand, the parameters that
and those after abrupt parameter changes. characterize a dynamic system are identified by making use of

Pattern matching has often been applied to classify data setsan effective subspace algorithfit® The similarity measures
with similar features for diagnosing the abnormalities in the based on these parameters are then defined for static and
collected data samples. Similarity measures emphasizing dif- dynamic systems. By making uses of these parameter similarity
ferences in the statistical properties between data sets have beefieasures, process changes can be accurately detected, isolated,
reported in the literature. These measures are defined by makingand identified within a certain level of confidence.
use of norms or weighted norms of Fourier or wavelet The organization of the remaining sections for this paper is
transformed dat&? Krzanowsk?$ proposed a prototype principal as follows. A brief review of conventional PCA-based and
components analysis (PCA) based similarity measure. Later, distance-based similarity measures is presented in section 2. Two
Singhal and Sebofgmodified this prototype to consider the simple numerical examples are given to demonstrate the
relative importance of each principal component (PC). There weaknesses and deficiency of these measures in the problem
are also some other types of similarity measures based on PCAof multiplicative fault diagnosis. In section 3, the basic idea of
transformation. Johannesmeyer et’ghroposed an alternative ~ parameter similarity between two static processes is proposed,
similarity index which counts the number of alarms in different and the features of this definition are also discussed. Parameter
data sets to measure their similarity. Singhal and Sébaigo estimation for the dynamic process is presented in section 4.
introduced a distance-based similarity measure by consideringSome statistical properties of these identified parameters are
the Mahalanobis distance between the weighted centers of twoalso given. Section 5 presents the most important part of this
data sets; this distance-based measure is useful to distinguistproposed method. Different types of parameter similarities for
data from different operation levels. Kano efaintroduced a diagnosing multiplicative faults are defined. A systematic
dissimilarity measure based on eigen-decompositions of dataprocedure for multiple multiplicative fault diagnosis is proposed
sets for process monitoring. This measure is effective for by making use of these defined similarities. Extensions of the
catching the variance/covariance changes from two data setsproposed fault diagnosis method to on-line application will be
Because most of the aforementioned similarity measures arepresented in section 6. Simulated numerical and industrial applica-
tions are given in section 7 to demonstrate the effectiveness

*To whom all correspondence should be addressed. E-mail: and practicality of the method in diagnosing multiplicative faults.
huanghpc@ntu.edu.tw. Tel.: 886-2-2363-8999. Fax: 886-2-2362-3935. Concluding remarks based on the results are given in section 8.
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2. Conventional Similarity Measures for Data Sets whereA®) and A" are matrices consisting of eigenvalues that
o ~correspond to the loading matricB¥) and P(", respectively.
Similarity measures are used to assess the degree of similarity On the basis of these definitions, the range of these PCA-

between the data set of interest and a template data set. Thigased similarity measures is from zero to unity. Let us consider
section reviews the basic formulations of the PCA-based and the following linear static process model:

distance-based similarity measures and examines their ap-
plicability to fault diagnosis using simple numerical examples. y = AX (4)
2.1. PCA-Based Similarity MeasuresPCA is a mature tool
for analyzing multivariate data by projecting original variable
space into a reduced-dimension sp#cdhe orthonormal
projecting matrix consists of loading vectors. These principal
loading vectors stand for the most important directions of
variability of the dat&! Mathematically, PCA can be expressed cov([x]
by the following equations. y

Let Xx and X, designate cow,x) and covy,y), respectively.
The covariance and the correlation matriggspf x andy can
AT

be derived as follow?
and [X] !
Alvl] ~ lan

From eq 5, it is apparent that the covariance matrix depends on
1) ¥, and the correlation structure is independenZgf In case

the covariance matrix of variables is considered for eigen-

decomposition in computing the similarity, the result will be

sensitive to th&, change. On the other hand, if the correlation
where X and T are the matrices of the original and the matrix is considered for eigen-decomposition, the similarity
transformed variables, respectivelp, is the corresponding  measure will be insensitive t&, change. In both cases, the
loading matrix,A is a diagonal and semi-positive-definite matrix, computed PCA-based similarity measures may be difficult to
which is the estimated covariance matrix of the variables in detect or distinguish between a model change ve&Esahange.
the transformed space. Usually, only, PCs are selected to  |n a simplest case where possibility of model change is excluded,

X, XTAT

(®)
AL, T,

X=TP'+E

cov(T) = A =diagi, 4, 4, )

LV

represent the variability of the original data set. however, use of the covariance matrix for eigen-decomposition
Krzanowsk? first defined a PCA similarity measure for ~may detect the covariance changeXy but this may not be
assessing the similarity between two data setsXieandX ) really helpful, as process change is very common in real

denote two data sets collected from separated runs | and I, operations.

respectively. They contain the same number of variables but not  2.2. Distance-Based Similarity MeasurefFor data sets with
necessarily the same number of observations. One assumes that, similar covariance structures but different operating levels, the
each data setyy PCs, which describe at least 95% of the total PCA-based similarity measures may fail to indicate their
variance, are selected. Consequently, the corresponding loadinglifferences. For this, Singhal and Sebidngroposed a distance-
matrices,P" and P(", span the reduced spaces of the two based similarity measure which is most useful for this purpose.
original data sets. The PCA similarity measure is calculated from  The weight centers of® andX() are evaluated as the sample
the squared cosine values of angles between the loadings; that isneans.

o 1wt
1 M x®==x®1T ke {11} (6)
LvVI=11=
1 ) in which N is the numbers of samples contained in data sets
= —trace(P")"P" (P")TP") X®, The Mahalanobis distan€etween the center o) and
Ny the center oiX(" is then calculated as

— i) _ G\ Tyatrg() _ o(iyg2/2
where6) is the angle between thth loading vector of seX() ¢=Ix XTI (X ) )

and thejth loading vector of sex(. . _ .
) . whereX| is the pseudo-inverse of the covariance of data set
In eq 2, the firstny loadings of each data set are equally X ()

weighted in the calculation dfca. But this equal weighting
computation might be inappropriate because the amount Ofdi
variance described by each of thg, loadings varies signifi-
cantly. For this reason, Singhal and SelSongodified this

By assuming that the distancgg, follows a standard normal
stribution, the distance similarity measure is defined by
following expression.

ordinary PCA similarity measure by weighting loadings with o 1
corresponding eigenvalues as follows. Siist=1— f_,,,_\/z—ne dz (8)
- 20500 o2 The corresponding value of the error function in eq 8 can be
ZZ{ i 4" €O aij} evaluated by the table of standard normal distribution or by a
§p =" commercially available software package such as Matlab or
A Ny Ny (3) SAS.
Z ,1i(')1j(”) 2.3. Evaluation of Conventional Similarity Measures.In
= this subsection, two illustrative numerical examples will be used
to illustrate the PCA-based and distance-based similarity
DVL2 T A (D /oI THM) 7 A (Y1
_ trace(@")"(P")'PM A (PM)PO(AM)) measures with their capability in detecting process changes. The
traceAVAM) effectiveness of each method is assessed by its accuracy and

consistency. The data used in these illustrations are generated
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Figure 1. Scatter plots of illustration 1: (a, b) plots of data set 1 and (c, d) plots of data set 2.

Table 1. PCA, Modified PCA, and Distance Similarity Measures for are zero vector, unity vector, and identity matrix, respectively.
lllustration 1 and lllustration 2 The scatter plots of these two realization sets are depicted in
illustration 1 illustration 2 Figure 1, and these plots also implicitly show the significantly
Seca 0.8993 0.9224 different principal directions of these two data sets, which are
oA 0.2829 0.9255 produced from the same system.
Stist 0.0494 0.9702 The ordinary PCA, modified PCA, and distance similarity

measures evaluated from eqgs 2, 3, and 8 for these two data sets
are listed in the first column of Table 1. In this illustration, the
operation level is changed. So, distance-based measure indicates
very well the dissimilarity between the data sets. The other two
measures also detect the dissimilarity. But they fail to tell if
the change is resulted from input or from the process. Recall
Yhat these two data sets are from the same static processes.

by the multivariate random number generator in Matlab with
different seeds.

2.3.1. lllustration 1. This example will illustrate the fact that
an unchanged static relationship will have a different output
variance/covariance structure when input variance/covariance
structure changes. These changes are common and may occ

in real plants. For example, the input flow streams (e.g., cold/ 2.3.2. Illustration 2. Let Z®, Z® ¢ R4 designate two

Irg/teslg%?r\?;z;os 2???;”';;%3'(’j%2f:;&?::;ﬁgggé’g;:’gﬁr;nEIata sets with 200 samples and 4 variables in each, where the
P g may samples are collected from two different linear static processes

structures as a result of nonlinear valve characteristics. These

valve opening levels may have to be manipulated to meet as follows:
different heat loads. 0 i) i
LetZM e R290x4 j ¢ {1,2 designate two data sets, each with y’=B"X"+¢€
200 samples and 4 variables. These samples are collected from 0 0 T (11)
the same linear static process expressed as follows. zV=[y" x"]
yO =Bx" + &% B=[0.70.3;0.20.8] where B® = [0.7 0.3; 0.2 0.8] andB® = 2B =
_ o ) [1.4 0.6; 0.4 1.6].
20 = [y®" xOq7 In this example, one assumes thaf)( x@) and €v), e?)
_ are random vectors having the same probability distributions;
whereB is a matrix of parameters and the two vectefsand they are designated by the following.
€i) designate the independent variables and measuring errors,
respectively. @ @ o i
In this case, one assumes that the magnitudes of independent XX -1(0, diag([3 2])) (12)
variables are different and that the operating regions change D @ 10, 1)
slightly in each run. Mathematicallx(® ande) are specified ' A
as follows. The scatter plots of these two realization sets are shown in Figure
0 e g 0 2, and the PCA-based and distance-based similarity measures
X Nl B are evaluated using egs 2, 3, and 8 and listed in the second
) — (10) column of Table 1. In this illustration, the model is changed.
€7~ Mue', Xe') The PCA-based measures may interpret the change is from input
magnitude. Because these measures are insensitive to the input
whereu{) = 0, u? = 1, u$) = 4 = 0, = = diag([1 10]), magnitude, they indicate a high similarity as expected. The

2,((2) = diag([10 1]), andZ,(al) = Z(ez) = |. Note that0, 1, and| distance-based measure indicates that the operation level is
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Figure 2. Scatter plots of illustration 2: (a, b) plots of data set 1 and (c, d) plots of data set 2.

unchanged only. That means they are difficult to detect or the denote the pooled variance of parametﬁﬁé and ﬁi(j”)- A
source of change (i.e., model or input) is difficult to distinguish. pooled variance of the data sets is then defined as foltéwfs:

3. Parameter Similarities for Linear Static Processes oizj*("”) — m«N' _ 1)ij,(l) + (N, — 1)0i2]_,(ll)) (17)
The following linear regression model is usually used to the ! "

describe linear functional relationship between input and output | o B'(1,11) with elements. (1,1l) be defined as the difference
, i (],

variables in static and multivariate processes. betweenB® andB(: that is,
Y =[y, ¥, y,d =XB+E (13) B'(I,Il) = B — gt (18)
or The hypothesis thaﬁi(j')_ is similar to B’ can be tested by
examining if the following inequality holds:
Vi=XBite i€ {1,2,--.,ny} (14) _Cvai(jl’“) - ﬁirj(L”) - Cvai(jl'“) (19)

whereY € R, X € R™% B € R%W™, andE e R¥Varethe — \por0 500 g the pooled standard deviation of parameter
response, effect, parameter, and residual matrices, respectively,, ) .

The integersN, ny, andn, designate the number of samples, ﬁij(l’l.l)ﬁii » andc, =0 is the threshold based on the selected
response variables, and effect variables, respectively. If the confidence.

ordinary least-squares (OLS) method is applied to estimate these Then, a violating number is defined as follows:

parameters, the parameter matrix and its variance structure ne ny
estimates could be computed by the followihg n‘(1,I) = Z 5v(|ﬁirj(|’”)| _ Cv(_ji(jul)) (20)
==
B = (BB ,0,) = XX) XY
Brb o) = ( ) (15) whered¥(e) is a function which satisfies
var(g) = diag(X'X) *of) = o s={L i &0 1)
0, if £€<0

in which the values? could be estimated directly from the

residual vectok: as follows24:25 Finally, the similarity measure of these two data sets | and Il
i :

based on their characteristic parameters can be given by

2 1 T \
g2=_ L T 16 Al
T (N=n) (19 Syl =1 - ;),ﬁ=wxm (22)
Let {X®, Y©)} and{X(”)., Y} denote two data sets witk In eq 22,nt is the total number of parameters Bi(l,1l). In
andN; samples, respectively. Their corresponding parameters 4ccordance with egs 19 and 22, the features of this defined
and parameter variances, designate®®sand 6?® = [05® parameter similarity are listed as follows.
e o971 € {100}, k € {L,II}, can be estimated directly 1. The range of this similarity is from zero to unity, that is,

using eq 15. A pooled parameter variance can be used to
compare the similarity of parameters in different sets.a2ét" 0=S8pup=1



Ind. Eng. Chem. Res., Vol. 46, No. 13, 2004521

2. Multiplicative faults can be detected by this similarity. For is the pseudo-inverse operator for a matrix. Maﬂrl# is a

instance, a process model change can be detecBgifis not
close to unity.

3. Dissimilar parameters of processes can be isolated using

eq 19.

4. The difference or ratio of dissimilar parameters can be Hf

regarded as the fault magnitude in that parameter.

4. Parameters for Dynamic Processes

For a dynamic system, the process dynamics can be repre-
sented by an expression similar to that of a static system. That

is,

Y, =HI,+ E (23)

in which Y; is an output vector, matri¥; is the parameter
matrix, andg; is the residual matrix. Matri¥l; can be estimated
from the sets of input and output data by the following:

H; = YiriT(ririT)T (24)

where

L=[(U)" - (URYT1(YDTT

c R(2nu+l)m>< n

Uiy 1 Un" -

Hy= [y - Hiy [ - HE, | HE]T € RO

and
yi(1) %(2) Q)
¥i(2) ¥(3) - Yi(n+1)
YP=|: : .o e gp™n
yi(m y(m+1) - y(m+n-—1)
y(m+1) y(m+2) - y(m+n)
yi(m+2) y(m+3) - y(m+n+1)
Yi=|: : . e ™"
yi(2m) y(2m+1) - y(@2m+n-—1)
25
Fu(1) y(2) - u(n) (25)
U2 u(3) - u(n+1)
uP=|: : . € g™"
u(m y(m+1) - y(m+n-1)
pu(m+1) y(m+2) - u(m-+n)
u(m+2) u(m+3) - u(m+n+1)
U= : L e ™"
u,(2m) u@m+1) - uy@m+n-—1)

Notice thati €{1,2;:-,n},j €{1,2:+-,n}, andN =2m+ n —
1, which is the total number of samples. The numtehould
be much greater than the selected numbefhe notation )T

lower triangular Toeplitz matrix as follows:

0 0 0 0

hl](l) 0 b O O

h"(z) M) 0 e ™™ (26)
hy(m— 1) h (m—2) - h(1) 0

Define hO as the transpose of the last row Idfj in a reverse
order, that is,
h = [0 hy(1) -+ hy(m— 1)]" e R (27)
The last (n — 1) elements in parameter vectbg form the
impulse response sequence from thk input to theith
outputi819
We take the transpose of eq 23 to yield

f
(YD"=TH] +Ef
=T/[(H)" = (HRDTT(HRT +Ef
(28)
The above representation is similar to the equation form for
static systems in eq 13. L& ¢;, ande; denote the last column

vectors of the matricesY()T, H/, andE/, respectively. On the
basis of eq 14, one can expresas

(Hi) | (HR)' -

z=Tlg +¢ (29)

Similar to the analysis procedure for static processes in section
3, the variance structure @f can be estimated using eq 15 as

var(g;) = diag(@;T) o
2

where o] is the estimated variance of, which can be
evaluated using eq 16.
Let X; designate the estimated covariance matrixppfthat

(30)

is,

=(rr)'e? (31)

Becauseh0 is a subset ofp; from elementj(— 1)m + 1 to
element x min reverse order, the covariance structureh?)f
can be extracted frorl; by the following:

cov(hf) = revE((j — m+ 15 x m, ( — )m+ Lj x m))
(32)
where rev{) is defined as a reverse operator for a matrix as

;) Qgp -+ Qg 8q Ag-1) *** G
Bpp cee e Ap-1)q vee

re: . =|: : o (33)
Ay e v gy ay, -

Let h; be the lastm — 1 elements ofnfj’, and then it is the
impulse sequence of thigh input and theith output of this
process, that is,
0 __ T
hlj - [O hij] (34)
Similarly, the covariance and variance structureshipcould
be expressed as follows:
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X; = cov(hy) H® = [h(lkl) hi(jk) hg?“u] c ™)
= rev®Z,(( — hm+ 15 x (m— 1), { — m+ 1§ x . (39)
(m— 1)) € R™x() varf{’) = ot ® and of® =—1707®
(35) m

_ R —1
Uﬁ = Var(hij) = dlag(zij) eR" COV(hi(jk)) _ Zi(J_k)
The averaged parameter variance for all elements, ican be

given by wherek € {LIl}, i € {1,2;++,ny}, andj €{1,2;++,ny}. In this

study, one assumes the number of elements computed in each
1 impulse sequence from run | and run Il is equahto
0= m—_llToﬁ (36) From eq 23, the outpuy at time instank can be expressed
as follows:

The process dead time for sub-modgj)( designated adj, is N
taken as the integée such that yi(K) = Z{ h{uj(k)} + g(K) (40)
=

dj =k if 1hKIl = c,oy and lihy(k+ 1)l > oy (37)

whereu;(k) = [u(k — 1) === u; (k — m)]T andg;(K) is the residual.
where g = \/OiZ_ and ¢, is the threshold with prescribed 5.1. Overall Similarity. To define the overall similarity, a
confidence. : pooled variance of parameten§’ and h{" is first estimated

When using the aforementioned criterion to specify dead Using the data from run I and run Il. That%,

times, the resulting dead times will be sensitive to outliers at
the very beginning of the computés sequence. A more robust 52 (1) = ;((NI - 1)o?"+ (N, — 102y (42)
estimation for this process dead time in sub-modgl ¢an be : N+ N, —2 : :

determined as follows. _ .
Furthermore, the scaled parameter vettpusing the pooled

d; =k if Ihy®Il=co; and ) variance is then defined in eq 42:

(38
(ke LIl (k + 21 = 6,0 AW =AY - A9, ke {111} (42)

ynu
On the basis of the aforementioned derivations, a nonparametric S0 M o ()Nt ) _ 20N
model for a dynamic system can be evaluated. Some featuresVheren” = hy” x (g"")™* and o™ = (37,
of this mathematical representation include the following: The deviations of the two sets of parameters are then
1. The model structure does not need to be known in advance.computed directly using eq 43.
2. The number of parametensin a model is adjustable for - —0 &
required accuracy or available observations of measurements. H(LI) =HY —H (43)
3. The dead times of processes can be estimated straightfor- ) ) )
wardly from the evaluated parameter vectors. Consequently, the violating numblsq‘f(l,ll) for sub-model {,j)
4. The corresponding variances of parameters can be analyti-P€tWeen run I and run Il can be counted as follows:
cally estimated using the conventional regression analysis.

)
\Y _ s _
5. Similarity Measures for Dynamic Processes nij(l’”) - kZ‘ (0 (”hii(k)” ¢) x w) +
In this section, a variety of definitions of similarities between m - (44)
dynamic processes will be proposed. They can be basically (0" (KNIl = ¢)) x (1 — w))
classified into two categories, overall similarity and the sub- k=m+1

model similarities. The overall similarity is a lumped overall

assessment of a dynamic model that consists of several subwhered¥(s) is an index function which has been specified in

models, and the sub-model similarities refer to similarities €q 21 andc, is a threshold with a specified confidence level.

specific to each sub-model. Moreover, resolution-enhanced Notice that the residues are weighted with0 < o < 1. The

overall and sub-model similarities will also be developed using resolution of similarity measures betwebﬁ and hi(j”) can be

a weighted factor method. Because identification of a process enhanced by this weight assigned to the parameters. In eq 44,

model with closed-loop data is still an open problem, the the residues in eq 43 are weighted into two parts. The residues

estimation of parameters in a dynamic system (e.g., eq 23)in the first part are usually weighted more than those in the

requires open-loop pseudo-random binary sequence (PRBS)second part. The number of terms in the first part is determined

input excitations. Nevertheless, these PRBS excitations may beby a cutoff numbem; which is defined as the following:

incorporated into a closed-loop system so that the fault detection

and isolation can be carried on without drastically disturbing E;(my) Ej(m; — 1)

the system. This will be addressed later. E.(m) =/ and TEm
Let {U®, YO} and{U®M Y1} be two dynamics data sets U !

with sample numbeN, andN;; at run I and run Il, respectively. where

Assume the sampling time of these two sets is the same. Using

eq 24, one can compute their characteristic parameter vectors I

from each input and output pair. Moreover, the variance and E;(l) = Z{ hi,-(k)}z (46)

covariance structures are estimated through eq 35 to yield =

<7 (45)
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and/ is a number between 0 and 1. The faciois usually mp0
assigned to be greater than 0.5 because a heavier weight on thﬁV A = (5V(||hr dion — c) x o)+
first part is desirable. Z

Finally, the total violating numbem'(l,Il) for whole param- (54)
eters inH'(1,1) becomes ’; (5V(||ﬁifj’d(k)|| —¢) x (1— w))
k D+1
\ — vV
(L = ;;n‘i(l’”) (“7) Finally, the similarity on the dead-time-free sub-model§ (
would be

The overall similarity between data detind data seli can be
expressed as

ny (1, 10)
< o+ (M = mp®) x (1- )

s = (55)
A1) J m?(')

S@Iy =1- nt,io (48)

The major usage of this similarity measure is to detect possible
dead time changes in the sub-modg).(In this case, a change
will lead to anS;(l,I1) far from unity and ansﬂ(l,ll) close to
unity. The magnitude of this fault in dead time can be estimated
as

in which nt® is the weighted number of parametersHf(l,11)
as defined by

A0 — ( O x o+ m-m) x (1—w) (49)

Note here that the values &(l,1l) and S(II, I) may be
different becausen’ and m" may be different. The main
purpose of the overall similarity is to detect the occurrence of
multiplicative faults in a dynamic system. If the val&gl,Il)
is not close enough to unity, this indicates that the process has
changed between run | and run II.

5.2. Sub-Model Similarities. 5.2.1. Similarity for Detection
of Sub-Model ChangesThe similarity measure of sub-model

(i,)) is defined for each dynamic element in the process. Similar K; = {h”(k) x w} + z {h(K) x (1 — w)} (57)
to the overall similarity, it is defined as follows: k=

5.2.3. Similarity for Detection of Gain Changes.This
similarity measure is used to identify the change of gain in sub-
models {,j). The process gain is estimated by the sum of all
elements in an impulse response sequence assumingnthat
approaches infinity. For sequenkg let K designate a scaled
factor as follows.

S () = (1,11 50) Then, the original parameter vectors are scaled using the above
! m(JI) x @+ (m— mi(jl)) x (1 — o) scaled factors as

The main purpose of this similarity measure is to isolate which hif = hy x ()™ (58)
sub-model has faults. I§;(L,Il) is far from unity, there is

potential process model change in sub-modg). (On the wherei € {1,2;--,ny} andj € {1,2;:-,n;}. Because the original
contrary, the possibility of the existence of a multiplicative fault vector is scaled by a constant factor, its corresponding parameter

in sub-model () is low if Si(I,1) is very close to unity. and averaged parameter variances become
5.2.2. Similarity for Detection of Dead Time Changeln
this subsection, the similarity on two dead-time-free parameter oﬁK = Oﬁ x (Kij)*2
vectorsh{’ andh{" will be defined. Let vectors* andh{" (59)
denote the dead-time-free parameter vectors after exclusion of OZK = 0 x (Kr)
dead time, and they are all cut short to have an equal number :
of elementsm SO thath(' ) h 0 e Ry, Consequently, the pooled variance of these gain scaled parameter

Then, the scaled parameter vectors using pooled variance argectors would be expressed as
computed as
_ =2,(LI,K 1 _ J(1),K I,k
R4 = h®¢ (G K e {111} (51) oy MK = NN, = SN, Doy O+ (N — D)o %)
(60)
Similarly, the corresponding residual vector is as
Finally, scale the dead-time-free part of the vectors using their

R = {4 — pi" (52)  pooled variance to obtain{"

Because the dead time elementshjnhave been removed in plkKd — k)d ( (1), K) 1 ke {0, (61)
the construction ohi‘f, the corresponding separation point !

should be shifted by the following. It should be noted that the lengths iff"** andh{"** are all

o truncated to have the same numbq‘f. The corresponding
m =m; —d; (53) :
residuals are

(;onsequenrly, the violating nurrrber for.sub-modi,g'a) fter dead Frkdy ) = ROK _ K )
time exclusion could be redefined using the format of eq 44: i (1m = ij ij (62)
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Figure 3. External loop incorporated to a conventional control system for PRBS excitation.

Thus, the violating number of these dead-time-free vectors can 3. If sub-model similarity§;(l,1l) is not close enough to unity,

be determined by a process change exists in sub-modgl fias been isolated; go
. to step 4 for process dead time fault identification. Otherwise
VKd i i K go to step 6.
(L) = ;‘ {0°(Ihj (K1 — ¢) x w} + 4. If the similaritij’(I,II) is close enough to unity, a fault
- » (63) related to the dead time in sub-modej)(is identified. Its
Il

Sr Kd magnitude can be estimated using eq 56. Then go to step 6.
{6V(||hiri K —c) x (1 - w)} Otherwise go to step 5 for process gain fault identification.
5. If the similaritySfd(I,II) is close to unity, a process gain
fault in sub-modeli(j) is identified, and its magnitude can be
estimated by eq 65. Go to step 6. Otherwise a process change

k=mp0+1

Likewise, the similarity for detection of gain changes is given

as related to dynamics or a mixture of dead time, gain, and dynamic
n?-"Kd(l,”) characteristics is identified. For the multiplicative fault related
ﬁfd(l,ll) =1- ") Jd ) (64) to the change of dynamics, a parsimonious process model might
M x o+ (my — my) x (1 - ) be required for identifying the corresponding root causes.
. d . 6. Repeat steps-3b until all pairs of impulse sequences of
If Si(1,11) and §(1,11) are all far from unity butS{(L I is close  ¢,p-models are all examined.

to unity, the change of gain in the sub-modef)(will be

isolated. The magnitude of this fault in the gain can be estimated ) _ _ _
as 6. Extensions to On-Line Process Change Diagnosis

() The similarity measures between dynamic data sets described
Kifj(l,ll) =_1 (65) in section 5 can be easily performed for on-line multiplicative
Ki(j”) fault diagnosis. In this section, a procedure for on-line imple-
mentation procedure will be presented in detail. As mentioned
Some basic features of these defined similarities for dynamic previously, the estimation of parameters needs open-loop PRBS

processes are summarized as follows: excitations. These PRBS excitations can be generated by the
1. The range of these similarities are all from zero to unity, system as shown in Figure 3. The conventional loop monitors
that is, the output during start-up or when a large disturbance occurs.
d When the system output is controlled within a normal region

0=8§, Sjv s(Ij Sf =1 around its target value, the control task can be taken over by

o ] ~__ the second loop which monitors the mean of the output. A PRBS
2. Multiplicative faults can be detected using overall similarity - signal is introduced, and the relay is activated. The PRBS has

S. ) a large magnitude to override the algebraic sign of the summed
3. Abnormal subsystems can be isolated by sub-modelnpyt to the relay and give a smaller PRBS output in turn to
similarity §;. ) . - excite the process for parameter estimations. In this way, the

4. Changes in dead times of a process can be identified fromprocess is under control while the process is excited by a
the similarity . substantial PRBS input. The data can then be collected for
5. Changes in gains of a process can be identified from the similarity evaluation on the basis of the presented method.
similarity S, Anytime during the on-line stage, if the system detects a trend

In summary, after defining these similarity measures for of mean change in terms of a Studenést (e.g.f > t.), that
process characteristics, a unified multiplicative fault detection, means the process has been subjected to some unknown
isolation, and identification procedure via these indices is disturbance or process change. Upon this, the outer loop will
proposed in the following steps. be monitoring this mean and produce proper bias to the relay

1. Identify the parameters of proced$) and estimate their  to compensate for the change and bring the mean back to zero.
variance and covariance structure§’ and X’ using the ~ The compensating bias in the relay indicates that some fault

methods describe in section 4 for the given data pair&, has occurred. A new set of parameters together with their
Y®}, wherek € {I,I1},i € {1,--,ny}, andj € {1,--,n}. Go to variance/covariance matrices can be calculated, and the similar-
step 2. ity indices can be applied. This identification process has been

2. If the overall similarity S(1,Il) is not close to unity, a demonstrated in a paper by Jeng and Hu'érg the following,
possible multiplicative fault exists in whole system. Go to step the on-line implementation of the fault detection and isolation
3 for fault isolation. will be addressed.



Table 2. Fault Scenario for Example 1 (2x 4 Numerical Case)
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transfer function fault type nominal faulty transfer function fault type nominal faulty
G11 N/A N/A N/A G2 N/A N/A N/A
Go1 dead time 6 8 Ga2 dead time 11 7
Ga1 gain -5 —10 Ga2 gain —20 —10
Ga1 dynamics 6+1 1x+1 Gaz dynamics 18+1 166+ 1

The first step toward on-line implementation is the identifica-
tion of the parameters and their variance and covariance
structures from a given normal operating data set as a
benchmark.

parameters
_—

©) ..

{(UO YO m) 011

{HOLo - oI - EO0 1)
(66)

where U@ and Y© are the input and output data matrices,

respectively, from a nominal process withsamples, that is,

estimation

U@ =[u() u(2) -+ u(N — 1)]" e R*™
) _ e _ T N ny (67)
YU=[yO)y@) - y(N-1)] R

sequences the better. But, from statistical point of view, three
to five should be required at least.

2. The number of samples should be greater than the
parameters that can sufficiently represent the dynamics in the
system.

3. In general, it is suggested that the sampling rate should
not greater than 1/10 of the smallest time constant in the system.

7. lllustrative Examples

In this section, two simulated case studies are used to
demonstrate the efficacy of the presented multiplicative fault
diagnosis approach. The first case is a non-squared numerical
multi-input multi-output (MIMO) system with different sce-
narios of parameter changes, and the proposed parameter

The parameters, variances, and covariance are estimated fromimilarity measures are applied to identify the root causes of

a data set witN samples at time instaktfor a similarity check
with the benchmark model, that is,

ful ® ... ;K

—_— ® ... K
para.est. o011 Onynu} '{ le Z:nynu} }(68)
where
UY =Tu® uk+ 1) = uk + N — 1)]" e R"™
(69)

YO = [y y(k+ 1) -+ y(k+ N — 1] e R*™

For simplicity, the parameter variance and covariance structures
are adopted from those of normal data to reduce the computa-
tional cost. In other words,

simplified

{U(k),Y(k),m} {H(k)} (70)

para.est.

If necessary, the recursive least-squares algorithm could be

abnormalities. In the second application, the developed on-line
process change monitoring procedure is conducted on an
industrial 2 x 2 distillation process. From the corresponding
monitoring charts of parameter similarities, the multiplicative
faults can be detected, isolated, and identified. The processes
in these illustrative case studies are all assumed to be operated
under open-loop excitations for convenience. If the process
model can be identified with feedback controls using some
closed-loop process identification algorithm, the introduced
multiplicative faults in these systems could also be detected and
isolated directly with the use of these proposed parameter
similarity measures.

7.1. Example 1A transfer function model is frequently used
as a basic description of a dynamic system for a variety of
purposes, such as controller design, process control, control
performance assessm&tfand data reconciliation, and so forth.
In this example, a 4 2 dynamic system (two inputs and four
outputs) with the following nominal transfer function matrix is
considered.

applied to egs 68 and 70 to evaluate the corresponding impulse

sequences iterativeR#:2” Ther), the following ;imilarity mea- 3(6s+ 1) . 1025+ 1)
sures can be computed directly from their definitions as e
mentioned in the previous section. (Bs+1)(16+1) (5s+ 1)(50s+1)
10 e 12 _11s
1. Overall similarities GO = |25+ 12 (5s+ 1)? 75)
S0 =§(0K) (71) 5 s =20 s
(5s+ 1)(3s+1) (8s+ 1)(2s+ 1)
2. Similarities for isolation of sub-models 15 s —30 o5
6s+ 1 18+1
Sk =50k (72) |
o ) ) The nominal dynamic process is expressed as follows:
3. Similarities for detection of dead time changes
_ 0
§K =s/(0k (73) y(s) = G(s) u(s) + &s) (76)
4. Similarities for detection of gain changes wherey(s), u(s), ande(s) are outputs, inputs, and measurement
errors, respectively. Assuming that the measurement errors
% =50k (74) follow independently and identically distributed (i.i.d.) Gaussian

Finally, on-line updating of these measures can be imple-
mented based on the similarity measures.

distributions with zero mean and unit variance, thateisy
{(0,1) and assuming that the nominal plant is excited with
normally distributed random inputs,

Remarks. 1. Because we need redundant impulse sequences

obtained from normal cases for estimating the statistics of
similarity measures, the greater the number of redundant

(77)

o )
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Figure 4. Scatter plots of example 1: {&) plots of the nominal data set and(f) plots of the faulty data set.

Table 3. Sub-Model Similarities for Diagnosing Multiple andGg, are equal to 1, and it shows that these two subsystems
Multiplicative Faults in Example 1 (2 x 4 Numerical Case Study) are normal. On the contrary, the other sub-model similarities
Gu G Ga1 Gz Ga1 Gs2 Gas Gaz are not close to unity, and multiplicative faults, which exist in
§ 1 1 0.6091 0.4899 03433 02857 03721 0.4241 Goz1, Gz, ..., Ga2 Must be isolated one by one.
g 11 1 1 0.1124 0.1633 0.2059 0.1947 After removing the dead time elements from the correspond-
Kd 1 08714 1 1 1 0.9082 0.1618 0.3540  ing parameter vectors, the similarities for detection of dead time

J

o changes, that is, row 2 of Table 3, indicate that subsyst@ms
The sampling time is set as 1 s, and 600 samples are collectechnd G, have different dead times because their corresponding
from this nominal system during the excitation period. A list similarity measures are close to unity after removal of the dead

of the process changes is given in Table 2, @defers the  time. The evaluated fault magnitudes using eq 56-&2end 4
entry (,j) in eq 75. Consequently, the corresponding transfer s for Gy, and Gy, respectively.

function matrix of the faulty system would be as follows: Furthermore, if parameter vectors are scaled down using their
associated gain scaling factors, the similarities for detection of
3(6s+ 1) e s 1025+ 1) gain changes (row 3, Table 3) reveal that the gain has changed
(B3s+1)(A0s+ 1) (5s+ 1)(50s + 1) in subsystem&s; andGg,. The estimated fault magnitudes using
o8 12 o 7s eq 65 are 0.4923 and 1.8157 f8g; and Gsp, respectively.
GH(s) = (2s+ 1)2 (5s+ 1)2 (78) _ B_ecgyse no proposed S|m|I_ar|ty measure can |mprove_the
~10 5 ~10 3 3|m|lar|t|e§ qu41 andGg,, one might conclude that the dyrjamlc .
(Gs+ 1)(3s + 1)c @s+ 1)(2s+ 1)c fc:reelrnatcterlstms of these two subsystems are substantially dif-
File_zs %e‘ss 7.2. Example 2Wood and Berr§? presented a X 2 transfer
l i function model for a distillation column to separate methanol

and water (WB system). The two outputs are the mole fraction

For diagnosing multiplicative faults, the inputs for this case are . " X .
g g P P of methanol in the distillate and in the bottom. The two inputs

115 -4 are the reflux flow and vapor boil-up rate, respectively. The
Ut~ ‘([1] ,[_4 4 ) (79) following WB column system is used to produce the simulated
data:
A total of 500 realizations are collected as comparative samples,
and the scatter plots of the data sets from the nominal and the 12.8 gs _18-96735
faulty systems are shown in Figure 4. The signal structure of —|16.6+1 21s+1
. . G(9) 6.6 —19.4 (80)

the measurement errors and the sampling time for the faulty : g’s & o3
system (eq 78) are all assumed to be the same as the those of 10.+1 14.46+1

the nominal system (eq 75).

The similarity measures with factons = 30,4 = 0.75, and
o = 0.9 are prescribed to analyze these two data sets (nominal
gnd faulty). The evaluated overall similarity is 0.5095, aqd this () = G(3) u(s) + &) (81)
index shows that the parameters of these two sets are different.
One might conclude that there exists process changes in thiswherey(s), u(s), ande(s) are outputs, inputs, and measurement
plant using this index. The remaining sub-model similarities errors, respectively. In this case, the measurement errors are
for subsystems in this process are listed in Table 3. From thei.i.d. Gaussian random variables with zero mean and variance
first row of Table 3, the sub-model similarity measures@ax 0.5, that is,e ~ .4(0,0.9).

Consequently, the nominal dynamic process can be expressed
as follows:
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Figure 5. Scatter plots of example 2: (a, b) plots of the nominal data set and (c, d) plots of the faulty data set.

02+

| 1 | 1 1
100 200 300 400 500 600

1 | 1
700 800 900

1 |
1000 1100

1200
k
Figure 6. Overall similarity for example 2 (WB process).
Table 4. Fault Scenario for Example 2 (WB System)
transfer function fault type nominal faulty transfer function fault type nominal faulty
Gi1 dead time 1 7 Gi2 gain -18.9 -95
Ga1 dynamics 108+1 21s+1 Go2 N/A N/A N/A

This process is assumed to be operated under supervised open After operating normally for 800 s, some multiplicative
loop conditions and be continuously excited by a sequence of changes, as listed in Table 4, are introduced at time instant 800.
The scatter plots of the nominal data set (800 realizations) and
the faulty data set (1000 realizations) are shown in Fig-

Gaussian random variables. The input is given as follows.

oofol3 2]

Other basic properties of this system are as follows:

1. Sampling time is setas 1 s.

2. Atotal of 1800 observations (including nominal and faulty
data) are collected.

(82)

ure 5.

The first 600 samples of data are used to identify the system
parameter vectors and to specify the parameter variances, that

is,

U@ =u(1:600,), Y©=Y(1:600,)

(83)
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Figure 7. Sub-model similarities for isolating faulty subsystems for example 2 (WB process).
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Figure 8. Similarities for identifying dead time changes for example 2 (WB process).

A moving-window approach is used to collect the corre- with factorsm = 30,4 = 0.75, andw = 0.9 are prescribed to

sponding data sets at a specific time instant, and the parametecompare the parameter vectors at time instaand 0.

vectors are also estimated for them, that is, The evaluated overall similarity is depicted in Figure 6, and

it shows that the change of process model begins araund
U® =uU(k+ 1k+600,), Y® =Y(k+ 1:k+600,:) (84)  200. Figure 7 shows the sub-model similarity for these four

subsystems. The multiplicative faults are correctly and clearly
Because of this, one finds the f0||owing: isolated inG]_j_, Ga, and621. After the transition periOd 20&

1. If k < 200, the collected data are all nominal. k s. 800, th.e S|m|Iar|t|gs fqr identification of dead time changgs,
which are illustrated in Figure 8, show that the type of fault in
Ga1 is the change of dead time. Likewise, the similarities for
identification of gain changes in Figure 9 illustrate that the fault

3. If k> 800, the collected data are all faulty. in G120 is a change of gain after the transition period 20@ <

It should be noted here that simplified parameter estimation 800. Because no proposed sub-model similarity measure can
(eq 70) is used in this example. In this case, similarity measuresmake the similarity ofG,; close to unity, one might conclude

2.1f 200 < k < 800, the faulty data start to enter the collected
data set to replace some of the normal data.
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Figure 9. Similarities for identifying gain changes for example 2 (WB process).
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