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Abstract

In this paper, we propose a general extra-gradient scheme for solving monotone variational
inequalities (VI), referred to here as Approximation-based Regularized Extra-gradient method
(ARE). The first step of ARE solves a VI subproblem with an approximation operator satisfying

a pth-order Lipschitz bound with respect to the original mapping, further coupled with the
gradient of a (p + 1)th-order regularization. The optimal global convergence is guaranteed by

including an additional extra-gradient step, while a pth-order superlinear local convergence is
shown to hold if the VI is strongly monotone. The proposed ARE is inclusive and general,
in the sense that a variety of solution methods can be formulated within this framework as
different manifestations of approximations, and their iteration complexities would follow through
in a unified fashion. The ARE framework relates to the first-order methods, while opening
up possibilities to developing higher-order methods specifically for structured problems that
guarantee the optimal iteration complexity bounds.

Keywords: variational inequality, extra-gradient method, tensor method, composite operators.

1 Introduction

Let X ⊂ Rn be a convex set; F (x) : Rn 7→ Rn be a vector mapping. The following problem is
known as the variational inequality problem (VI):

Find x∗ ∈ X such that F (x∗)>(x− x∗) ≥ 0 for all x ∈ X .

As a notation we denote the solution set as

VIX (F (x)) := {x∗ | x∗ ∈ X such that F (x∗)>(x− x∗) ≥ 0 for all x ∈ X}.

We assume VIX (F (x)) is non-empty throughout this paper. The study of finite-dimensional VI
problems dates back to 1960’s where the complementarity problem was developed to solve for var-
ious equilibria, such as economic equilibrium, traffic equilibrium, and in general Nash equilibrium.

∗Department of Industrial and System Engineering, University of Minnesota, huan1741@umn.edu
†Department of Industrial and System Engineering, University of Minnesota, zhangs@umn.edu

1

ar
X

iv
:2

21
0.

04
44

0v
1 

 [
m

at
h.

O
C

] 
 1

0 
O

ct
 2

02
2



For a comprehensive study of the applications, theories and algorithms of VI, readers are referred
to the celebrated monograph by Facchinei and Pang [5].

In this paper, we are interested in a specific class of VI, where the operator F is monotone:

〈F (x)− F (y), x− y〉 ≥ µ‖x− y‖2, ∀x, y ∈ X (1)

for some µ ≥ 0. If there exists some µ > 0 such that (1) holds, it is referred to strongly monotone
and VIX (F (x)) is a singleton. The earliest methods developed to solve VI of this type are the
projection method due to Sibony [33]:

xk+1 := arg min
x∈X

〈F (xk), x− xk〉+
γk
2
‖x− xk‖2, (2)

and the proximal point method due to Martinet [14]:

xk+1 ∈ VIX (F (x) + γk(x− xk)), (3)

for positive {γk}k≥0. These two methods form the basis of most, if not all, methods developed for
monotone VI in the research community thus far.

Korpelevich [10] first introduced an extra-step in the update as follows:
xk+0.5 := arg min

x∈X
〈F (xk), x− xk〉+ γk

2 ‖x− x
k‖2,

xk+1 := arg min
x∈X

〈F (xk+0.5), x− xk〉+ γk
2 ‖x− x

k‖2.
(4)

The iteration complexity of the extra-gradient method (4) is later established by Tseng [37]. In
particular, if the operator is strongly monotone (µ > 0), it is O

(
κ ln

(
1
ε

))
for an ε-solution, where

κ = L
µ is the condition number for Lipschitz continuous operator with constant L. This is a

significant improvement over O
(
κ2 ln

(
1
ε

))
of the vanilla projection method (2), and it is in fact

optimal among first-order methods (i.e. using only the information of F (·)) applied to such class of
problems (with lower bound recently established by Zhang et al. [40]). Many algorithms developed
for monotone VI thereafter adopt this concept of extra-step update and can be considered as
variants of the extra-gradient method, such as modified forward-backward method [36], mirror-
prox method [19], dual-extrapolation method [24, 27], hybrid proximal extra-gradient method [18],
extra-point method [7].

To facilitate the discussion, let us first introduce a few terminologies that will be used throughout
the paper. The term “pth-order method” will be used following the convention of optimization.
In particular, by considering F (x) = ∇f(x) specifically as a gradient mapping of some function
f(x), the first-order method in VI refers to using only the information from the operator F (·), and
the pth-order method refers to using the (p − 1)th-order derivative of the operator: ∇p−1F . As
a result, the term “gradient” will also be used to refer to F (·) due to the background of VI in
solving saddle-point and optimization models. In the pth-order method, the Lipschitz continuity of
∇p−1F (x) is assumed with constant Lp:

‖∇p−1F (x)−∇p−1F (y)‖ ≤ Lp‖x− y‖. (5)
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In this paper, the proposed Approximation-based Regularized Extra-gradient method (ARE) can be
viewed as a generalization of the extra-gradient method (4) in some sense. While the intermediate
iterate xk+0.5 in extra-gradient method (4) is updated by a gradient projection step, in ARE it is
replaced by solving a VI subproblem:

xk+0.5 := VIX (F̃ (x;xk) + γ‖x− xk‖p−1(x− xk)), (6)

where F̃ (x;xk) is an approximation mapping at xk that satisfies a pth-order Lipschitz bound with
respect to F (x) (will be formally defined later), and ‖x−xk‖p−1(x−xk) is the gradient mapping of
a (p+1)th-order regularization. Therefore, we refer to the update in 6 as (p+1)th-order regularzied
VI subproblem. A common choice of F̃ (x;xk) is the Taylor approximation of F (x) at xk, namely,

F̃ (x;xk) :=

p−1∑
i=0

1

i!
∇iF (xk)[x− xk]i.

Such choice of F̃ (x;xk) not only recovers the extra-gradient method when p = 1, but also gives a
succinct update principle for higher-order methods when p > 1. However, the Taylor approximation
needs not be the only motivation for the ARE. We show that the key underlying condition is the
aforementioned pth-order Lipschitz bound, therefore any approximation satisfying this condition
can be considered as a valid method under the general framework of ARE. This not only generalizes
the existing methods but also opens up the possibilities of developing different methods from those
in the literature, and we will discuss several such specific schemes in Section (6). By applying the
abstraction of “approximation” in ARE, a unifying and concise analysis is available to establish the
iteration complexity bound that can be readily specified to any concrete approximation in various
methods given the different problem structures at hand.

The rest of the paper is organized as follows. Section 2 reviews relevant first-order and higher-
order methods for solving monotone VI. Section 3 formally presents ARE and analyzes the global
convergence for both monotone and strongly monotone cases. Section 4 continues the discussion
with strongly monotone VI and establishes the local superlinear convergence. A modified ARE
algorithm is in place to guarantee both global linear and local superlinear convergence. Section 5
is devoted to the discussion of solving the VI subproblem with the approximation operator under
special cases. In Section 6, we present several structured ARE schemes given the original operator
is of the composite form F (x) = H(x) + G(x) and discuss their connections to the existing meth-
ods. We further discuss two specialized approximation concepts: the outer approximation and the
inner approximation, given the general composite form F (x) = H(G(x)). Numerical results from
preliminary experiments are demonstrated in Section 7, and we conclude the paper in Section 8.

2 Literature Review

Historically, Martinet [14] first introduced the notion of proximal point method, which was later
studied and popularized by Rochafellar [32]. Tseng in [37] studied the linear convergence of proximal
point method, extra-gradient method, and matrix-splitting method, given a certain error bound
is satisfied. The strongly monotone operator can be an immediate example of such case. As a
matter of fact, subsequently developed methods such as modified forward-backward method [36],
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mirror-prox method [19], dual-extrapolation method [24, 27], hybrid proximal extra-gradient (HPE)
method [18], extra-point method [7] are all based on the concept of extra-gradient.

Another type of method, known as optimistic gradient descent ascent method (OGDA), was first
proposed by Popov [31]:

xk+1 := PX

(
xk − αF (xk)− η(F (xk)− F (xk−1))

)
, (7)

for some positive α, η > 0, where PX denotes the projection operator onto X . Unlike the update
in extra-gradient method (4) which uses an extra step, OGDA only requires one update (one
projection) per iteration and uses the information from the previous iterate xk−1 instead. The
optimal convergence of OGDA, in both monotone and strongly monotone VI, is established by
Mokhtari et al. [15, 16]. The extra-point method proposed by Huang and Zhang [7] extends the
concepts of the extra-gradient method, OGDA, Nesterov’s acceleration in optimization [21], and
the “heavy-ball” method by Polyak [30] and combines them in a unifying update scheme. If the
parameters associated to these different components satisfy a certain constraint set, it is shown that
optimal iteration complexity is guaranteed. There is another line of work that studies variants of
extra-gradient type methods [38, 11, 9] and proximal point methods [35, 12, 29] with the anchoring
update, where in each iteration the initial iterate is used as the component of convex combination.
The iterates produced are shown to converge among these different methods [39], at a rate same
as the optimal convergence rate (to the solution), and the iteration complexities are improved by
constant orders compared to vanilla extra-gradient method.

The above methods are known as the first-order methods. The lower bound of the iteration
complexity for the first-order methods applied to monotone VI is Ω

(
1
ε

)
, as established by Ne-

mirovsky and Yudin [20], while for strongly monotone VI, it is Ω
(
κ ln

(
1
ε

))
, shown by Zhang et

al. [40] in the context of strongly-convex-strongly-concave saddle-point problems. Methods such
as extra-gradient method, mirror-prox method, dual-extrapolation method [24, 27], HPE, OGDA,
extra-point method have been proven to achieve these lower bounds, hence optimal.

The work of Taji et al. [34] is among the first to consider second-order methods for solving VI. A
linearized VI subproblem with operator F (xk) +∇F (xk)(x−xk) is solved in each iteration and the
merit function f(x) = max

x′∈X
〈F (x), x−x′〉− µ

2‖x−x
′‖2 is used to prove the global convergence, with

an additional local quadratic convergence. However, no explicit iteration complexity is established
for second-order methods until recently. Following the line of research in [34], Huang and Zhang
[6] specifically consider unconstrained strongly-convex-strongly-concave saddle point problem and
incorporate the idea of cubic regularization (originally proposed by Nesterov in the context of

optimization [26]), proving the global iteration complexity O
((
κ2 + κL2

µ

)
ln
(

1
ε

))
, where L2 is the

Lipschitz constant of the Hessian information, in addition to the local quadratic convergence.

Another line of research on second-order methods was started by Monteiro and Svaiter [17]. They
propose a Newton Proximal Extragradient (NPE) method, which can be viewed as a special case
of the HPE with large step size. In HPE, the first step solves approximately the proximal point
update (3) (denote as xk+0.5), while the second step is a regular extra-gradient step. The “large
step size” condition, which is key to guarantee a superior convergence rate, requires:

1

γk
≥ θ

‖xk+0.5 − xk‖
(8)
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for some constant θ > 0. Note that since xk+0.5 depends on γk, a certain procedure is required
to determine xk+0.5 and γk such that (8) also holds. By observing that the set of γk satisfying
the condition is in fact a closed interval, they develop a bisection method to iteratively reduce
the range of γk and solve for xk+0.5 for each fixed γk until the condition is satisfied. They show

that for monotone VI, NPE admits O
(

1/ε
2
3

)
iteration complexity for ergodic mean of xk+0.5 over

0 ≤ k ≤ N − 1, which is an improvement over the optimal first-order complexity O
(

1
ε

)
. While

NPE can also be expressed in the form of second-order mirror-prox method, Bullins and Lai [3]
propose a “higher-order mirror-prox method”, extending the second-order mirror-prox method to

pth-order and establish O
(

1/ε
2
p+1

)
iteration complexity. They replace the linearization F (xk) +

∇F (xk)(x− xk) with the Taylor approximation of F (xk),
p−1∑
i=0

1
i!∇

iF (xk)[x− xk]i, together with an

higher-order constraint on γk and xk+0.5 similar to (8). They also demonstrate an explicit procedure
to instantiate the proposed method in unconstrained problem with p = 2 and a bisection method
to search for xk+0.5 and γk. In [28], Ostroukhov et al. further extend the higher-order mirror-
prox method to strongly monotone VI by incorporating the restart procedure, which yields global

iteration complexity O
((

Lp
µ

) 2
p+1

ln
(

1
ε

))
. The local quadratic convergence is then guaranteed by

incorporating CRN-SPP proposed in [6]. Nesterov in [22] proposes solving constrained convex
optimization with cubic regularized Newton method and extends the results to monotone VI with
cubic regularized Newton modification of the dual-extrapolation method [24]. The global iteration
complexity is shown to be O(1

ε ) for monotone VI, with local quadratic convergence for strongly
monotone VI.

Recently, there are new developments of higher-order methods for VI that are closely related to
the work in this paper. Jiang and Mokhtari [8] propose the Generalized Optimistic Method, which
is a general pth-order variant of OGDA. Instead of using F (xk) to approximate the proximal point
update direction F (xk+1) with correction F (xk)−F (xk−1) as in OGDA (7), they propose to use a
general approximation P (xk+1; Ik) with correction F (xk)−P (xk; Ik−1), where P (x; Ik) can contain
pth-order information and Ik is the information up to kth iteration. Unlike ARE, the Generalized
Optimistic Method does not require an additional projection step in the update, nor does it require
restart to establish linear convergence for strongly monotone VI (see [28] and the discussion in
Section 3.2). However, it still requires to incorporate a bisection subroutine to solve the higher-
order subproblem, similar to the higher-order mirror-prox method [3], while ARE does not. Adil
et al. [1] propose a pth-order method that improves upon the higher-order mirror-prox method
in [3]. The improvement comes from incorporating the gradient of (p + 1)th-order regularization
in the higher-order VI subproblem, which makes the bisection subroutine unnecessary, and the
global complexity is improved by a logarithmic factor. The special case of ARE, where the Taylor
approximation is used as the approximation operator F̃ (x;xk) in the (p+ 1)th-order regularized VI
subproblem (6), coincides with the method proposed in [1] for solving monotone VI. In this paper,
we further develop the global and local convergence for strongly monotone VI (see Section 3.2 and
4) and discuss the possibilities beyond Taylor approximation in the subproblem, which is one of the
key underlying motivation behind the ARE framework. Lin and Jordan [13] propose a pth-order
generalization of Nesterov’s dual extrapolation method [24], referred to Perseus. Same as ARE
and [1], Perseus does not require bisection subroutines by solving the VI subproblem with higher-
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order regularization. In addition to developing the iteration complexity guarantee in monotone
and strongly monotone VI, [13] also extends the analysis to non-monotone VI that satisfies the
(strong) Minty condition. Furthermore, they establish the lower bound complexity for general

pth-order method applied to monotone VI, given by Ω
(

1/ε
2
p+1

)
, which is achieved by Perseus, the

Generalized Optimistic Method [8], [1], and ARE in this paper. Therefore, they are all optimal
pth-order methods for monotone VI.

The above mentioned higher-order methods share some common aspects with ARE, among which
the underlying ideas of ARE are more closely related to NPE [17] and higher-order mirror-prox
method [3, 1], as we shall formally present in Section 3. However, the contributions of this paper are
also distinguished from the previous work in the following perspectives. Firstly, by identifying the
key condition required in developing the higher-order methods, we are able to replace the commonly
used Taylor approximation with a more general approximation in the subproblem. This not only
includes existing methods under the framework of ARE, but also leads to developing specific ARE
schemes for VI with special structures. We devote Section 6 to a more in-depth discussion on this
perspective. Secondly, we also identify that by solving a (p+ 1)th-order regularized VI subproblem
as the first step in each iteration, the procedure of the algorithm as well as the corresponding
analysis are largely simplified compared to the previous work in [17, 3]. We also discuss in more
details the procedure for solving such regularized VI subproblem in the practical case where p = 2
in Section 5. Finally, a pth-order local superlinear convergence is established for pth-order ARE

for strongly monotone VI, which is new to the literature compared to the existing
(
p+1

2

)th
-order

superlinear convergence established in [8, 13].

3 The Global Convergence Analysis of ARE

The Approximation-based Regularized Extra-gradient method (ARE) aims to solve the VI problem:

VIX (F (x)) := {x∗ | x∗ ∈ X such that F (x∗)>(x− x∗) ≥ 0 for all x ∈ X}. (9)

We assume that F (x) is monotone (1) and VIX (F (x)) is non-empty. When F (x) is assumed to
be strongly monotone, VIX (F (x)) becomes a singleton. We also assume the pth-order Lipschitz
continuity (5).

Now, given an arbitrary y ∈ X , we are interested in a general approximation mapping at y:
F̃ (·; y) : Rn 7→ Rn, such that the following pth-order Lipschitz bound holds between the original
mapping F (x) and the approximation F̃ (x; y):

‖F̃ (x; y)− F (x)‖ ≤ τLp‖x− y‖p, (10)

for some p > 1 and τ ∈ (0, 1]. The examples of such approximation include but not limited to
the general Taylor approximation, which further includes F̃ (x; y) = F (y) for p = 1 and F̃ (x; y) =
F (y)+∇F (y)(x−y) for p = 2 as special cases. In general, we say the proposed ARE is a “pth-order
method” if the Lipschitz bound (10) holds with p.

Based on the approximation mapping F̃ (x; y), let us consider the regularized approximation map-
ping by adding a gradient mapping of the (p + 1)th-order regularization term, expressed in the
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following form:

F̃ (x; y) + Lp‖x− y‖p−1(x− y). (11)

Since the Jacobian of Lp‖x− y‖p−1(x− y) is positive definite for x 6= y, the mapping is monotone
[5]. Therefore, the regularized approximation mapping (11) is also monotone as long as F̃ (x; y)
is. In ARE, the first step in each iteration is solving a VI subproblem with operator (11), i.e.
a (p + 1)th-order regualarized VI subproblem, followed by an extra-gradient step, summarized as
follows:  xk+0.5 := VIX

(
F̃ (x;xk) + Lp‖x− xk‖p−1(x− xk)

)
,

xk+1 := arg min
x∈X
〈F (xk+0.5), x− xk〉+

Lp‖xk+0.5−xk‖p−1

2 ‖x− xk‖2,
(12)

for k = 1, 2, .... In the above, as a matter of notion we indicate xk+0.5 to be any solution taken
from the solution set VIX (·). In the second step, the extra-gradient step involves a varying step
size 1

γk
, where

γk := Lp‖xk+0.5 − xk‖p−1, k ≥ 1

is a parameter depending on the previous update xk+0.5. This together with the bound (10) form
the basis of the optimal iteration complexity bound for ARE.

3.1 Solving monotone VI with ARE

We first establish the global convergence results for solving a general monotone VI (9) with pth-order
ARE in the next theorem.

Theorem 3.1 (Global convergence of ARE: Monotone VI). Let {xk}k≥1 and {xk+0.5}k≥1 be gen-
erated by (12) and suppose F (·) is monotone and F̃ (x;xk) is such that (10) holds. Then

m(x̄N ) := max
x∈X
〈F (x), x̄N − x〉 ≤

D2

2ΓN
= O(N−

p+1
2 ), (13)

where

x̄N :=

N∑
k=1

xk+0.5

γk

ΓN
, ΓN :=

N∑
k=1

γ−1
k

for some N > 0, and D := max
x,x′∈X

‖x− x′‖.

Proof. Since

xk+0.5 = VIX

(
F̃ (x;xk) + Lp‖x− xk‖p−1(x− xk)

)
,

we have

〈F̃ (xk+0.5;xk) + Lp‖xk+0.5 − xk‖p−1(xk+0.5 − xk), x− xk+0.5〉 ≥ 0, ∀x ∈ X . (14)
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Denote γk = Lp‖xk+0.5 − xk‖p−1. Substituting x = xk+1 in (14) we have

〈F̃ (xk+0.5;xk), xk+1 − xk+0.5〉
≥ γk〈xk+0.5 − xk, xk+0.5 − xk+1〉

=
γk
2

(
‖xk+0.5 − xk‖2 + ‖xk+1 − xk+0.5‖2 − ‖xk+1 − xk‖2

)
. (15)

On the other hand, by the optimality condition at xk+1 we have

〈F (xk+0.5) + γk(x
k+1 − xk), x− xk+1〉 ≥ 0, for all x ∈ X .

Hence,

〈F (xk+0.5), x− xk+1〉 ≥ γk〈xk+1 − xk, xk+1 − x〉

=
γk
2

(
‖xk+1 − x‖2 + ‖xk+1 − xk‖2 − ‖xk − x‖2

)
, for all x ∈ X . (16)

Continue with the above inequality, for any given x ∈ X we have

γk
2

(
‖xk+1 − x‖2 + ‖xk+1 − xk‖2 − ‖xk − x‖2

)
(16)

≤ 〈F (xk+0.5), x− xk+1〉
= 〈F (xk+0.5), x− xk+0.5〉+ 〈F (xk+0.5), xk+0.5 − xk+1〉
= 〈F (xk+0.5), x− xk+0.5〉+ 〈F (xk+0.5)− F̃ (xk+0.5;xk), xk+0.5 − xk+1〉+ 〈F̃ (xk+0.5;xk), xk+0.5 − xk+1〉
≤ 〈F (xk+0.5), x− xk+0.5〉+ ‖F (xk+0.5)− F̃ (xk+0.5;xk)‖ · ‖xk+0.5 − xk+1‖+ 〈F̃ (xk+0.5;xk), xk+0.5 − xk+1〉

≤ 〈F (xk+0.5), x− xk+0.5〉+
‖F (xk+0.5)− F̃ (xk+0.5;xk)‖2

2γk
+
γk‖xk+0.5 − xk+1‖2

2

+〈F̃ (xk+0.5;xk), xk+0.5 − xk+1〉
(10)

≤ 〈F (xk+0.5), x− xk+0.5〉+
τ2L2

p‖xk+0.5 − xk‖2p

2γk
+
γk‖xk+0.5 − xk+1‖2

2

+〈F̃ (xk+0.5;xk), xk+0.5 − xk+1〉.

Noticing that
τ2L2

p‖xk+0.5−xk‖2p
2γk

= τ2γk‖xk+0.5−xk‖2
2 , and further using (15) we derive from the above

that

γk
2

(
‖xk+1 − x‖2 + ‖xk+1 − xk‖2 − ‖xk − x‖2

)
≤ 〈F (xk+0.5), x− xk+0.5〉+

τ2γk‖xk+0.5 − xk‖2

2
+
γk‖xk+0.5 − xk+1‖2

2

+
γk
2

[
−‖xk+0.5 − xk‖2 − ‖xk+1 − xk+0.5‖2 + ‖xk+1 − xk‖2

]
.

Canceling out terms, we simplify the above inequality into

〈F (xk+0.5), xk+0.5 − x〉+
γk
2

(
1− τ2

)
‖xk+0.5 − xk‖2 ≤ γk

2

[
‖xk − x‖2 − ‖xk+1 − x‖2

]
. (17)
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Consequently, by the monotonicity of F , we have

〈F (x), xk+0.5 − x〉+
γk
2

(
1− τ2

)
‖xk+0.5 − xk‖2

≤ 〈F (xk+0.5), xk+0.5 − x〉+
γk
2

(
1− τ2

)
‖xk+0.5 − xk‖2

≤ γk
2

[
‖xk − x‖2 − ‖xk+1 − x‖2

]
.

Dividing both sides by γk yields

1

γk

〈
F (x), xk+0.5 − x

〉
+

1

2

(
1− τ2

)
‖xk+0.5 − xk‖2 ≤ 1

2

[
‖xk − x‖2 − ‖xk+1 − x‖2

]
. (18)

Summing up the inequality (18) from k = 1 to N , and dividing the resulting inequality on both
sides by ΓN we obtain

〈F (x), x̄N − x〉+
1− τ2

2ΓN

N∑
k=1

‖xk+0.5 − xk‖2 ≤ ‖x
1 − x‖2

2ΓN
(19)

for any x ∈ X . Taking x = x∗ in (19) yields

N∑
k=1

‖xk+0.5 − xk‖2 ≤ ‖x
1 − x∗‖2

1− τ2
. (20)

The so-called mean inequality maintains that for any positive sequence {ak > 0 | k = 1, 2, ..., N}
and any real value r, if we define

Mr(a) :=

(
1

N

N∑
k=1

ark

) 1
r

then we have Mr1(a) ≤Mr2(a) for any r1 ≤ r2.

Now, if we let ak := ‖xk+0.5 − xk‖−(p−1), then we have M− 2
p−1

(a) ≤M1(a); that is

(
1

N

N∑
k=1

‖xk+0.5 − xk‖2
)− p−1

2

≤ 1

N

N∑
k=1

‖xk+0.5 − xk‖−(p−1).

Therefore,

ΓN =
1

Lp

N∑
k=1

‖xk+0.5 − xk‖−(p−1) ≥ N

Lp

(
1

N

N∑
k=1

‖xk+0.5 − xk‖2
)− p−1

2

(20)

≥ N
p+1
2

Lp

(
1− τ2

‖x1 − x∗‖2

) p−1
2

≥ N
p+1
2

Lp

(
1− τ2

D2

) p−1
2

.

9



Then, (19) leads to

m(x̄N ) ≤ D2

2ΓN
≤ D2Lp

2N
p+1
2

(
1−τ2
D2

) p−1
2

=
Dp+1Lp

2 (1− τ2)
p−1
2 N

p+1
2

= O

(
1

N
p+1
2

)
.

Theorem 3.1 implies that the proposed ARE generated x̄N such that m(x̄N ) ≤ ε with iteration

complexity O
(

1/ε
2
p+1

)
. This matches the lower bound Ω

(
1/ε

2
p+1

)
established in [13], hence opti-

mal. The concept of solving a (p+ 1)th-order regularized VI subproblem is also proposed in [1] and
[13], therefore there is no need for an additional bisection subroutine in each iteration. The major
difference between ARE and the method proposed in [1] is that ARE uses a more general approxi-
mation operator F̃ (x;xk) in the aforementioned regularized VI subproblem, which generalizes the
Taylor approximation proposed in [1], and we provide a unified analysis as long as (10) is satisfied.
The flexibility of not being restricted to Taylor approximation is demonstrated in Section 5.2 and
Section 6, where examples are given for applying ARE with non-Taylor approximation F̃ (x;xk) to
problems when the original operator exhibits composite structure F (x) = H(x) + G(x) or more
generally F (x) = H(G(x)).

3.2 Solving strongly monotone VI with ARE-restart

While Theorem 3.1 establishes the optimal sublinear convergence for monotone VI, we shall in-
corporate a restart procedure into ARE (12) to further establish an improved linear convergence
for strongly monotone VI. Similar restarting procedure is also seen in previous work [28, 13] for
establishing the linear convergence. Below we give a detailed analysis for restarting the pth-order
ARE (12), referred to as ARE-restart.

The ARE-restart works in epochs. That is, for each epoch m, where m = 1, 2, ..., a number of
iterative updates (12) is performed and the output is set as the initial iterate at the start of the
next epoch.

Let Nm denote the number of iterations performed in mth epoch, m = 1, 2, .... After each Nm

iterations (of ARE), we restart (x1 ← x̄Nm) and proceed to (m+ 1)th epoch. The output of epoch
m is defined as:

x̄Nm :=

∑Nm
k=1

1
γk
xk+0.5

ΓNm
∈ X , and ΓNm :=

Nm∑
k=1

1

γk
.

Denote D0 = ‖x1 − x∗‖ as the distance to the solution from the very first initial iterate before
any restart and note that D0 ≤ D. Let 0 < δ < 1 be a constant independent of the problem. Let
us fix the iterations in each epoch:

N1 = N2 = · · · = N =

(
Lp
2δµ

) 2
p+1
(

D2
0

1− τ2

) p−1
p+1

. (21)
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From the analysis in Theorem 3.1, we can first reach (17), where by using the strong monotonicity
we have:

µ‖xk+0.5 − x‖2 + 〈F (x), xk+0.5 − x〉+
γk
2

(
1− τ2

)
‖xk+0.5 − xk‖2

≤ 〈F (xk+0.5), xk+0.5 − x〉+
γk
2

(
1− τ2

)
‖xk+0.5 − xk‖2

≤ γk
2

[
‖xk − x‖2 − ‖xk+1 − x‖2

]
. (22)

Taking x = x∗ and sum the inequality from k = 1 to N :

µΓN‖x̄N − x∗‖2 ≤
N∑
k=1

µ

γk
‖xk+0.5 − x∗‖2

≤ 1

2
‖x1 − x∗‖2 − 1

2
‖xN+1 − x∗‖2 − 1− τ2

2

N∑
k=1

‖xk+0.5 − xk‖2, (23)

where the first inequality is due to the convexity of the squared norm function.

Now consider the first epoch, inequality (23) implies:

‖x̄N1 − x∗‖2 ≤
1

2µΓN1

D2
0,

where

ΓN1 ≥
N

p+1
2

Lp

(
1− τ2

‖x1 − x∗‖2

) p−1
2

=
N

p+1
2

Lp

(
1− τ2

D2
0

) p−1
2

.

Therefore,

‖x̄N1 − x∗‖2 ≤
1

2µΓN1

D2
0 ≤

Lp
2µ

Dp+1
0

(1− τ2)
p−1
2

1

N
p+1
2

= δ ·D2
0.

Now, in the second epoch, we take x1 ← x̄N1 . Similarly, we have:

‖x̄N2 − x∗‖2 ≤
1

2µΓN2

‖x̄N1 − x∗‖2 ≤
δ

2µΓN2

D2
0,

where the lower bound of ΓN2 can also be estimated from (23), with an improved distance to
solution ‖x1 − x∗‖2 = ‖x̄N1 − x∗‖2 ≤ δD2

0:

ΓN2 ≥
N

p+1
2

Lp

(
1− τ2

‖x̄N1 − x∗‖2

) p−1
2

≥ N
p+1
2

Lp

(
1− τ2

δD2
0

) p−1
2

.

Note that in the second epoch, the lower bound of ΓN2 is improved by
(

1
δ

) p−1
2 . Then we have:

‖x̄N2 − x∗‖2 ≤
δ

2µΓN2

D2
0 ≤

Lp
2µ

Dp+1
0

(1− τ2)
p−1
2

δ
p+1
2

N
p+1
2

= δ
p+3
2 ·D2

0.

11



Note that after second epoch, the distance is not decreased by a factor of δ2 but a factor of δ
p+3
2

instead. This is because while performing N iterations in one epoch provides a decrease of δ in
terms of the original distance D0, starting from an iterate x1 = x̄N1 in the second epoch provides

an additional decrease of δ
p+1
2 due to a better bound for ‖x̄N1 − x∗‖2 and ΓN2 . Now continue

considering the third epoch:

‖x̄N3 − x∗‖2 ≤
1

2µΓN3

‖x̄N2 − x∗‖2 ≤
δ
p+3
2

2µΓN3

D2
0,

where

ΓN3 ≥
N

p+1
2

Lp

(
1− τ2

‖x̄N2 − x∗‖2

) p−1
2

≥ N
p+1
2

Lp

(
1− τ2

δ
p+3
2 D2

0

) p−1
2

.

Therefore,

‖x̄N3 − x∗‖2 ≤
δ
p+3
2

2µΓN3

D2
0 ≤

Lp
2µ

Dp+1
0

(1− τ2)
p−1
2

δ
(p+3)(p+1)

4

N
p+1
2

= δ
(p+3)(p+1)

4
+1 ·D2

0.

To summarize, after m epochs, we have

‖x̄Nm − x∗‖2 ≤ δtm ·D2
0,

where

tm = tm−1 ·
p+ 1

2
+ 1, t1 = 1.

Then we have

‖x̄Nm − x∗‖2 ≤ δtm ·D2
0 ≤ δ(

p+1
2 )

m−1

·D2
0 ≤ δ(

p+1
2 )

m−1

·D2.

That is, the total number of epochs required to have ‖x̄Nm − x∗‖2 ≤ ε is given by

log p+1
2

log 1
δ

D2

ε
, (24)

for p > 1, a superlinear rate for the epochs. For p = 1, the log is one layer and we only have linear
convergence. Note that, however, (24) is only the number of epochs needs to be run, and for each
epoch a fixed number of N iterations is still performed, so the total iteration complexity is:(

Lp
2δµ

) 2
p+1
(

D2
0

1− τ2

) p−1
p+1

log p+1
2

log 1
δ

D2

ε

for p > 1. For simplicity, we can take δ = 1
2 and replace D0 with D in the number of iterations N

in one epoch, which gives the complexity:

O

((
Lp
µ

) 2
p+1 (

D2
) p−1
p+1 log p+1

2
log2

D2

ε

)
.

The result is summarized in the next theorem.
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Theorem 3.2 (Global convergence of ARE: Strongly monotone VI). Let {xk}k≥1 and {xk+0.5}k≥1

be generated by ARE (12) and suppose F (·) is strongly monotone with µ > 0 and F̃ (x;xk) is such
that (10) holds. By restarting ARE after each Ni = N iterations in epoch i, where N is given by
(21), the total number of epochs m required to obtain an output x̄Nm such that ‖x̄Nm − x∗‖2 ≤ ε is
given by: 

O
(

log p+1
2

log2
D2

ε

)
, p > 1,

O
(

log2
D2

ε

)
, p = 1.

The total iteration complexity mN is given by:
O
((

Lp
µ

) 2
p+1 (

D2
) p−1
p+1 log p+1

2
log2

D2

ε

)
, p > 1,

O
(
L1
µ log2

D2

ε

)
, p = 1.

(25)

Through a careful analysis of the restarting procedure, Theorem 3.2 shows that by restarting ARE
when F (x) is strongly monotone, the optimal iteration complexity is achievable for p = 1 and the
improved iteration complexity is obtained for p > 1, as summarized in (25). We note that the total

number of epochs (or the number of restarting) is only of the order O
(

log p+1
2

log2
D2

ε

)
, which is

an improved bound compared to O
(

log2
D2

ε

)
established in [28, 13]. This implies that the output

iterate x̄Nj after each epoch for j = 1, ...,m converges towards x∗ at a superlinear rate, and the

reason being that the lower bound for the averaging parameter ΓNj is improved by an order of p+1
2 .

4 The Local Convergence Analysis of ARE

In this section we shall analyze the local convergence behavior of ARE for strongly monotone F
(i.e. µ > 0) when p > 1. A pure Newton method typically exhibits local quadratic convergence
in optimization, and the same has been shown for VI [34, 6]. In [28], while the global iterations
proceed with restarting higher-order mirror-prox method [3] and an iteration complexity similar to
(25) is established, the local iterations are performed by adopting CRN-SPP [6] to obtain quadratic
convergence. The local superlinear convergence is further improved in [13] by restarting Perseus
and in [8], to the order p+1

2 . In the following analysis, we show that in the pth-order ARE where (10)

is satisfied, then the pth-order local superlinear convergence rate holds, which is an improvement
compared to existing work in the literature.

We first show that for the ARE update (12), ‖xk+0.5−x∗‖ converges to zero pth -order superlinearly
compared to ‖xk − x∗‖, as long as ‖xk+0.5 − xk‖ is sufficiently small. By the definition of a VI
solution for update xk+0.5:

〈F̃ (xk+0.5;xk) + Lp‖xk+0.5 − xk‖p−1(xk+0.5 − xk), x− xk+0.5〉 ≥ 0, ∀x ∈ X .
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Then

〈F (xk+0.5), xk+0.5 − x〉
≤ 〈F̃ (xk+0.5;xk)− F (xk+0.5) + Lp‖xk+0.5 − xk‖p−1(xk+0.5 − xk), x− xk+0.5〉

≤
∥∥∥F̃ (xk+0.5;xk)− F (xk+0.5) + Lp‖xk+0.5 − xk‖p−1(xk+0.5 − xk)

∥∥∥ · ‖x− xk+0.5‖

≤
(∥∥∥F̃ (xk+0.5;xk)− F (xk+0.5)

∥∥∥+
∥∥∥Lp‖xk+0.5 − xk‖p−1(xk+0.5 − xk)

∥∥∥) · ‖x− xk+0.5‖
(10)

≤ (1 + τ)Lp‖xk+0.5 − xk‖p · ‖x− xk+0.5‖.

Take x = x∗ and use the strong monotonicity of F :

µ‖xk+0.5 − x∗‖2 + 〈F (x∗), xk+0.5 − x∗〉 ≤ 〈F (xk+0.5), xk+0.5 − x∗〉
≤ (1 + τ)Lp‖xk+0.5 − xk‖p · ‖x∗ − xk+0.5‖,

then we have

‖xk+0.5 − x∗‖ ≤ (1 + τ)Lp
µ

‖xk+0.5 − xk‖p. (26)

Now, by the same analysis from (14)-(17) and take x = x∗, we have:

〈F (xk+0.5), xk+0.5 − x∗〉+
γk
2

(
1− τ2

)
‖xk+0.5 − xk‖2 ≤ γk

2

[
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

]
.

Noticing that 〈F (xk+0.5), xk+0.5 − x∗〉 ≥ 〈F (x∗), xk+0.5 − x∗〉 ≥ 0, the above inequality implies

(1− τ2)‖xk+0.5 − xk‖2 ≤ ‖xk − x∗‖2. (27)

Combining (26) and (27) gives the pth-order superlinear convergence:

‖xk+0.5 − x∗‖ ≤ (1 + τ)Lp

µ(1− τ2)
p
2

‖xk − x∗‖p. (28)

Note, however, that the inequality (28) only holds within each iteration and xk in general is not
converging towards x∗ pth-order superlinerly if a subsequent extra-gradient update is performed as
in (12). In fact, once the local convergence behavior is observed, the extra-gradient update should
be suppressed and the algorithm should accept xk+0.5 as the next iterate. We shall denote

xk+1 := xk+0.5 := VIX

(
F̃ (x;xk) + Lp‖x− xk‖p−1(x− xk)

)
(29)

as Approximation-based Regularized (AR) update. Algorithm 1 incorporates the above decision
process into ARE-restart proposed in 3.2, such that both the improved global iteration complexity
(25) and the local pth-order superlinear convergence are attained.

To verify the local convergence of Algorithm 1, we are left to show that once condition (30) is
satisfied and AR update (i.e. xk+1 := xk+0.5) is accepted in Step 1, the algorithm will continue
repeating Step 1 to obtain

‖xk+1 − x∗‖ ≤ (1 + τ)Lp

µ(1− τ2)
p
2

‖xk − x∗‖p.
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Algorithm 1 ARE-Restart with Local Superlinear Convergence

Require: x1 ∈ X , 0 < α < 1, D ≥ ‖x1 − x∗‖, an inner iteration number

N =

⌈(
Lp
µ

) 2
p+1
(

D2

1− τ2

) p−1
p+1

⌉
.

1: Step 0: Set k := 1.
2: Step 1: Let

xk+0.5 := VIX

(
F̃ (x;xk) + Lp‖x− xk‖p−1(x− xk)

)
.

If

‖xk+0.5 − xk‖p−1 ≤ α
√

1− τ2

1 + τ

µ

Lp
(30)

then xk+1 := xk+0.5 (AR update), set k := k+ 1, and return to Step 1. Otherwise, go to Step
2.

3: Step 2: Let

xk+1 := arg min
x∈X
〈F (xk+0.5), x− xk〉+

Lp‖xk+0.5 − xk‖p−1

2
‖x− xk‖2. (ARE-update)

If k = N , let

ΓN :=
N∑
k=1

1

γk
, and x̄N :=

∑N
k=1

1
γk
xk+0.5

ΓN
,

set x1 := x̄N , and return to Step 0. Otherwise, set k := k + 1 and return to Step 1.

Indeed, from the previous analysis with xk+0.5 replaced with xk+1 in (26) and (27), we have

‖xk+1 − xk‖ ≤ 1√
1− τ2

‖xk − x∗‖,

‖xk+1 − x∗‖ ≤ (1 + τ)
Lp
µ
‖xk+1 − xk‖p,

which implies

‖xk+2 − xk+1‖ ≤ 1√
1− τ2

‖xk+1 − x∗‖ ≤ 1 + τ√
1− τ2

Lp
µ
‖xk+1 − xk‖p ≤ α‖xk+1 − xk‖,

where the last inequality holds due to the condition (30). Therefore, {‖xk+1 − xk‖} becomes a
contracting sequence once AR update is accepted, and Algorithm 1 will repeat Step 1 until the
designated total iteration number.

We summarize the iteration complexity of Algorithm 1 in the next theorem.

Theorem 4.1. Let {xk}k≥1 and {xk+0.5}k≥1 be generated by Algorithm 1 and suppose F (·) is
strongly monotone with µ > 0 and F̃ (x;xk) is such that (10) holds with p > 1. The total iteration
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complexity to reach ‖xk − x∗‖ ≤ ε for some ε > 0 is given by:

Õ

((
Lp
µ

) 2
p+1

(D2)
p−1
p+1 + logp log2

1

ε

)
. (31)

Proof. We omit the proof of the local iteration complexity logp log2
1
ε in view of the earlier argu-

ments. Note that we have used Õ to suppress the logarithmic part in the first term of (31). Since
Algorithm 1 adopts ARE-restart as global iterations, by Theorem 3.2, the iteration complexity
requires to reach ‖xk − x∗‖2 ≤ ε̂ for some ε̂ > 0 is

O

((
Lp
µ

) 2
p+1 (

D2
) p−1
p+1 log p+1

2
log2

D2
0

ε̂2

)
.

In view of (27), let ε̂ := (1− τ2)
(
α
√

1−τ2
1+τ · µLp

) 2
p−1

, then we have:

‖xk+0.5 − xk‖p−1 ≤
(
‖xk − x∗‖2

1− τ2

) p−1
2

≤
(

ε̂

1− τ2

) p−1
2

≤ α
√

1− τ2

1 + τ

µ

Lp
.

As far as we know, the results on local superlinear convergence for higher-order VI methods are
still quite limited in the literature. In [6], the authors establish quadratic convergence for strongly-
convex-strongly-concave saddle point problem with a cubic regularized method CRN-SPP (p = 2).
Such local quadratic convergence result is also adopted by [28] for the general pth-order method.
This rate is further improved to p+1

2 in [8, 13]. However, we show that for the pth-order ARE with
p > 1, the local superlinear convergence is of the order p, achieved by the AR update (29). As
shown in Algorithm 1, there is an implementable criterion (30) to determine whether to reject the
extra step and continue to converge superlinearly. We also note the difference between the results
in Theorem 3.2 and Theorem 4.1. In Theorem 3.2, the iterates converge superlinerly after each

epoch, which still requires O
((

Lp
µ

) 2
p+1

(D)
p−1
p+1

)
inner iterations between restarts. On the other

hand, when (30) is satisfied and the algorithm starts to perform only the AR updates, the iterates
start to converge superlinearly after each iteration. The overall iteration complexity is then given
in (31).

5 Solving Regularized VI Subproblem with p = 2

In the previous sections, we have presented global and local iteration complexity analysis for ARE
(12). We show in Theorem 3.1 that the proposed simple update form of ARE guarantees the same
order of improved iteration complexity as [8, 1, 13] for p > 1 under the monotone case, which is
also optimal due to the lower bound established in [13]. For strongly monotone VI, we show that
by restarting ARE, the iterates after each epochs converge at a superlinear rate with per-epoch
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cost
(
Lp
µ

) 2
p+1

(D2)
p−1
p+2 . We further show that by imposing an additional condition (30) before

performing the extra-step update, the local pth-order superlinear convergence is guaranteed.

The aforementioned results are derived based on the assumption that the first step of ARE, which
involves solving an approximation regularized VI subproblem

xk+0.5 := VIX

(
F̃ (x;xk) + Lp‖x− xk‖p−1(x− xk)

)
, (32)

can be efficiently performed with incomparable cost to the overall iterations. While this assumption
is commonly made for higher-order methods especially for p ≥ 2 in order to focus on analyzing
the iteration complexities [8, 1, 13], we shall devote this section to the discussion on certain details
for solving such subproblem (32). The rest of the section will focus on the case when p = 2 and
the approximation mapping F̃ (x;xk) is the corresponding Taylor approximation of F (x), which
is arguably most practical in the higher-order regime and admits some meaningful simplification
and/or transformation of the subproblem.

Let us rewrite the subproblem (32) in the following form:

(S) xk+0.5 = VIX

(
F (xk) +∇F (xk)(x− xk) + L2‖x− xk‖(x− xk)

)
(33)

⇐⇒ find xk+0.5 s.t.

〈F (xk) +∇F (xk)(xk+0.5 − xk) + L2‖xk+0.5 − xk‖(xk+0.5 − xk), x− xk+0.5〉 ≥ 0,

for all x ∈ X . We shall refer to (33) as subproblem (S) and discuss two types of methods for
solving it. In essence, the two types of methods both reduce the original subproblem (S) to another
subproblem that can be more easily solved, and by solving the latter subproblem iteratively, we
are able to obtain a(n) (approximated) solution to (S).

5.1 Reduction to VI subproblem with linear mapping

In view of (33), the operator in VI subproblem (S) takes the form of the sum of a linear operator
F (xk) + ∇F (xk)(x − xk) and a non-linear operator L2‖x − xk‖(x − xk), where the latter is the
gradient mapping of the cubic regularization term and in general makes the original VI problem
difficult to solve efficiently. The first type of methods then aim to reduce (33) to an easier VI
problem with linear operator only, by parameterizing the solution xk+0.5 as following:

(SS1) xk+0.5(λ) := VIX

(
F (xk) +∇F (xk)(x− xk) + λ(x− xk)

)
, (34)

with the goal of finding

λ = L2‖xk+0.5(λ)− xk‖. (35)

Note that subproblem (SS1) given in (34) is now a VI with linear operator ∇F (xk) + λI. In
particular, when X = Rn (i.e. unconstrained), xk+0.5(λ) admits the closed-form expression:

F (xk) +
(
∇F (xk) + λI

)
(xk+0.5(λ)− xk) = 0,

⇐⇒ xk+0.5(λ) = xk −
(
∇F (xk) + λI

)−1
F (xk).
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This enables us to solve (35) using the next equation system with one-dimensional variable λ via
Newton method:

f(λ) := λ2 − L2
2‖xk+0.5(λ)− xk‖2 = 0.

In each iteration of the Newton method, it is then required to calculate the Jacobian of f(λ).
We shall omit the implementation details here and refer the interested readers to Section 4 in [6],
which describes a more involved decomposition for calculating the Jacobian under the saddle-point
problem setting (where F (xk) is the gradient descent ascent field of the saddle function).

For the case where (34) is constrained with general closed convex set, [17] proposed a bisection
procedure for solving (35). Similar ideas are also adopted in the bisection subroutine in [3, 8]. We
briefly summarize the underlying concept of such method and refer the interested readers to [17]
for analysis and implementation details. Instead of solving the equality constraint (35), one can
extend it to inequality constraints:

L2

2
‖xk+0.5(λ)− xk‖ ≤ λ ≤ 2L2‖xk+0.5(λ)− xk‖. (36)

Note a similar constraint in [3] for p = 2. It is shown in [17] that λ satisfying constraint (36) lies
in a closed interval: λ ∈ [t−, t+] for some t+ > t− > 0, whose range [t−, t+] ⊂ [α−, α+] can be
determined through solving (SS1) (34) once with initialized λ0. Using a bisection method which
uses λ+ =

√
α−α+, the total complexity of solving (SS1) (34) with (36) being satisfied is given by:

log

(
log(α+/α−)

log(t+/t−)

)
.

Therefore, solving the subproblem (S) boils down to how to solve (SS1) efficiently at each iteration
of the bisection method proposed in [17]. Since the VI operator for solving (SS1) is linear, if the
constraint set X takes simpler forms such as X := Rn+, (34) can be reduced to a linear comple-
mentarity problem (LCP), which then can be solved efficiently by using, for example, interior point
method [5].

5.2 Reduction to gradient projection

In the second type of method, we propose an alternative procedure to solve (S), which applies
a first-order iterative method (an inner loop) to solve the VI problem (33) for an approximated
solution for xk+0.5. Let us define the following operator

F ′(x;xk) := F (xk) +∇F (xk)(x− xk) + L2‖x− xk‖(x− xk). (37)

A naive way to implement the inner loop is to directly apply, for example, the extra-gradient
method to solve VIX (F ′(x;xk)). The potential issue lies in the fact that F ′(x;xk) is in general
not Lipschitz continuous over the whole constraint X due to the mapping L2‖x − xk‖(x − xk).
Therefore, no guarantee on the performance of the inner loop can be established.

In order to implement a more efficient procedure for solving (33) (or succinctly VIX (F ′(x;xk))),
we first discuss a specific instance of the ARE update introduced in Section 3 with p = 1. Let
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us define F ′(x) := F ′(x;xk) to simplify the notation and note that F ′(x) takes the summation
form F ′(x) = H(x) + G(x). Assume that H(·) is Lipschitz continuous with constant LH and
strongly monotone with modulus µH , and G(·) is monotone. Consider the approximation operator
F̃ ′(x; y) := H(y) +G(x), and we have:∥∥∥F̃ ′(x; y)− F (x)

∥∥∥ = ‖H(x)−H(y)‖ ≤ LH‖x− y‖.

Therefore, based on the results in Section 3 (in particular Theorem 3.2), the following update
procedure 

x̄t+0.5 := VIX
(
H(x̄t) +G(x) + LH(x− x̄t)

)
,

x̄t+1 := arg min
x∈X
〈H(x̄t+0.5) +G(x̄t+0.5), x− x̄t〉+ LH

2 ‖x− x̄
t‖2,

(38)

for t = 0, 1, 2, ... is guaranteed to converge to an ε̄ solution with iteration complexity O
(
LH
µH

log 1
ε̄

)
.

Indeed, method (38) is nothing but an ARE update instance (12), where F (x) := F ′(x) = H(x) +
G(x) and F̃ (x; x̄t) := F̃ ′(x; x̄t) = H(x̄t) + G(x), and p = 1. Let us denote H(x) = F (xk) +
∇F (xk)(x − xk) and G(x) = L2‖x − xk‖(x − xk). Indeed, H(x) is Lipschitz continuous with
LH = ‖∇F (xk)‖ ≤ L, and H(x)+G(x) is strongly monotone with µH = µ > 0 provided the original
operator F (x) is strongly monotone with µ > 0. Under this formulation, solving subproblem (S)
(33) is equivalent to solving VIX (F ′(x)) = VIX (H(x) +G(x)) and can be solved approximately

by the iterative procedure (38) with iteration complexity O
(
L
µ log 1

ε̄

)
.

We now show that each iteration of (38) can be further reduced to two gradient projection steps,
whose computational cost is significantly reduced compared to directly solving the original VI
subproblem (S). Note that the second step for updating x̄t+1 requires a gradient projection step,
while the first step requires solving x̄t+0.5 from a VI problem in the following form:

〈H(x̄t) + L2‖x̄t+0.5 − xk‖(x̄t+0.5 − xk) + LH(x̄t+0.5 − x̄t), x− x̄t+0.5〉 ≥ 0, ∀x ∈ X ,

which is optimality condition of the optimization problem:

min
x∈X

L2

3
‖x− xk‖3 +

LH
2
‖x− x̄t‖2 +H(x̄t)>x. (39)

The following analysis adopts a similar reformulation as proposed in [23] to solve (39) . Let us first
reformulate (39) into

arg min
x∈X

L2

3
‖x− xk‖3 +

LH
2
‖x− x̄t‖2 +H(x̄t)>x

= arg min
x∈X

L2

3
‖x− xk‖3 +

LH
2

(
‖x− xk‖2 + ‖x− x̄t‖2 − ‖x− xk‖2

)
+H(x̄t)>x

= arg min
x∈X

L2

3
‖x− xk‖3 +

LH
2
‖x− xk‖2 + LH(xk − x̄t)>x+H(x̄t)>x

= arg min
x∈X

L2

3
‖x− xk‖3 +

LH
2
‖x− xk‖2 +

(
LH(xk − x̄t) +H(x̄t)

)>
(x− xk).
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Denote
gt(x

k) = LH(xk − x̄t) +H(x̄t) = F (xk) +
(
∇F (xk)− I

)
(x̄t − xk),

for a given fixed xk. Since
1

3
r3 = max

τ≥0
r2τ − 2

3
τ

3
2 ,

we have

min
x∈X

L2

3
‖x− xk‖3 +

LH
2
‖x− xk‖2 + gt(x

k)>(x− xk)

= min
x∈X

max
τ≥0

L2

(
τ‖x− xk‖2 − 2

3
τ

3
2

)
+
LH
2
‖x− xk‖2 + gt(x

k)>(x− xk)

= max
τ≥0

(
−2

3
L2τ

3
2 + min

x∈X

{
gt(x

k)>(x− xk) +

(
L2τ +

LH
2

)
‖x− xk‖2

})
. (40)

The inner minimization gives a closed-form solution, denoted as

x̄t+0.5(τ) = PX

(
xk − 1

2L2τ + LH
gt(x

k)

)
,

where PX is the projection operator onto X . On the other hand, the outer maximization of (40) is
a simple one-dimensional concave maximization, and the solution given the expression of x̄t+0.5(τ)
is given by the following:

τ∗ = arg max
τ

−2

3
L2τ

3
2 − 1

4L2τ + 2LH
‖gt(xk)‖2,

which can be solved efficiently by any common software.

To summarize, the update process in (38) can be rewritten into

(SS2)



τ∗ := arg max
τ

−2
3L2τ

3
2 − 1

4L2τ+2LH
‖gt(xk)‖2,

x̄t+0.5 = x̄t+0.5(τ∗) := PX

(
xk − 1

2L2τ∗+LH
gt(x

k)
)
,

x̄t+1 := arg min
x∈X
〈H(x̄t+0.5) +G(x̄t+0.5), x− x̄t〉+ LH

2 ‖x− x̄
t‖2,

(41)

whose major cost lies in performing two gradient projection steps. Process (41) is then preformed
iteratively until we obtain an approximate solution ‖x̄t − xk+0.5‖ ≤ ε̄ with iteration complexity

O
(
L
µ log 1

ε̄

)
. Compared to the methods discussed in Section 5.1, the method discussed in this

section in general can require more inner iterations to operate with, but at the same time solving
subproblem (SS2) can also be performed with much less cost than solving (SS1).

6 Structured ARE Schemes

In the previous sections, we analyze the convergence properties of ARE in its general update form
(12) without specifying the approximation mapping F̃ (x;xk) and the corresponding order p. Such
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general form is powerful in that it enables us to establish unified analysis for potentially many
different specific methods. We devote this section to the discussion on some of these examples and
the connections to existing methods in the literature.

Consider the following structured VI where the operator is given in the composite form:

F (x) = H(x) +G(x). (42)

We shall discuss different realizations of ARE in solving VIX (F (x)). The first immediate example
is the extra-gradient method, which is equivalent to ARE with p = 1 and F̃ (x;xk) := F (xk):{

xk+0.5 := VIX
(
F (xk) + L1(x− xk)

)
,

xk+1 := arg min
x∈X
〈F (xk+0.5), x− xk〉+ L1

2 ‖x− x
k‖2. (43)

The extra-gradient method (43) treats F (x) as a single operator without using the specific com-
posite structure (42). The proposed ARE, however, provides the possibilities of using alterna-
tive approximation operator F̃ (x;xk) in the update. In particular, consider the case p = 1 and
F̃ (x;xk) := H(xk) +G(x):{

xk+0.5 := VIX
(
H(xk) +G(x) + L1(x− xk)

)
,

xk+1 := arg min
x∈X
〈F (xk+0.5), x− xk〉+ L1

2 ‖x− x
k‖2, (44)

where the update of xk+0.5 can be viewed as a combined gradient-projection/proximal point step, or
a proximal gradient (projection) update. As we have also seen in Section 5.2, the potential advantage
of performing such update is that we are able to relax the Lipschitz continuity assumption made
for the overall operator F (x). Indeed, the required condition for the iteration complexity results to
hold for ARE is given by (10), while in the update (44) we have:

‖F̃ (x;xk)− F (x)‖ = ‖H(xk)−H(x)‖ ≤ LH‖x− xk‖,

where we assume LH is the Lipschitz constant for H(x). Therefore, only the Lipschitz conitnuity of
H(x) is required, and the constant L1 in (44) can be replaced with LH . In the example discussed
in Section 5.2, the VI subproblem for solving xk+0.5 can be further reduced to simpler forms if G(x)
is the gradient of some convex function.

We can also extend the original problem VIX (F (x)) to the monotone inclusion problem:

0 ∈ H(x∗) +G(x∗),

where G : X ⇒ Rn is a set-valued maximal monotone operator. Well-known maximal monotone
operators include ∂f , the subdifferential of a proper closed convex function f , and NX (x), the
normal cone of a closed convex set X . For further discussion regarding maximal monotone operator
and monotone inclusion problem, the interested readers are referred to [5]. In view of the monotone
inclusion problem, the same ARE update discussed earlier (44) can be adjusted accordingly:{

xk+0.5 := VIX
(
H(xk) + uk+0.5 + L1(x− xk)

)
,

xk+1 := arg min
x∈X
〈H(xk+0.5) + uk+0.5, x− xk〉+ L1

2 ‖x− x
k‖2, (45)
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where uk+0.5 ∈ G(xk+0.5). Note that in the above expression, xk+0.5 equivalently satisfies the
following equation:

H(xk) + uk+0.5 + L1(xk+0.5 − xk) = 0.

Substituting uk+0.5 = −H(xk)−L1(xk+0.5−xk) in the update of xk+1, we get the following scheme:{
xk+0.5 := VIX

(
H(xk) + uk+0.5 + L1(x− xk)

)
,

xk+1 := arg min
x∈X
〈H(xk+0.5)−H(xk), x− xk〉+ L1

2 ‖x− x
k+0.5‖2, (46)

which is the modified forward-backward update proposed in [36] by noticing that xk+0.5 in (46) is

also equivalent to the forward-backward step xk+0.5 =
(
I + 1

L1
G
)−1 (

I − 1
L1
H
)

(xk). This shows

that the modified forward-backward method is indeed another important instance of ARE for the
more general monotone inclusion problem.

Moving forward to the higher-order (p ≥ 2) ARE schemes, an immediate example is to take the

Taylor approximation F̃ (x;xk) :=
p−1∑
i=0

1
i!∇

iF (xk)[x− xk]i, resulting in the following update:


xk+0.5 := VIX

(
p−1∑
i=0

1
i!∇

iF (xk)[x− xk]i + Lp‖x− xk‖p−1(x− xk)
)
,

xk+1 := arg min
x∈X
〈F (xk+0.5), x− xk〉+

Lp‖xk+0.5−xk‖p−1

2 ‖x− xk‖2.
(47)

The above update (47) can be viewed as equivalent forms of the NPE [17] (p = 2) and higher-order
mirror-prox [3, 1] (p ≥ 2). In view of the previous discussion, it is then natural to consider the

higher-order approximation operator in the form F̃ (x;xk) :=
p−1∑
i=0

1
i!∇

iH(xk)[x− xk]i +G(x) for the

specific composite structure (42), and the next scheme follows:
xk+0.5 := VIX

(
p−1∑
i=0

1
i!∇

iH(xk)[x− xk]i +G(x) + Lp‖x− xk‖p−1(x− xk)
)
,

xk+1 := arg min
x∈X
〈F (xk+0.5), x− xk〉+

Lp‖xk+0.5−xk‖p−1

2 ‖x− xk‖2.
(48)

The above scheme (48) can be viewed as generalization of several existing methods. In addition to
generalizing the higher-order mirror-prox method, it also generalizes the modified forward-backward
method (in the form (44)) to pth-order. Furthermore, it generalizes the tensor method proposed in
[4] for composite optimization to solving composite VI. Indeed, consider the following problem:

min
x∈X

h(x) + g(x).

To simplify the discussion, assume both h, g are convex and differentiable and denoteH(x) := ∇h(x)
and G(x) := ∇g(x). The following inequality defines the solution xk+0.5 in (48):

〈
p−1∑
i=0

1

i!
∇iH(xk)[xk+0.5 − xk]i +G(xk+0.5) + Lp‖xk+0.5 − xk‖p−1(xk+0.5 − xk), x− xk+0.5〉 ≥ 0, ∀x ∈ X ,
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which is equivalent to

xk+0.5 := arg min
x∈X

p∑
i=1

1

i!
∇ih(xk)[x− xk]i + g(x) +

Lp
p+ 1

‖x− xk‖p+1. (49)

Note that in the context of composite optimization [4], the problem is unconstrained and the
minimization step (49) is performed over the domain of g(x). In addition, while the acceleration in
optimization requires an additional sequence {yk} so that the update (49) is performed at yk instead
of xk (for example, FISTA [2] and Nesterov’s accelerated tensor method [25]), the acceleration in
VI in general takes the form of the extra-gradient step such as the update of xk+1 in (48).

Next, we further consider the following more general composite VI model with the operator:

F (x) = H(G(x)). (50)

Obviously, if we let G(x) = G1(x) + G2(x) and H(x) = x, the general composite operator (50)
reduces to the special case in the summation form (42). This general model enables us to extend
the approximation schemes discussed earlier, as shown in the next two examples. The first example
is an outer approximation:

F̃ (x;xk) := H̃(G(x);G(xk)),

which replaces the outer operator H(·) with an approximation operator H̃(· ; y) that satisfies the
condition (10) with some fixed y and constant Lp := LH . The resulting overall approximation
F̃ (x;xk) hence satisfies (10) as well from the following bound:∥∥∥F̃ (x;xk)− F (x)

∥∥∥ =
∥∥∥H̃(G(x);G(xk))−H(G(x))

∥∥∥
≤ τLH

∥∥∥G(x)−G(xk)
∥∥∥p ≤ τLHLpG‖x− xk‖p,

where we also assume G(x) is Lipschitz continuous with constant LG. As an exemplifying scheme,
let H̃(· ; y) be the Taylor approximation of H(·) with p = 2, which results in the next update
scheme:{

xk+0.5 := VIX
(
H(G(xk)) +∇H(G(xk))

(
G(x)−G(xk)

)
+ LHL

2
G‖x− xk‖(x− xk)

)
,

xk+1 := arg min
x∈X
〈F (xk+0.5), x− xk〉+

LHL
2
G‖x

k+0.5−xk‖
2 ‖x− xk‖2. (51)

Note that in this example, even if the outer approximation operator H̃(· ; y) is the Taylor approxi-
mation, the overall approximation operator F̃ (x;xk) := H(G(xk)) +∇H(G(xk))

(
G(x)−G(xk)

)
is

not (it is not even linear unless G(·) is). In general, H̃(· ; y) needs not be the Taylor approximation
but can be any approximation satisfying (10), such as the ones discussed earlier.

The second example based on the composite VI model (50) is an inner approximation:

F̃ (x;xk) := H(G̃(x;xk)),

which replaces the inner operator G(x) with an approximation operator G̃(x;xk) that satisfies the
condition (10), with the constant now defined as Lp := LG. Similarly, we have:∥∥∥F̃ (x;xk)− F (x)

∥∥∥ =
∥∥∥H(G̃(x;xk))−H(G(x))

∥∥∥
≤ LH

∥∥∥G̃(x;xk)−G(x)
∥∥∥ ≤ τLHLG‖x− xk‖p,
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which indicates that F̃ (x;xk) also satisfies (10) as long as H(·) is Lipschitz continuous with LH . If
G̃(x;xk) is the Taylor approximation of G(x) at xk with p = 2, we have the following scheme:{

xk+0.5 := VIX
(
H
(
G(xk) +∇G(xk)(x− xk)

)
+ LHLG‖x− xk‖(x− xk)

)
,

xk+1 := arg min
x∈X
〈F (xk+0.5), x− xk〉+ LHLG‖xk+0.5−xk‖

2 ‖x− xk‖2. (52)

Again, the overall approximation operator F̃ (x;xk) is not Taylor approximation even if the inner
approximation operator G̃(x;xk) is, and it is not linear unless H(·) is. While the examples in (51)
and (52) use a similar concept to construct the approximation operator F̃ (x;xk), the resulting
update scheme can be quite different given how we identify the specific composite structure F (x) =
H(G(x)) in a problem.

In this section, we first discuss several structured ARE schemes based on the composite form of
the operator (42), which either coincides with or generalizes existing methods. We further discuss
the more general composite VI model (50) and present two different examples to illustrate the
concept of outer approximation and inner approximation. We remark that composite VI may take
even more general forms such as multiple layers F (x) = H1(H2(...(Hn(x)))), or multiple blocks
F (x) = H(G1(x), G2(x), ..., Gn(x)), or arbitrary combinations of these two. Developing specific
schemes based on these composite forms can be highly dependent on each individual problem at
hand and the subproblem of solving xk+0.5 may be difficult. However, the purpose of this paper
is to reveal the potentials of a general scheme of approximation used in the ARE framework,
by pointing out possibilities other than the most commonly applied Taylor approximations in
many existing schemes. By taking the structure of the VI operator into consideration, ARE can
possibly include even more complicated schemes than the ones discussed in this section. As long as
certain assumptions are satisfied and one is able to develop efficient subroutines for solving the VI
subproblem, the results established in earlier sections can immediately provide optimal iteration
complexity guarantee for the new scheme.

7 Numerical Experiments

In this section, we examine the convergence of ARE and ARE-restart with p = 2 and compare
the performance with other common first-order methods. We consider the following unconstrained
saddle point problem in the experiment:

min
x∈Rn

max
y∈Rm

f(x, y) =
1

M1

M1∑
i=1

ln(1 + e−a
>
i x) +

λ

2
‖x‖2

+x>Ay − 1

M2

M2∑
j=1

ln(1 + e−b
>
j y)− λ

2
‖y‖2. (53)

24



To transform the saddle point problem (53) into equivalent VI formulation, let us redefine the VI
variable as u = (x, y)> and the operator

F (u) =


− 1
M1

M1∑
i=1

ai

1+e−a
>
i
x

+ λx+Ay

− 1
M2

M2∑
j=1

bj

1+e
−b>
j
y

+ λy −A>x

 ,

with the problem defined as F (u) = 0. The ARE and ARE-restart implemented in the experiment
specifically use the Taylor approximation as the approximation operator F̃ (u, uk) := F (uk) +
∇F (uk)(u− uk) and can be expressed as:{

uk+0.5 := VIX
(
F (uk) +∇F (uk)(u− uk) + L2‖u− uk‖(u− uk)

)
,

uk+1 := arg min
u∈X
〈F (uk+0.5), u− uk〉+ L2‖uk+0.5−uk‖

2 ‖u− uk‖2. (54)

Since the original saddle point problem is unconstrained, we have X := Rn × Rm, and the VI
subproblem for solving uk+0.5 is equivalent to solving the equation:

F (uk) +∇F (uk)(uk+0.5 − uk) + L2‖uk+0.5 − uk‖(uk+0.5 − uk) = 0,

which can be solved via a Newton method (see discussions in Section 5.1). For a more detailed
implementation, the interested readers are referred to Section 4 in [6]. The restart procedure of
update (54) is described in Section 3.2, and we use a pre-defined number for inner iterations between
each restart.

The experiment is conducted under Matlab 2018 environment, and the problem parameters are
as follows. The number of date points is M1 = M2 = 100; the problem dimensions are m =
2n = 50; the elements of ai, bj , A are generated by independent standard normal distribution; the
second-order smoothness constant L2 is estimated as 0.3. Note that the operator F (u) is strongly
monotone with modulus λ, which is varied to observe different convergence behaviors. The purpose
of the experiments is to verify the convergence of ARE and ARE-restart, and we use the first-
order methods, extra-gradient and OGDA, as the benchmarks for comparison. The convergence is
measured as ‖F (u)‖, and the results are presented in Figure 1-3.

Figure 1: Convergence in strongly monotone VI with λ = 1
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Figure 2: Convergence in strongly monotone VI with λ = 0.1

The convergence of ARE are shown in the left plots of Figure 1, Figure 2, and Figure 3. All of
them show clear sublinear convergence for the averaged iterates

ūk :=

k∑
i=1

ui+0.5

γi

Γk
, Γk :=

k∑
i=1

γ−1
i ,

where γi = L2‖ui+0.5− ui‖. Indeed, a sublinear convergence rate O
(

1/k
3
2

)
is guaranteed for ARE

with p = 2. However, when the problem is strongly monotone (λ = 1), it will take significantly more
iterations to converge to very high precision (‖F (u)‖ < 10−10) compared to the first-order methods
extra-gradient and OGDA, which are designed to better exploit the strong monotonicity and admit
linear convergence. However, when λ is small (λ = 0.001) and the problem becomes closer to a VI
that is merely monotone, the performance of these first-order methods deteriorate fast to sublinear
convergence that is significantly slower than ARE, a second-order method. On the other hand,
ARE-restart (right plots of Figure 1, Figure 2, and Figure 3) shows clear improvement over the
first-order methods regardless of the strong monotonicity modulus λ. The process of restart is
crucial in these experiments to take advantage of the strong monotonicity in the problem and bring
the convergence of ARE beyond sublinear convergence to linear, or even superlinear, convergence.
In the results shown in Figure 1-Figure 3, the superlinear convergence happens immediately after
each restart, followed by sublinear convergence in the rest of the epoch before the next restart.
This particular convergence behavior enables the iterates of ARE-restart to quickly converge to
high precision within much fewer iterations compared to ARE or other first-order methods.

8 Conclusion

In this paper, we propose the approximation-based regularized extra-gradient (ARE) scheme for
solving monotone VI. The key feature of ARE is to solve a regularized VI subproblem in the
first step, where the operator consists of a general approximation mapping satisfying a pth-order
Lipschitz bound (10) and the gradient mapping of a (p+ 1)th-order regularization. Iteration com-
plexities are established for both monotone VI (ARE) and strongly monotone VI (ARE-restart),
and the results match the lower bound for general pth-order methods. We further analyze the local
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Figure 3: Convergence in strongly monotone VI with λ = 0.001

convergence behavior for strongly monotone VI when p > 1 and establish pth-order superlinear
convergence, which is an improvement over the existing results.

By introducing the general approximation mapping that satisfies the Lipschitz bound, ARE can
be viewed as a more general framework that includes multiple existing methods in the literature. As
a result, unified results can be established for different methods under the general ARE framework.
We then discuss detailed implementations for solving the regularized VI subproblem under special
cases, as well as some specialized ARE schemes if the VI operator has a composite structure.

References

[1] D. Adil, B. Bullins, A. Jambulapati, and S. Sachdeva. “Optimal Methods for Higher-Order
Smooth Monotone Variational Inequalities”. In: arXiv preprint arXiv:2205.06167 (2022).

[2] A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algorithm for linear inverse
problems”. In: SIAM journal on imaging sciences 2.1 (2009), pp. 183–202.

[3] B. Bullins and K. A. Lai. “Higher-order methods for convex-concave min-max optimization
and monotone variational inequalities”. In: arXiv preprint arXiv:2007.04528 (2020).

[4] N. Doikov and Y. Nesterov. “Local convergence of tensor methods”. In: arXiv preprint
arXiv:1912.02516 (2019).

[5] F. Facchinei and J.-S. Pang. Finite-dimensional variational inequalities and complementarity
problems. Springer Science & Business Media, 2007.

[6] K. Huang, J. Zhang, and S. Zhang. “Cubic Regularized Newton Method for the Saddle Point
Models: A Global and Local Convergence Analysis”. In: Journal of Scientific Computing 91.2
(2022), pp. 1–31.

[7] K. Huang and S. Zhang. “A unifying framework of accelerated first-order approach to strongly
monotone variational inequalities”. In: arXiv preprint arXiv:2103.15270 (2021).

[8] R. Jiang and A. Mokhtari. “Generalized optimistic methods for convex-concave saddle point
problems”. In: arXiv preprint arXiv:2202.09674 (2022).

27



[9] D. Kim. “Accelerated proximal point method for maximally monotone operators”. In: Math-
ematical Programming 190.1 (2021), pp. 57–87.

[10] G. M. Korpelevich. “The extragradient method for finding saddle points and other problems”.
In: Matecon 12 (1976), pp. 747–756.

[11] S. Lee and D. Kim. “Fast extra gradient methods for smooth structured nonconvex-nonconcave
minimax problems”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 22588–
22600.

[12] F. Lieder. “On the convergence rate of the Halpern-iteration”. In: Optimization letters 15.2
(2021), pp. 405–418.

[13] T. Lin, M. Jordan, et al. “Perseus: A Simple High-Order Regularization Method for Varia-
tional Inequalities”. In: arXiv preprint arXiv:2205.03202 (2022).
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