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Abstract

In this paper, we develop stochastic variance reduced algorithms for solving a class of finite-

sum monotone VI, where the operator consists of the sum of finitely many monotone VI map-

pings and the sum of finitely many monotone gradient mappings. We study the gradient com-

plexities of the proposed algorithms under the settings when the sum of VI mappings is either

strongly monotone or merely monotone. Furthermore, we consider the case when each of the VI

mapping and gradient mapping is only accessible via noisy stochastic estimators and establish

the sample gradient complexity. We demonstrate the application of the proposed algorithms

for solving finite-sum convex optimization with finite-sum inequality constraints and develop

a zeroth-order approach when only noisy and biased samples of objective/constraint function

values are available.

Keywords: finite-sum optimization, stochastic gradient method, variational inequality, stochas-

tic zeroth-order method.

1 Introduction

In machine learning research, a common optimization problem is the so-called finite-sum optimiza-

tion:

min
x∈X

g(x) :=

m∑
i=1

gi(x), (1)
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where the objective is the sum of finitely many (convex) loss functions. When the total number

of functions is large, it can be costly for a deterministic gradient method to evaluate the gradients

of all the functions in each iteration. A conventional way for solving the finite-sum model (1) is

through stochastic gradient descent (SGD), where in each iteration only one or a mini-batch of

functions are randomly chosen and the corresponding gradients are estimated. While SGD may

improve the overall gradient complexity over the deterministic methods, the iteration complexity

to obtain an ε-solution is only O
(

1
ε

)
even if each of the function gi(x) is strongly convex and

smooth. In order to further improve the gradient and iteration complexity, variance reduced al-

gorithms such as SAG [27], SAGA [6], SVRG [13] have been developed to achieve the gradient

complexity O
((
m+ L

µ

)
log 1

ε

)
, assuming each function gi(x) is strongly monotone with modulus

µ > 0 and gradient Lipschitz continuous with constant L ≥ µ. Recently, accelerated variance

reduced algorithms such as Katyusha [2] and SSNM [34] are proposed to achieve an even better

gradient complexity O
((
m+

√
mL
µ

)
log 1

ε

)
, which matches the lower bound established in [15],

hence optimal.

A specific branch in machine learning which has received much attention in recent years is training

Generative Adversarial Network (GAN) [10]. Different from an optimization model (1), training a

GAN can be formulated as a minimax saddle point problem:

min
x∈X

max
y∈Y

f(x, y). (2)

When f(·, y) is convex for fixed y ∈ Y and f(x, ·) is concave for fixed x ∈ X and X ,Y are closed

convex sets, (2) can be reformulated into a more general variational inequalities (VI) model:

find x∗ s.t. 〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ Z, (3)

where F (·) is a general monotone vector mapping. Since GAN is known to be very difficult to

train and the conventional (stochastic) gradient methods applied for deep learning do not perform

well in practice, there has been a surge of interest in developing efficient gradient methods in the

context of either saddle point problem or VI [5, 22, 17, 9, 12]. It is also natural to consider the

finite-sum VI where F (x) =
m∑
i=1

Fi(x) and develop variance reduced algorithms applying techniques

from finite-sum optimization. The authors in [1] incorporated such variance reduced techniques into

various VI algorithms and established the gradient complexity O
(
m+

√
mL
ε

)
for monotone VI and

O
((
m+

√
mL
µ

)
log 1

ε

)
for strongly monotone VI, where each operator Fi(x) is (strongly) monotone

with modulus µ (>) ≥ 0 and Lipschitz continuous with L ≥ µ. On the other hand, a lower gradient

complexity bound has also been established in [32] with Ω
(
m+ L

ε

)
for convex-concave saddle point

problem and Ω
((
m+ L

µ

)
log 1

ε

)
for strongly-convex-strongly-concave saddle point problem. Unlike

the accelerated variance reduced algorithms in optimization [2, 34] which have been proven to be

optimal, there is still a gap between the upper and lower gradient complexity bounds for finite-sum
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VI. It remains an open problem to determine where the optimal gradient complexity bound actually

lands.

In this paper, we consider an extended class of monotone VI (3) in the finite-sum form, where the

operator consists of the sum of finitely many general vector mapping Hi(x) and the sum of finitely

many gradient mapping ∇gi(x):

F (x) = H(x) +∇g(x) :=

m1∑
i=1

Hi(x) +

m2∑
i=1

∇gi(x), (4)

where each Hi(·) is Lipschitz continuous with Lh(i) and H(·) is (strongly) monotone with µ (>

) ≥ 0, and each ∇gi(·) is Lipschitz continuous with Lg(i) and ∇g(·) is monotone. The pioneering

work considering such extended class of monotone VI (4) without the finite-sum structure (i.e.

m1 = m2 = 1) is [4], where the authors propose a stochastic accelerated mirror-prox method with

iteration (sample) complexity

O

(√
Lg
ε

+
Lh
ε

+
σ2

ε2

)
for monotone H(·) and ∇g(·). Note that the subscript i indicating the index in the finite-sum is

omitted since m1 = m2 = 1. In addition, the authors [4] consider the stochastic setting where

both H(·) and ∇g(·) can only be estimated via an unbiased oracle with bounded variance σ2. In

this paper, we continue along this line of research on the extended class of monotone VI (4) with

general m1,m2 and apply variance reduced techniques to establish accelerated gradient complexity

bound. We assume each Hi(·) and ∇gi(·) can only be estimated via a stochastic oracle with

bounded variance and bias and give the corresponding sample gradient complexity. We show

that the proposed algorithms can be applied to solving finite-sum convex optimization with finite-

sum inequality constraints [18] with an improved gradient complexity. Furthermore, the general

stochastic setting in this paper makes it possible to apply zeroth-order approach [16] to solve

the aforementioned problem with our algorithm, when only biased samples of objective/constraint

function values are accessible.

The rest of the paper is organized as follows. In Section 2, we propose a stochastic variance

reduced algorithm for the extended class of VI (4) when Hi(·) is strongly monotone. In Section 3,

we provide an alternative variance reduced method to solve the case when Hi(·) is only monotone.

In Section 4, we demonstrate the application to solving finite-sum convex optimization with finite-

sum inequality constraints. We further extend this application to a more general black-box setting

and demonstrate the implementation of our proposed algorithm via a zeroth-order approach. We

present numerical results in Section 5 and conclude the paper in Section 6.
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2 Variance Reduced Scheme for Finite-Sum Strongly Monotone

VI and Finite-Sum Monotone Gradients

In this section, we present our first variance reduced scheme for solving VI (3), where the operator

F (·) takes the combined VI/gradient mapping form with finite-sum structure respectively (4). We

assume the constraint set Z is closed and convex, and the problem is summarized below: find x∗ s.t. 〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ Z,

F (x) = H(x) +∇g(x) :=
m1∑
i=1

Hi(x) +
m2∑
i=1
∇gi(x).

(5)

We specifically consider the combined finite-sum operator F (·) being strongly monotone in this

section, and we shall propose an alternative approach for F (·) being merely monotone in the next

section. In particular, we assume H(·) to be strongly monotone with modulus µh > 0, and ∇g(·) to

be monotone. Furthermore, we denote H(·) =
m1∑
i=1

Hi(·), where each Hi(·) is Lipschitz continuous

with constant Lh(i), and denote g(x) =
m2∑
i=1

gi(x) (therefore ∇g(x) =
m2∑
i=1
∇gi(x)) where each ∇gi(x)

is Lipschitz continuous with constant Lg(i). Let us also define the sum of the Lipschitz constants

Lh :=
m1∑
i=1

Lh(i) and Lg :=
m2∑
i=1

Lg(i).

Consider the following update for iteration count k:

x̄k = (1− p1)xk + p1w
k

yk = (1− α− β)vk + αxk + βw̄k

xk+0.5 = arg min
x∈Z

γ〈H ′(wk) + ∇̃g′(yk), x− x̄k〉+ 1
2‖x− x̄

k‖2

xk+1 = arg min
x∈Z

γ〈Ĥ ′(xk+0.5) + ∇̃g′(yk), x− x̄k〉+ 1
2‖x− x̄

k‖2

vk+1 = (1− α− β)vk + αxk+0.5 + βw̄k

wk+1 =

{
xk+1, with prob. p1

wk, with prob. 1− p1

w̄k+1 =

{
vk+1, with prob. p2

w̄k, with prob. 1− p2.

(6)

Method (6) is a general stochastic variance reduced scheme for solving (5), and in the rest of the

paper we refer to it as Stochastic Accelerated Variance Reduced Extra Point method (SAVREP).

We shall make the following remarks. First, the variance reduction techniques are applied to both the

general VI operator H(·) and the gradient mapping ∇g(·), and the resulting update procedure will

require using the variance reduced gradient estimator [2, 1], denote by Ĥ(·) and ∇̃g(·), respectively.

Second, although the construction of the variance reduced gradient estimator Ĥ(·) (∇̃g(·)) involves
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sampling from the m1 (m2) individual operators Hi(·) (∇gi(·)) as we shall see later, we use the term

“stochastic” to specifically refer to the fact that the update of SAVREP (6) only accesses the noisy

estimations of the individual operators, denote by H ′i(·) and ∇g′i(·), respectively. This allows the

application of zeroth-order approach [16] to problems when the gradients are unavailable and only

the function values can be sampled, such as black-box optimization [24, 28, 7, 29] and saddle-point

problem [31, 33, 20, 26, 21]. We shall exemplify such application in Section 4. Finally, the multiple-

sequence structure of (6) is the key to achieve the overall accelerated variance reduced gradient

complexity in terms of both Lh and Lg. While the sequences {xk+0.5}, {xk} in general take the

extra-gradient form of update, the sequences {wk}, {w̄k} help maintain the single-loop structure for

variance reduction [1]; the sequences {yk}, {vk} help improve the constants related to the gradient

mapping, and the sequence {x̄k} facilitates the variance reduction for the VI operator H(·). The

derivations of gradient complexity and sample complexity involving the analysis of each of these

sequences are discussed in Section 2.2, following Section 2.1 where the detailed formulations of the

(stochastic) variance reduced gradient estimators and the corresponding assumptions are presented.

2.1 Preliminaries

We first state the assumptions for the stochastic estimatorsH ′i(·) (∇g′i(·)) of the individual operators

Hi(·) (∇gi(·)) for i = 1, 2, ...,m1 (m2). Denote E′[·] as the expectation taken for these samples and

consider the following bias and variance upper bounds:∥∥Hi(x)− E′[H ′i(x)]
∥∥ ≤ δh, E′

[∥∥H ′i(x)− E′
[
H ′i(x)

]∥∥2
]
≤ σ2

h, (7)∥∥∇gi(x)− E′
[
∇g′i(x)

]∥∥ ≤ δg, E′
[∥∥∇g′i(x)− E′

[
∇g′i(x)

]∥∥2
]
≤ σ2

g , (8)

for some δh, σ
2
h, δg, σ

2
g ≥ 0. In other words, we assume the variance and the bias of these samples are

upper bounded by some non-negative constants (therefore they are not necessarily unbiased estima-

tors). Denote H ′(x) :=
m1∑
i=1

H ′i(x) (respectively ∇g′(x) :=
m2∑
i=1
∇g′i(x)) as the sum of m1 (respectively

m2) such independent stochastic oracles. The below bounds follow straightforwardly:∥∥H(x)− E′[H ′(x)]
∥∥ ≤ m1δh, E′

[∥∥H(x)−H ′(x)
∥∥2
]
≤ 2m1σ

2
h + 2m2

1δ
2
h, (9)∥∥∇g(x)− E′[∇g′(x)]

∥∥ ≤ m2δg, E′
[∥∥∇g(x)−∇g′(x)

∥∥2
]
≤ 2m2σ

2
g + 2m2

2δ
2
g . (10)

We next give explicit expressions for the (noiseless) variance reduced gradient estimators at the

corresponding iterates given in (6):

Ĥ(xk+0.5) := H(wk) +Hξk(xk+0.5)−Hξk(wk) (11)

∇̃g(yk) := ∇g(w̄k) +∇gζk(yk)−∇gζk(w̄k). (12)
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The above forms follow from the well-established variance reduction literature [2, 1], and the random

variables ξ (ζ) take samples from the m1 (m2) individual operators Hi(·) (∇gi(·)) with probability

distribution taking respective Lipschitz constants Lh(i) (Lg(i)) into account. In particular, we have

Pr{ξ = i} =
Lh(i)

Lh
:= qi, i = 1, 2, ...,m1, Pr{ζ = i} =

Lg(i)

Lg
:= πi, i = 1, 2, ...,m2.

The stochastic oracles are then given by Hξ(·) := 1
qi
Hi(·) and ∇gζ(·) = 1

πi
∇gi(·).

However, note that in the update (6), only the noisy variance reduced gradient operators Ĥ ′(xk+0.5)

(∇̃g′(yk)) are accessed, which are defined by:

Ĥ ′(xk+0.5) := H ′(wk) +H ′ξk(xk+0.5)−H ′ξk(wk)

∇̃g′(yk) := ∇g′(w̄k) +∇g′ζk(yk)−∇g′ζk(w̄k),

where H ′ξ(·) := 1
qi
H ′i(·) and ∇g′ζ(·) = 1

πi
∇g′i(·). To save the computational costs, we can reuse the

noisy samples estimated at the same iterate within each iteration. For example, after sampling

H ′(wk) in the update of xk+0.5, we could reuse the oracles for H ′ξk(wk) and H ′(wk) in constructing

Ĥ ′(xk+0.5).

Finally, to simplify the notations in the following analysis, denote the expressions of conditional

expectations taken for different random variables:

Ek1 [·] := Eξk [·|xk, wk], Ek2 [·] := Eζk [·|xk, w̄k, vk], (13)

Ek1+[·] := Eξk [·|xk+1, wk], Ek2+[·] := Eζk [·|w̄k, vk+1]. (14)

2.2 Gradient complexity analysis

The overall analysis for gradient complexity of the proposed SAVREP (6) can be largely divided into

three parts. In the first part, the stochastic gradient mapping ∇̃g′(yk) is viewed as a constant vector

mapping, and we establish the relation among the sequences {x̄k}, {xk+0.5}, {xk}, {wk}, which are

related to the general VI mapping H(·). In the second part, we turn to focus on the sequences {yk},
{vk}, {w̄k}, and establish their relation in terms of the function value g(·). Finally, the results in

the previous two parts are combined to show the per-iteration convergence in terms of a potential

function. By selecting the parameters carefully, we derive the resulting gradient complexity for

obtaining an ε-solution E
[
‖xk − x∗‖2

]
≤ ε, together with the corresponding stochastic errors. The

lemma below summarizes the results from the first part of the analysis.

Lemma 2.1. For the iterates generated by (6), define the following stochastic error terms:

εx := ‖Hξ(x)−H ′ξ(x)‖, ε̄x := ‖H(x)−H ′(x)‖.

6



Then, the following inequality holds for any x ∈ Z and k = 0, 1, 2, ...

Ek1
[
γ〈H(x) + ∇̃g′(yk), xk+0.5 − x〉

]
≤ 1

2
Ek1

[
(1− p1 −

1

2
γµh)‖xk − x‖2 + p1‖wk − x‖2 − ‖xk+1 − x‖2

]
−1

2

(
p1 − 2γ2L2

h

)
Ek1

[
‖xk+0.5 − wk‖2

]
− 1

2
(1− p1 − γµh)Ek1

[
‖xk+0.5 − xk‖2

]
+
γε̄2

xk+0.5

2µh
+ γ2Ek1

[
(εxk+0.5 + εwk)2

]
.

Proof. See Appendix A.1.

In Lemma 2.1, we define two stochastic error terms, εx and ε̄x, which are due to the noisy samples

of Hi(·). We can first bound the squared stochastic error ε̄2
x for the total operator H(·) with our

assumption in (9):

E′[ε̄2
x] ≤ 2m1σ

2
h + 2m2

1δ
2
h.

On the other hand, the error εx involves a random variable ξ sampled from i = 1, ...,m1. Since

Eξ
[
ε2
x

]
=

m1∑
i=1

qi ·
1

q2
i

‖H ′i(x)−Hi(x)‖2 =

m1∑
i=1

1

qi
‖H ′i(x)−Hi(x)‖2,

we have

E′
[
ε2
x

]
= E′

[
Eξ
[
ε2
x

]]
≤

m1∑
i=1

2

qi
E′
[∥∥H ′i(x)− E′

[
H ′i(x)

]∥∥2
+
∥∥E′ [H ′i(x)

]
−Hi(x)

∥∥2
]

≤ 2(σ2
h + δ2

h) ·
m1∑
i=1

1

qi
= 2Lh · (σ2

h + δ2
h) ·

m1∑
i=1

1

Lh(i)
:= σ̃2

h. (15)

Now we shall proceed to present the results in the second part of the analysis, summarized in the

next lemma.

Lemma 2.2. For the iterates generated by (6), define the following stochastic error terms:

ρx := ‖∇gζ(x)−∇g′ζ(x)‖, ρ̄x := ‖∇g(x)−∇g′(x)‖.

With the condition 1− α− β ≥ 0, the following inequality holds for any x ∈ Z and k = 0, 1, 2, ...

Ek2
[
g(vk+1)− g(x)

]
≤ Ek2

[
(1− α− β)

(
g(vk)− g(x)

)
+ β

(
g(w̄k)− g(x)

)]
+Ek2

[
α〈∇̃g′(yk), xk+0.5 − x〉

]
+

(
α2Lg

2
+
α2Lg
2β

+
αµh

8

)
Ek2

[
‖xk+0.5 − xk‖2

]
+
αµh

8
Ek2

[
‖xk − x‖2

]
+

8α

µh
Ek2 [ρ̄2

w̄k ] +
8α

µh
Ek2

[
(ρw̄k + ρyk)2

]
.

7



Proof. See Appendix A.2.

Similarly, we define the two stochastic error terms in Lemma 2.2, ρx and ρ̄x, which are due to the

noisy samples of the gradient mapping ∇gi(·). The bound for ρ̄2
x follows directly from (10):

E′[ρ̄2
x] ≤ 2m2σ

2
g + 2m2

2δ
2
g ,

whereas the bound for ρ2
x can be derived as follows

E′
[
Eζ [ρ2

x]
]

= E′
[
Eζ
[
‖∇gζ(x)−∇g′ζ(x)‖2

]]
= E′

[
m2∑
i=1

πi ·
1

π2
i

‖∇gi(x)−∇g′i(x)‖2
]

≤
m2∑
i=1

2

πi
E′
[∥∥∇gi(x)− E′

[
∇g′i(x)

]∥∥2
+
∥∥E′ [∇g′i(x)

]
−∇g′i(x)

∥∥2
]

≤ 2(σ2
g + δ2

g) ·
m2∑
i=1

1

πi
= 2Lg · (σ2

g + δ2
g) ·

m2∑
i=1

1

Lg(i)
:= σ̃2

g . (16)

The last part of the analysis will combine the results from Lemma 2.1 and Lemma 2.2 and establish

the overall per-iteration convergence in terms of a potential function. Let us first define the following

function, which serves as an important component in our potential function:

Q(x′;x) := 〈H(x), x′ − x〉+ g(x′)− g(x).

In particular, we will use the function Q(x′;x∗) with x′ being the iterates generated by SAVREP (6).

The following properties show that Q(x′;x∗) is nonnegative for any x′ ∈ Z and is upper-bounded

in terms of x′:

Q(x′;x∗) = 〈H(x∗), x′ − x∗〉+ g(x′)− g(x∗) ≥ 〈H(x∗) +∇g(x∗), x′ − x∗〉 ≥ 0. (17)

and

Q(x′;x∗) = 〈H(x∗), x′ − x∗〉+ g(x′)− g(x∗)

≤ 〈H(x′), x′ − x∗〉 − µh‖x′ − x∗‖2 + g(x′)− g(x∗)

≤ 〈H(x′) +∇g(x′), x′ − x∗〉 − µh‖x′ − x∗‖2 ≤
1

4µh

∥∥H(x′) +∇g(x′)
∥∥2
.

Now we are ready to show the per-iteration convergence for (6):

Theorem 2.3. For the iterates generated by (6), define the following constants:

∆h :=
α

µh
(m1σ

2
h +m2

1δ
2
h) + 2αγσ̃2

h, ∆g :=
16α

µh
(m2σ

2
g +m2

2δ
2
g) +

16α

µh
σ̃2
g .

8



Then, the following inequality holds for k = 0, 1, 2, ...

E
[
(1− φp2)Q(vk+1;x∗) + φQ(w̄k+1;x∗)

]
+

α

2γ
E
[
(1− p1)‖xk+1 − x∗‖2 + ‖wk+1 − x∗‖2

]
≤ E

[
(1− α− β)Q(vk;x∗) + (β + φ(1− p2))Q(w̄k;x∗)

]
+
(

1− γµh
12

) α

2γ
E
[
(1− p1) ‖xk − x∗‖2 + ‖wk − x∗‖2

]
+ ∆h + ∆g. (18)

Proof. See Appendix A.3.

Theorem 2.3 establishes the relation for the iterates generated by (6), with additional stochas-

tic errors ∆h, ∆g due to the noisy samples taken for Hi(·) and ∇gi(·). To further derive the

gradient complexity and the overall stochastic errors, we are left with specifying the parameters

α, β, γ, φ, p1, p2. Note that in deriving (18), we have imposed the constraints (59) on some of the

parameters (see Appendix A.3), together with the condition 1 − α − β ≥ 0 in Lemma 2.2, which

should be honored during the parameter selection process. We summarize the gradient complexity

results in the next proposition:

Proposition 2.4. In view of Theorem 2.3, by specifying the following parameters:

γ =
1

4
min

(√
p1

Lh
,

√
p2

Lgµh
,
p1

µh

)
, α =

1

12
min

(√
µh
Lgp2

, 1

)
, β =

1

2
,

and

φ =
(1 + α)m2

2
, p1 =

1

m1
, p2 =

1

m2
,

the gradient complexity for reducing the deterministic errors to some ε > 0 is

O

((
m1 +m2 +

√
Lgm2

µh
+
Lh
√
m1

µh

)
log

d0

ε

)
, (19)

where

d0 :=
γ

αµh

∥∥H(x0) +∇g(x0)
∥∥2

+ 2‖x0 − x∗‖2.

In addition, the overall stochastic error after reducing the deterministic error to ε is of the order

O

((
m1 +m2 +

√
Lgm2

µh
+
Lh
√
m1

µh

)
· γ
α
· (∆h+∆g)

)
. (20)

Proof. See Appendix A.4.

A few remarks are in order to interpret the results in Proposition 2.4.
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Remark 2.5. Under the noiseless case where Hi(·) and ∇gi(·) can be computed exactly (δh =

σh = δg = σg = 0), (19) gives the iteration complexity before reaching either ‖xk − x∗‖2 ≤ ε or

‖wk−w∗‖2 ≤ ε. Since in each iteration the full operator H(·) (∇g(·)) is estimated at wk/w̄k, which

in expectation only updates every m1 (m2) iterations, the expected cost for estimating an individual

operator Hi(·) (∇gi(·)) is constant. Therefore, (19) is also the gradient complexity for obtaining

the ε-solution.

For a general strongly monotone VI, [1] has established the O
((
m1 +

Lh
√
m1

µh

)
log 1

ε

)
gradient

complexity, while for strongly convex optimization [2, 34] the gradient complexity

O
((
m2 +

√
Lgm2

µg

)
log 1

ε

)
has been established. While the former gradient complexity has not

been shown tight for VI, Proposition 2.4 implies that it is indeed possible to improve upon the

previous results and reflect the accelerated complexity from optimization, when the VI is of the

specific form (5).

Remark 2.6. Under the noisy case when the operators can only be estimated inexactly, the stochas-

tic error ∆h + ∆g will be carried throughout the iterations. Provided that the total number of

iterations is in the order (19), the overall error is given by ε+ ∆T , where we refer to ε as the “de-

terministic error”. The order of the overall “stochastic error” ∆T , is then given by (20). Through

standard techniques such as increasing the sample size for H ′i(·) (∇g′i(·)), the overall stochastic

error ∆T can be further reduced to O(ε).

3 Variance Reduced Scheme for Finite-Sum Monotone VI and

Finite-Sum Monotone Gradients

In this section, we develop a new algorithm for the same finite-sum monotone VI in the form (5),

but now we only assume H(·) to be monotone instead of strongly monotone, i.e. µh = 0 (the

monotone assumption for ∇g(·) remains). The loss of strong monotonicity assumption therefore

requires a different design of update procedure and analysis from the previous section, as we shall

present shortly later. Same as in the previous section, we define H(·) =
m1∑
i=1

Hi(·) where each Hi(·)

is Lipschitz continuous with constant Lh(i), and g(x) =
m2∑
i=1

gi(x) is sum of Lipschitz continuous

gradient mappings, each with Lipschitz constant Lg(i). The rest of the setups in Section 2.1 also

apply, and we shall only supplement with some specific changes in the analysis that follows.

Consider the following update for iteration count k:
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x̄k = (1− p1)xk + p1w
k

yk = (1− αk − βk)vk + αkx
k + βkw̄

k

xk+0.5 = arg min
x∈Z

γk〈H ′(wk) + ∇̃g′(yk), x− x̄k〉+ 1
2‖x− x̄

k‖2

xk+1 = arg min
x∈Z

γk〈Ĥ ′(xk+0.5) + ∇̃g′(yk), x− x̄k〉+ 1
2‖x− x̄

k‖2

vk+1 = (1− αk − βk)vk + αkx
k+0.5 + βkw̄

k

wk+1 =

{
xk+1, with prob. p1

wk, with prob. 1− p1

w̄k+1 =

{
1
m2

∑k+1
i=k+2−m2

vi, m2|(k + 1)

w̄k, otherwise.

(21)

There are two main differences between the update (21) presented above and the update (6)

in the previous section. First, while (6) simply updates w̄k with probability p2 = 1
m2

in each

iteration, (21) has a double-loop structure, which updates w̄k once every m2 iterations. In other

words, the full gradient ∇g(w̄k) is only estimated at the beginning of each outer-loop, and such

gradient is used to obtain the variance reduced gradient ∇̃g(yk) within each inner-loop. Although

in [14] single-loop variants of Katyusha and SVRG are developed for strongly convex finite-sum

optimization, there are no single-loop variants yet for the convex case as far as our knowledge goes.

Therefore, this double-loop structure given in (21) also turns out to be critical in the monotone VI

setting. Second, instead of using constant parameters as in (6), the update (21) uses parameters

αk, βk, γk that depend on iteration number k. This change is again reasonable to make given our

(non-strongly) monotone assumption in this section, and it is also consistent with the literature

of finite-sum algorithms under the non-strongly convex setting. For example, Katyusha also has

parameters depending on epochs. We shall refer to the update (21) as SAVREP-m (SAVREP for

monotone VI) in the rest of the paper.

3.1 Gradient complexity analysis

In order to establish a theoretical guarantee for the gradient complexity, we make two additional

assumptions compared to the analysis of SAVREP. In particular, we assume that the stochastic

estimators H ′i(x) and ∇g′i(x) are unbiased, and the constraint set Z is bounded, as summarized

below.

Assumption 3.1. The stochastic estimators H ′i(x) and ∇g′i(x) are both unbiased, i.e. δh = δg = 0

in (7)-(8).

Assumption 3.2. The diameter of the constraint set Z is ΩZ , i.e.

sup
x,y∈Z

‖x− y‖ = ΩZ . (22)
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The gradient complexity analysis of SAVREP-m (21) consists of two major steps. The first step

is to derive the per-iteration relation among iterates and establish a result similar to Theorem 2.3.

In the first step, we only consider the iterations from k to k + 1, which is within a single inner-

loop in the update (21) with w̄k remaining unchanged. In the second step, we derive the relation

among iterates after one outer-loop, where the iterations proceed from sm2 to (s+ 1)m2. This step

specifically establishes an inequality relating w̄(s+1)m2 and w̄sm2 , which eventually guarantees the

convergence of the iterate w̄k as long as the parameters are chosen to satisfy certain conditions.

The results derived from the first step is presented in the next lemma:

Lemma 3.3. For the iterates generated by (21), assume the following condition holds for all k ≥ 0:
p1 − 2γ2

kL
2
h ≥ 0,

q − p1 − αkγkLg − αkγkLg
βk

≥ 0,

1− αk − βk ≥ 0

(23)

where 0 < q < 1 is a constant independent of the problem and algorithm parameters. Then we

have:

E
[
Q(vk+1;x)

]
+
αk
2γk

E
[
(1− p1)‖xk+1 − x‖2 + ‖wk+1 − x‖2

]
(24)

≤ E
[
(1− αk − βk)Q(vk;x) + βkQ(w̄k;x)

]
+
αk
2γk

E
[
(1− p1) ‖xk − x‖2 + ‖wk − x‖2

]
+ αkγk∆

where ∆ is the stochastic error defined as:

∆ = 2σ̃2
h +

1

(1− q)
(2m2σ

2
g + 4σ̃2

g) = O

(
σ2
hLh

m1∑
i=1

1

Lh(i)
+ σ2

gLg

m2∑
i=1

1

Lg(i)

)
.

Proof. See Appendix A.5.

Note that while Lemma 3.3 establishes the relation of iterates between iteration k and k + 1, w̄k

remains unchanged (unless m2|k + 1). Since w̄k plays the central role in the convergence under

the monotone case, we have to extend the result in (24) to iterations between sm2 and (s+ 1)m2,

where s denotes the number of outer-loops (or epochs). In particular, we assume that the parameters

αk, βk, γk are also unchanged within each interval of updating w̄k, i.e. αsm2 = αsm2+1 = · · · =

α(s+1)m2−1, βsm2 = βsm2+1 = · · · = β(s+1)m2−1, and γsm2 = γsm2+1 = · · · = γ(s+1)m2−1. Then, by

summing up inequality (24) from k = sm2 to k = (s+ 1)m2 − 1, we get
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E

Q(v(s+1)m2 ;x) + (αsm2 + βsm2)

(s+1)m2−1∑
k=sm2+1

Q(vk;x)


+
αsm2

2γsm2

E
[
(1− p1)‖x(s+1)m2 − x‖2 + ‖w(s+1)m2 − x‖2

]
≤ (1− αsm2 − βsm2)E[Q(vsm2 ;x)] + βsm2m2E[Q(w̄sm2 ;x)]

+
αsm2

2γsm2

E
[
(1− p1)‖xsm2 − x‖2 + ‖wsm2 − x‖2

]
+m2αsm2γsm2∆. (25)

Since Q(x′;x) := 〈H(x), x′ − x〉+ g(x′)− g(x) and g is convex, Q(·;x) is convex. By using the def-

inition w̄sm2 = 1
m2

∑sm2

i=(s−1)m2+1 v
i and the convexity of Q(·;x), we have

∑sm2

k=(s−1)m2+1Q(vk;x) ≥
m2Q(w̄sm2 ;x). Then,

E

Q(v(s+1)m2 ;x) + (αsm2 + βsm2)

(s+1)m2−1∑
k=sm2+1

Q(vk;x)


+
αsm2

2γsm2

E[(1− p1)‖x(s+1)m2 − x‖2 + ‖w(s+1)m2 − x‖2]

≤ (1− αsm2)E[Q(vsm2 ;x)] + βsm2E

 sm2−1∑
k=(s−1)m2+1

Q(vk;x)


+
αsm2

2γsm2

E[(1− p1)‖xsm2 − x‖2 + ‖wsm2 − x‖2] +m2αsm2γsm2∆. (26)

Let us define

Γs =

{
1, when s = 0

(1− α(s−1)m2
)Γs−1, when s > 0

and

V (x′, w;x) = (1− p1)‖x′ − x‖2 + ‖w − x‖2.

Then, by dividing Γs+1 on both sides of 26, we have

E

 1

Γs+1
Q(v(s+1)m2 ;x) +

αsm2 + βsm2

Γs+1

(s+1)m2−1∑
k=sm2+1

Q(vk;x)


≤ 1

Γs
E[Q(vsm2 ;x)] +

βsm2

Γs+1
E

 sm2−1∑
k=(s−1)m2+1

Q(vk;x)


+

αsm2

2γsm2Γs+1
E
[
V (xsm2 , wsm2 ;x)− V (x(s+1)m2 , w(s+1)m2 ;x)

]
+
m2αsm2γsm2

Γs+1
∆. (27)
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Since for any solution x∗ we have Q(x;x∗) ≥ 0 for all x ∈ Z (c.f. (17)), by taking x = x∗ in (27)

with the condition on the parameters:

βsm2

Γs+1
≤
α(s−1)m2

+ β(s−1)m2

Γs
, (28)

we can rewrite (27) into:

E

 1

Γs+1
Q(v(s+1)m2 ;x∗) +

αsm2 + βsm2

Γs+1

(s+1)m2−1∑
k=sm2+1

Q(vk;x∗)


≤ 1

Γs
E[Q(vsm2 ;x∗)] +

α(s−1)m2
+ β(s−1)m2

Γs
E

 sm2−1∑
k=(s−1)m2+1

Q(vk;x∗)


+

αsm2

2γsm2Γs+1
E
[
V (xsm2 , wsm2 ;x∗)− V (x(s+1)m2 , w(s+1)m2 ;x∗)

]
+
m2αsm2γsm2

Γs+1
∆. (29)

Now, define

Bs =
αsm2

2γsm2Γs+1

and assume the next condition holds for s = 1, ..., S − 1:

Bs−1 ≤ Bs. (30)

Then we can obtain the next inequalities by summing up (29) for s = 1, ..., S − 1:
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m2β(S−1)m2

ΓS
E
[
Q(w̄Sm2 ;x∗)

]
≤ E

 1

ΓS
Q(vSm2 ;x∗) +

α(S−1)m2
+ β(S−1)m2

ΓS

Sm2−1∑
k=(S−1)m2+1

Q(vk;x∗)


≤ 1

Γ1
E[Q(vm2 ;x∗)] +

α0 + β0

Γ1
E

[
m2−1∑
k=1

Q(vk;x∗)

]

+
S−1∑
s=1

BsE
[
V (xsm2 , wsm2 ;x∗)− V (x(s+1)m2 , w(s+1)m2 ;x∗)

]
+
S−1∑
s=1

m2αsm2γsm2

Γs+1
∆

≤ (1− α0 − β0)

Γ1
Q(v0;x∗) +

β0m2

Γ1
Q(w̄0;x∗) +

S−1∑
s=0

BsE
[
V (xsm2 , wsm2 ;x∗)− V (x(s+1)m2 , w(s+1)m2 ;x∗)

]
+
S−1∑
s=0

m2αsm2γsm2

Γs+1
∆

≤ (1− α0 + (m2 − 1)β0)

Γ1
Q(w0;x∗) +B0E

[
V (x0, w0;x∗)

]
+
S−1∑
s=1

(Bs −Bs−1)E [V (xsm2 , wsm2 ;x∗)]

+
S−1∑
s=0

m2αsm2γsm2

Γs+1
∆

(22),(30)

≤ (1− α0 + (m2 − 1)β0)

Γ1
Q(w0;x∗) +B0Ω2

Z +

S−1∑
s=1

(Bs −Bs−1)Ω2
Z +

S−1∑
s=0

m2αsm2γsm2

Γs+1
∆

≤ (1− α0 + (m2 − 1)β0)

Γ1
Q(w0;x∗) +

α(S−1)m2

2γ(S−1)m2
ΓS

Ω2
Z +

S−1∑
s=0

m2αsm2γsm2

Γs+1
∆,

where in the third inequality we apply (25) with s = 0 and x = x∗, and in the forth inequality

we simply remove the nonpositive term −BS−1E
[
V (xSm2 , wSm2 ;x∗)

]
, together with the definition

v0 := w̄0 := w0 = x0.

We summarize the above results together with the required conditions on the parameters (23), (28), (30)

in the next theorem:

Theorem 3.4. Suppose the following conditions hold for k ≥ 0 and s = 1, ..., S − 1:

p1 − 2γ2
kL

2
h ≥ 0

q − p1 − αkγkLg − αkγkLg
βk

≥ 0

1− αk − βk ≥ 0
α(s−1)m2
γ(s−1)m2

Γs
≤ αsm2

γsm2Γs+1

βsm2
1−αsm2

≤ α(s−1)m2
+ β(s−1)m2

(31)
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where 0 < q < 1 is a constant, and αk, βk, γk are constants within each interval of updating w̄,

i.e. αsm2 = αsm2+1 = · · · = α(s+1)m2−1, βsm2 = βsm2+1 = · · · = β(s+1)m2−1, and γsm2 = γsm2+1 =

· · · = γ(s+1)m2−1. Then,

E
[
Q(w̄Sm2 ;x∗)

]
≤ 1

m2β(S−1)m2

(1− α0 + (m2 − 1)β0)ΓS
Γ1

Q(w0;x∗) +
α(S−1)m2

2m2γ(S−1)m2
β(S−1)m2

Ω2
Z

+
ΓS

β(S−1)m2

S−1∑
s=0

αsm2γsm2

Γs+1
∆

for any x∗ ∈ Z∗, where Z∗ ⊆ Z is the solution set and ∆ = O

(
σ2
hLh

m1∑
i=1

1
Lh(i)

+ σ2
gLg

m2∑
i=1

1
Lg(i)

)
.

We shall specify a set of parameters that satisfy the conditions in (31) and the corresponding

gradient complexities in the next corollary.

Corollary 3.5. If we choose

q =
3

4
, p1 =

1

m1
≤ 1

2
, αk =

2

s+ 4
≤ 1

2
, βk =

1

2
,

γk =
s+ 3

24(Lg + (s+ 1)Lh
√
m1) + (s+ 1)

√
(s+ 1)∆m2/ΩZ

,

where s =
⌊
k
m2

⌋
, then when m2|k,

E[Q(w̄k, x∗)] ≤ 24

S2
Q(w0, x∗) +

48

m2S2
LgΩ

2
Z +

48

m2S
Lh
√
m1Ω2

Z +
26ΩZ

√
∆√

Sm2

=
24m2

2

k2
Q(w0, x∗) +

48m2

k2
LgΩ

2
Z +

48

k
Lh
√
m1Ω2

Z +
26ΩZ

√
∆√

k
(32)

where S = k/m2. The gradient complexity for reducing E[Q(w̄k, x∗)] to some ε > 0 is given by

O

(√
Q(w0, x∗)

ε
m2 +

√
Lgm2

ε
ΩZ +

Lh
√
m1Ω2

Z
ε

+
∆Ω2

Z
ε2

)
. (33)

Proof. We first verify the conditions (31) are satisfied by the specific choices of the parameters.

Note that Γs = 6
(s+2)(s+3) , and the following inequalities holds:

γ2
kL

2
h ≤

(
s+ 3

24(s+ 1)
√
m1

)2

≤ 1

2m1
=
p1

2
,

p1 + αkγkLg +
αkγkLg
βk

= p1 + 3αkγkLg ≤
1

2
+

6

s+ 4
· s+ 3

24
≤ 3

4
,
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αsm2

γsm2Γs+1
= 8(Lg + (s+ 1)Lh

√
m1) +

√
(s+ 1)∆m2/ΩZ

which is non-decreasing in s = 0, 1, ..., S − 1, and

s+ 4

2(s+ 2)
=

βsm2

1− αsm2

≤ α(s−1)m2
+ β(s−1)m2

=
s+ 7

2(s+ 3).

Therefore, the conditions in (31) are indeed satisfied.

The convergence rate (32) can be derived by noticing the next few inequalities:

1

m2β(S−1)m2

(1− α0 + (m2 − 1)β0)ΓS
Γ1

≤ 4ΓS ≤
24

S2
,

α(S−1)m2

2m2γ(S−1)m2
β(S−1)m2

≤ 2

m2S2

(
24(Lg + SLh

√
m1) + S

√
S∆m2/ΩZ

)
≤ 48

m2S2
Lg +

48

m2S
Lh
√
m1 +

2
√

∆

ΩZ
√
Sm2

,

and
αsm2γsm2

Γs+1
≤ s+ 3

3
γsm2 ≤

(s+ 3)2

3(s+ 1)
√

(s+ 1)∆m2/ΩZ
≤ 3
√
s+ 1

ΩZ√
∆m2

,

which results in the following bound since
∑S−1

s=0

√
s+ 1 ≤

∫ S+1
s=0

√
sds = 2

3(S + 1)3/2:

ΓS
β(S−1)m2

S−1∑
s=0

αsm2γsm2

Γs+1
≤ 24

ΩZ√
S∆m2

.

Therefore, we have

E[Q(w̄k, x∗)] ≤ 24

S2
Q(w0, x∗) +

48

m2S2
LgΩ

2
Z +

48

m2S
Lh
√
m1Ω2

Z +
26ΩZ

√
∆√

Sm2

=
24m2

2

k2
Q(w0, x∗) +

48m2

k2
LgΩ

2
Z +

48

k
Lh
√
m1Ω2

Z +
26ΩZ

√
∆√

k
.

Remark 3.6. In case of H(x) = 0 and ∆ = 0, the only difference between the above complexity

and the counterpart of Katyusha [2] is we replace ‖w0−x∗‖ with ΩZ . In addition, when H(x) 6= 0,

the complexity improves the result in [1] in terms of Lg. In the case of g(x) = 0, the complexity

matches the results in [1], with the gap between the current lower bound [32] remaining to be filled.
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Note that in general Q(w̄k, x∗) converging to 0 does not necessarily guarantee that w̄k converges

to a solution x∗. Under additional condition, such as when g(x) is strictly convex, the convergence

to x∗ can be shown.

Corollary 3.7. If g(x) is strictly convex, then limk→∞ E[‖w̄k−x∗‖] = 0 in the setting of Corollary

3.5.

Proof. Let M(r) := min‖x′−x∗‖=r g(x′) − g(x∗) − 〈∇g(x∗), x′ − x∗〉. Since g(x) is strictly convex,

M(r) > 0 as r > 0. Notice that for any z′ ∈ Z,

Q(x′;x∗) = 〈H(x∗), x′ − x∗〉+ g(x′)− g(x∗)

= 〈H(x∗) +∇g(x∗), x− x∗〉+ g(x′)− g(x∗)− 〈∇g(x∗), x′ − x∗〉

≥ g(x′)− g(x∗)− 〈∇g(x∗), x′ − x∗〉.

With Corollary 3.5, we get limk→∞ E[M(‖w̄k−x∗‖)] = 0. Note M(r)
r = min‖θ‖=1

g(x∗+rθ)−g(x∗)−〈∇g(x∗),rθ〉
r

is increasing with respect to r. So, given any ε > 0, M(r) ≥ rM(ε)
ε for any r > ε, which implies

E[M(‖w̄k − x∗‖)] ≥ E[M(‖w̄k − x∗‖)1‖w̄k−x∗‖≥ε] ≥
M(ε)

ε
E[‖w̄k − x∗‖1‖w̄k−x∗‖≥ε].

Therefore, limk→∞ E[‖w̄k − x∗‖1‖w̄k−x∗‖≥ε] = 0 and

lim
k→∞

E[‖w̄k − x∗‖] = lim
k→∞

E[‖w̄k − x∗‖1‖w̄k−x∗‖≥ε] + lim
k→∞

E[‖w̄k − x∗‖1‖w̄k−x∗‖<ε] ≤ ε.

Since ε > 0 can be chosen arbitrarily, we have limk→∞ E[‖w̄k − x∗‖] = 0.

4 Finite-Sum Constrained Finite-Sum Optimization

In this section, we introduce an application for which the proposed SAVREP and SAVREP-m can

be applied to. Consider the following problem:

(P ) min
∑m2

i=1 gi(x)

s.t.
∑m1

j=1 hj(x) ≤ 0

x ∈ X .
(34)

While it is not uncommon to formulate the objective function as finite-sum in machine learning

research, the specific finite-sum structure of inequality constraints given in (34) is also found in

applications such as empirical risk minimization and Neyman-Pearson classification [30]. Previous

research [3, 19, 18] has developed level-set methods for solving (34). In particular, [18] proposed to

reformulate the level-set subproblem into saddle-point problem and solve it with variance-reduced

method [25].
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4.1 A noise-free VI reformulation

In this paper, we propose to solve (34) through its Lagrangian dual formulation, which is equiv-

alently a saddle point problem with a special structure that is suitable for applying the acceler-

ated variance reduced method SAVREP-m. In our discussion, we assume gi(x) is convex for all

i = 1, ...,m2, hj(x) = (hj,1(x), · · · , hj,`(x))> ∈ R` and hj,s(x) is convex in x for all j = 1, ...,m1

and s = 1, ..., `, and X ⊆ Rn is a closed convex set. The corresponding saddle point reformulation

of (34) solves the following:

min
x∈X

max
y∈R`+

L(x; y) :=

m2∑
i=1

gi(x) +

m1∑
j=1

y>hj(x), (35)

where L(x; y) defines the Lagrangian function of (P ). The partial gradients of the Lagrangian

function are given by: {
∇xL(x; y) =

∑m2
i=1∇gi(x) +

∑m1
j=1 (Jhj(x))> y

∇yL(x; y) =
∑m1

j=1 hj(x).

Denote Y := R`+, then the optimality condition for (35) is the following VI problem:

Find (x∗, y∗) ∈ X × Y such that(
∇xL(x∗; y∗)

−∇yL(x∗; y∗)

)>(
x− x∗

y − y∗

)
≥ 0, for all (x, y) ∈ X × Y. (36)

Or simply:

Find z∗ ∈ Z such that

〈F (z∗), z − z∗〉 ≥ 0, for all z ∈ Z,

where we let z := (x; y), Z := X × Y, and

F (z) :=

m1∑
j=1

(
(Jhj(x))>y

−hj(x)

)
+

m2∑
i=1

(
∇gi(x)

0

)
=

(
∇xL(x; y)

−∇yL(x; y)

)
(37)

=

m1∑
j=1

Hj(z) +

m2∑
i=1

∇gi(z).

Note that we have transformed the original finite-sum constrained finite-sum optimization problem

(34) into solving a VI problem with the operator defined in (37), and such F (z) indeed takes the

form of (4), which consists of a finite-sum general VI mappings
m1∑
j=1

(
(Jhj(x))>y

−hj(x)

)
and a finite-sum

19



gradient mappings
m2∑
i=1

(
∇gi(x)

0

)
. We caution that the variables x, y used in these expressions

should not be confused with the sequences {xk}, {yk} presented in the update (6) or (21). The

former corresponds to the (dual) variables in the original optimization problem, while the latter is

general VI variables. We use z as the variable in the VI reformulation (37) to distinguish between

the two.

Note that the Jacobian of

(
∇gi(x)

0

)
is

[
∇2gi(x) 0

0 0

]
, which is positive semidefinite since

each fi(x) is assumed to be convex. On the other hand, the Jacobian of

(
(Jhj(x))>y

−hj(x)

)
is

∑̀s=1
ys∇2hj,s(x) (Jhj(x))>

−Jhj(x) 0`×`

 .

Since ys ≥ 0 and hj,s(x) is convex, the above Jacobian matrix is also positive semidefinite. There-

fore, we can conclude that the operator F (z) in the VI reformulation is indeed monotone.

While the efficiency of the variance reduced algorithms for optimization is now commonly recog-

nized when the total number m2 of functions gi(x) in the summation is large, it is also reasonable

to apply similar variance reduced techniques for estimating the constraint functions hj(x) when

the total number m1 in the summation is large, as it can be costly to evaluate all these constraint

functions (or their Jacobians) in each iteration. Problem (P ) in (34) describes exactly such a sit-

uation, and by reformulating the original problem into a finite-sum VI with the special structure

(37), the proposed SAVREP-m in Section 3 can be applied. It incorporates variance reduction into

the update process for both finite-sum gradient mappings and finite-sum VI mappings, where the

latter is attributed to the (Jacobians) of the constraints hi(x) and the corresponding dual variable

y. Note that since the dual variable y is constrained to be non-negative, Assumption 3.2 in general

does not hold in our VI reformulation with the operator (37), where the constraint is given by

Z := X ×R`+. However, it is merely a convenient assumption for deriving the gradient complexity

guarantee in our analysis, while in practice it makes sense to set a large enough diameter constant

that contains the optimal dual variable y∗ and perform projections onto the bounded constrained

set instead. As we will show in Section 5, the improved gradient complexities due to applying vari-

ance reduction respectively to the general VI mapping and gradient mapping are indeed observed

regardless of the boundedness of the constraint sets in our most general VI reformulation (36).

Alternatively, one can also apply SAVREP proposed in Section 2, which solves a strongly monotone

VI instead. While the operator (37) in our VI reformulation is merely monotone, it can be easily

transformed to a strongly monotone VI by considering the following approximated VI problem with
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the perturbed operator:

Fµ(z) := F (z) + µz, (38)

which is strongly monotone with µ > 0 with F (z) defined in (37). Note that SAVREP only

requires H(z) =
m1∑
j=1

Hj(z) to be strongly monotone, so the perturbation term µz can be associated

to Hj(z) for arbitrary j = 1, 2, ..,m1. In particular, we can construct the variance reduced gradient

estimators in (11) as:

Ĥ(zk+0.5) := H(wk) +Hξk(zk+0.5)−Hξk(wk) + µzk+0.5,

where ξk randomly samples from j = 1, 2, ..,m1 and Hj(·) is defined in (37). The counterpart for

∇̃g(zk) remains unchanged from (12).

To ensure that the solution obtained from the VI associated with Fµ(z) serves as a good approx-

imated solution to the original VI when µ is small, let us also introduce the following error bound

assumption:

Assumption 4.1 (Error Bound). Let F (z) be monotone and µ > 0. Denote z∗(µ) as the solution

to the VI problem with operator Fµ(z), namely:

〈Fµ(z∗(µ)), z − z∗(µ)〉 ≥ 0, ∀z ∈ Z,

and let z∗ be a solution to the VI with operator F (z). There exist constants θ ∈ (0, 1], c1, c2 > 0

such that for all 0 < µ < c1, the following holds:

‖z∗(µ)− z∗‖ ≤ c2 · µθ.

Assumption 4.1 ensures that by solving an approximated solution to the strongly monotone VI

with operator Fµ(z), we are able to use the exact same solution as the approximated solution to the

original monotone VI with F (z), which in turn solves (34). A similar error bound assumption for

convex-concave saddle point problem is also discussed in Assumption 5.1 in [11], where they further

showed that the assumption holds with θ = 1 for quadratic saddle point functions with bilinear

coupling. In theory, taking a perturbation parameter µ = O(ε
1
θ ) while applying SAVREP to obtain

a ε
2 -solution zk will guarantee the same zk to be an ε-solution to the operator F (z). In practice, the

single-loop structure of SAVREP makes it easier to implement compared to its monotone variant

SAVREP-m.

4.2 A stochastic zeroth-order approach

In this section, we consider the same problem (P ) in (34) but assume that only the unbiased noisy

estimations of each of the function values gi(x) and constraint function values hj,s(x) are accessible,
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denoted by g′i(x) and h′j,s(x) respectively. Under this assumption, the gradients of the functions

∇gi(x),∇hj,s(x) are not directly available, and the methods applied to problems of this type are

often referred to as derivation-free or zeroth-order methods. There have been developments in the

context of optimization [24, 28, 7, 29, 16], as well as in the context of saddle point problems [31,

33, 20, 26, 21, 12].

In the following discussion, we present a zeroth-order approach based on the saddle point refor-

mulation (35). By applying the randomized smoothing approach [24], we can replace the gradients

∇gi(x), ∇hj,s(x) required in the VI operator (37) with the stochastic zeroth-order gradients. The

resulting VI operator then serves as the stochastic estimators used in the update of SAVREP (6),

and we shall derive the stochastic bounds in (7)-(8) in terms of the parameters involved in the

construction of these stochastic zeroth-order gradients.

Let us first state the assumptions for the stochastic oracles g′i(x), h′j,s(x):


E′ [g′i(x)] = gi(x),

E′ [∇g′i(x)] = ∇gi(x),

E′
[
‖∇g′i(x)−∇gi(x)‖2

]
≤ ς2

g ,


E′[h′j,s(x)] = hj,s(x), E′

[
|h′j,s(x)− hj,s(x)|2

]
≤ $2,

E′[∇h′j,s(x)] = ∇hj,s(x),

E′
[∥∥∥∇h′j,s(x)−∇hj,s(x)

∥∥∥2
]
≤ ς2

h.

(39)

Note that we have used E′[·] as the expectation taken for the stochastic oracle, suppressing the

notation of random variable for simplicity. In addition, we assume that gi(x), ∇gi(x), hj,s(x),

∇hj,s(x) are Lipschitz continuous with constants Mi,g, Li,g,Mj,s,h, Lj,s,h respectively.

Given a function g(x), the corresponding smoothing function with parameter ϕ can be obtained

by taking the expectation of random samples taken from the uniform distribution Ub on a Euclidean

ball B in Rn, defined as following:

gϕ(x) := Eu∼Ub [g(x+ ϕu)] =
1

α(n)

∫
B
g(x+ ϕu)du,

where α(n) is the volume of the unit ball B. The above smoothing function gϕ(x) is then continu-

ously differentiable regardless of the continuity of the original function g(x). We summarize some

properties of the smoothing function and its gradient in the next lemma, which can also be found

in the literature of zeroth-order methods.

Lemma 4.2. The smoothing function gϕ(x) is continuously differentiable. Denote USp as the

uniform distribution on the unit sphere Sp in Rn. The gradient ∇gϕ(x) can be expressed as the

following:

∇gϕ(x) := Eu∼USp

[
n

ϕ
g(x+ ϕu)u

]
= Eu∼USp

[
n

ϕ
(g(x+ ϕu)− g(x))u

]
.
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Furthermore, if g(x) is also differentiable, then the following bounds hold:

‖∇gϕ(x)−∇g(x)‖ ≤ ϕnL

2
, (40)

Eu∼USp

[∥∥∥∥nϕ (g(x+ ϕu)− g(x))u

∥∥∥∥2
]
≤ 2n ‖∇g(x)‖2 +

ϕ2n2L2

2
, (41)

where L is the Lipschitz constant of ∇g(x).

The proof of Lemma 4.2 can be found in the literature, and we refer the interested readers to [28]

(Lemma 4.4) and [8] (Propositions 2.7.5 and 2.7.6) for the details.

Based on the properties in Lemma 4.2, we now define the stochastic zeroth-order gradient as the

following:

G′i,ϕ(x, u) :=
n

ϕ

(
g′i(x+ ϕu)− g′i(x)

)
u,

H ′j,s,ϕ(x, u) :=
n

ϕ

(
h′j,s(x+ ϕu)− h′j,s(x)

)
u,

where u ∼ USp , and we have replaced the function values g(x) with the corresponding stochastic

oracles g′i(x) and h′j,s(x) for each of the function. Note that when evaluating the stochastic zeroth-

order gradient G′i,ϕ(x, u) (H ′j,s,ϕ(x, u)), we use the same random variable ξg (ξh) to evaluate the

stochastic function estimator g′i(·) (h′j,s(·)) at x + ϕu and x respectively. The dependency on the

random variables is suppressed for simplicity. The next corollary states that the stochastic zeroth-

order gradient is an unbiased estimator of the gradient of the smoothing function ∇gϕ(x) with

bounded variance.

Corollary 4.3. The stochastic zeroth-order gradients are unbiased with respect to the gradient of

the smoothing function with bounded variance:

E′u
[
G′i,ϕ(x, u)

]
= ∇gi,ϕ(x), E′u

[
H ′j,s,ϕ(x, u)

]
= ∇hj,s,ϕ(x),

and

E′u
[∥∥G′i,ϕ(x, u)−∇gi,ϕ(x)

∥∥2
]
≤ ς̃2

g := 2n
(
M2
i,g + ς2

g

)
+
ϕ2n2L2

i,g

2
, (42)

E′u
[∥∥H ′j,s,ϕ(x, u)−∇hj,s,ϕ(x)

∥∥2
]
≤ ς̃2

h := 2n
(
M2
j,s,h + ς2

h

)
+
ϕ2n2L2

j,s,h

2
. (43)

Proof. See Appendix A.6.
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Now we can replace the gradient mappings in the operator F (z) of the VI reformulation (37) with

the stochastic zeroth-order gradients:

F ′(z) :=

m1∑
j=1

(
H ′j,ϕ(x, u)y

−h′j(x)

)
+

m2∑
i=1

(
G′i,ϕ(x, u)

0

)
:=

m1∑
j=1

H ′j(z) +

m2∑
i=1

∇g′i(z), (44)

where H ′j,ϕ(x, u) := (H ′j,1,ϕ(x, u), H ′j,2,ϕ(x, u), ...,H ′j,`,ϕ(x, u)) is a matrix with column vectors being

the stochastic zeroth-order gradient H ′j,s,ϕ(x, u) for s = 1, 2, ..., `, and h′j(x) := (h′j,1(x), ..., h′j,`(x))>.

By constructing the stochastic zeroth-order operator F ′(z) as in (44), the proposed SAVREP (6) is

readily applicable to the VI reformulation of problem (P ) when the function value estimations are

noisy. We conclude this section by summarizing the corresponding stochastic bounds in the forms

of (7)-(8).

Corollary 4.4. Let Hj(z),∇gi(z) be defined in (37) and H ′j(z),∇g′i(z) be defined in (44). Fur-

thermore, denote K as the total number of iterations performed by SAVREP and define Dy :=

max
0≤k≤K

‖y‖, then we have the following stochastic bounds hold for all z ∈ {zk}0≤k≤K :

∥∥∥Hj(z)− E′[H ′j(z)]
∥∥∥ ≤ δh :=

ϕnDy
2

√∑̀
s=1

L2
j,s,h, E′

[∥∥H ′j(z)− E′
[
H ′j(z)

]∥∥2
]
≤ σ2

h := `
(
ς̃2
hD

2
y +$2

)
,

‖∇gi(z)− E′ [∇g′i(z)]‖ ≤ δg :=
ϕnLi,g

2 , E′
[∥∥∇g′i(z)− E′

[
∇g′i(z)

]∥∥2
]
≤ σ2

g := ς̃2
g .

Proof. See Appendix A.7.

5 Numerical Experiments

In this section, we evaluate the numerical performance of SAVREP and SAVREP-m by using the

same example as in [18], which is a Neyman-Pearson classification problem [30] formulated as

min
‖x‖2≤λ

1

n0

n0∑
j=1

φ
(
x>ξ0j

)
, s.t.

1

n1

n1∑
j=1

φ
(
−x>ξ1j

)
≤ r1, (45)

where φ is the loss function, defined as smoothed hinge loss function in the experiment for SAVREP

and logistic loss function in the experiment for SAVREP-m. The dataset is the rcv1 training data set

from LIBSVM library with 20, 242 data points with n0 = 10, 491 and n1 = 9, 751 and a dimension

of 47, 236.
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5.1 SAVREP

In this experiment, the loss function is defined as

φ(t) =


1
2 − t, t ≤ 0,
1
2(1− t)2, 0 < t ≤ 1,

0, t > 1,

and we focus on the perturbed problem 38. The parameters are set as λ = 5 and r1 = 0.1, and the

perturbation is set as µ = 10−5, 10−10 respectively. We compare the performance of SAVREP with

extragradient with variance reduction (EVR) [1]. Both of the methods use the mini-batch with a

batch size of 100 to get the stochastic gradient estimators. We tune τ for EVR methods and α

and γ for SAVREP. To give a fair comparison, for all the parameters we tune, we select learning

rates from the set
{

10−k, 2× 10−k, 4× 10−k, 8× 10−k : k ∈ Z
}

times the parameter settings for

theoretical analysis in their corresponding paper. We use both the distance from the iterates to

the optimal solution (solved by CVX mosek) and the norm of H(x) + ∇g(x) as the performance

measure. The results are shown in Figure 1 (µ = 10−5) and Figure 2 (µ = 10−10), with left plots

showing distance to the optimal solution and right plots showing the norm of H(x) + ∇g(x). In

these experiments, SAVREP shows faster convergence than EVR. Furthermore, the distance to the

optimal solution is shorter for smaller perturbation µ = 10−10, which is in line with expectation.

Figure 1: Convergence of SAVREP under perturbation µ = 10−5

5.2 SAVREP-m

In this experiment, we test SAVREP-m on the same problem (45), using the VI formulation without

perturbation (37). The parameter tuning is similar to the previous experiment, while the loss

function is defined as the logistic loss function, i.e.φ(t) = log(1+exp(−t)), with λ = 5 and r1 = 0.4.
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Figure 2: Convergence of SAVREP under perturbation µ = 10−10

The convergence in terms of distance to optimal solution and norm of H(x) + ∇g(x) are shown

in Figure 3. In addition, the constraint violation and objective function gap are shown in Figure

4. These results demonstrate the sublinear convergence rate of SAVREP-m, which is consistent

with the theoretical guarantee derived in Section 3.1. On the other hand, EVR in this experiment

shows a linear convergence rate similar to that in the previous experiment with perturbation.

Note that in the second experiment the problem may still be (locally) strongly monotone after

reformulation even without perturbation. While EVR does not require the strongly monotone

modulus in its algorithm and reflects linear convergence automatically, we note that SAVREP-m

explicitly assumes the problem to be merely monotone by using diminishing step sizes, as shown

in Corollary 3.5. The specific design is necessary for SAVREP-m to guarantee a faster sublinear

rate given the composite VI structure (5), at the cost of not being able to converge linearly when

the problem is actually strongly monotone. We remark that the purpose of this experiment is

to demonstrate the convergence behavior of SAVREP-m, and in practice it makes sense to apply

SAVREP instead with estimated strong monotonicity modulus.

6 Conclusions

In this paper, we propose two stochastic variance reduced schemes, SAVREP and SAVREP-m, for

solving an extended class of finite-sum VI with strongly monotone operator and monotone operator

respectively. The operator consists of the sum of a general VI mapping and a gradient mapping,

both with finite-sum structure. By exploiting this special structure and applying variance reduc-

tion techniques developed in the literature, we show that both schemes admit improved gradient

complexities, compared to existing variance reduction algorithms proposed for general finite-sum

VI. In addition, we consider a more general stochastic setup in both proposed schemes, where the
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Figure 3: Convergence of SAVREP-m: distance to optimal solution (left) and norm of H + ∇g
(right)

Figure 4: Convergence of SAVREP-m: constraint violation (left) and objective function gap (right)
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stochastic oracles of noisy mappings are adopted in the updates, and derive the corresponding

stochastic bounds in the results of our complexity analysis. We show that an application of finite-

sum optimization with finite-sum inequality constraints can be reformulated into the finite-sum VI

of the special structure discussed in this paper, where the proposed schemes can be readily applied

to. Finally, we note that while the established gradient complexity results match the optimal com-

plexities in terms of problem constants in optimization (i.e. the constants related to the gradient

mapping), the gap between the current lower bound established for finite-sum VI remains unfilled.

It is still an open question whether the upper bound or the lower bound can be improved to match

the other, and we leave it to future works.
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Appendix A Proofs for Technical Results

A.1 Proof of Lemma 2.1

The optimality condition at xk+0.5 yields

〈γ
(
H ′(wk) + ∇̃g′(yk)

)
+ xk+0.5 − x̄k, x− xk+0.5〉 ≥ 0, ∀x ∈ Z, (46)

30



and the optimality condition at xk+1 yields

〈γ
(
Ĥ ′(xk+0.5) + ∇̃g′(yk)

)
+ xk+1 − x̄k, x− xk+1〉 ≥ 0, ∀x ∈ Z. (47)

From (47), use the expression of x̄k:

1

2

(
‖xk+1 − x‖2 + (1− p1)‖xk+1 − xk‖2 − (1− p1)‖xk − x‖2 + p1‖xk+1 − wk‖2 − p1‖wk − x‖2

)
= (1− p1)〈xk+1 − xk, xk+1 − x〉+ p1〈xk+1 − wk, xk+1 − x〉 ≤ γ〈Ĥ ′(xk+0.5) + ∇̃g′(yk), x− xk+1〉,

(48)

where

γ〈Ĥ ′(xk+0.5) + ∇̃g′(yk), x− xk+1〉

= γ〈Ĥ ′(xk+0.5) + ∇̃g′(yk), x− xk+0.5〉+ γ〈Ĥ ′(xk+0.5) + ∇̃g′(yk), xk+0.5 − xk+1〉

= γ〈H(xk+0.5) + ∇̃g′(yk), x− xk+0.5〉+ γ〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

+γ〈H ′(wk) + ∇̃g′(yk), xk+0.5 − xk+1〉+ γ〈Ĥ ′(xk+0.5)−H ′(wk), xk+0.5 − xk+1〉. (49)

The third term in the above inequality can be bounded by using (46) with x = xk+1:

γ〈H ′(wk) + ∇̃g′(yk), xk+0.5 − xk+1〉 ≤ 〈xk+0.5 − x̄k, xk+1 − xk+0.5〉

= (1− p1)〈xk+0.5 − xk, xk+1 − xk+0.5〉+ p1〈xk+0.5 − wk, xk+1 − xk+0.5〉

=
1

2

(
−‖xk+1 − xk+0.5‖2 + (1− p1)‖xk+1 − xk‖2 − (1− p1)‖xk+0.5 − xk‖2

+p1‖xk+1 − wk‖2 − p1‖xk+0.5 − wk‖2
)
,

while the fourth term can be bounded by:

γ〈Ĥ ′(xk+0.5)−H ′(wk), xk+0.5 − xk+1〉 = γ〈H ′ξk(xk+0.5)−H ′ξk(wk), xk+0.5 − xk+1〉

≤ γ2

2
‖H ′ξk(xk+0.5)−H ′ξk(wk)‖2 +

1

2
‖xk+0.5 − xk+1‖2.

Combine the above two inequalities with (49) and use Ek1 [·] := Eξk [·|xk, wk]:

Ek1
[
γ〈Ĥ ′(xk+0.5) + ∇̃g′(yk), x− xk+1〉

]
≤ Ek1

[
γ〈H(xk+0.5) + ∇̃g′(yk), x− xk+0.5〉

]
+ Ek1

[
γ〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]
+

1

2
Ek1

[
γ2‖H ′ξk(xk+0.5)−H ′ξk(wk)‖2 + (1− p1)‖xk+1 − xk‖2

−(1− p1)‖xk+0.5 − xk‖2 + p1‖xk+1 − wk‖2 − p1‖xk+0.5 − wk‖2
]
. (50)
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Let us bound the term Ek1
[
γ〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]
. Note that with Ek1 [·], xk+0.5

is deterministic and Ek1
[
Ĥ ′(xk+0.5)

]
= H ′(xk+0.5). Therefore,

Ek1
[
γ〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]
= γ〈H ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

≤ γ

2µh

∥∥∥H ′(xk+0.5)−H(xk+0.5)
∥∥∥2

+
γµh

2
‖x− xk+0.5‖2. (51)

Continue with (50):

Ek1
[
γ〈Ĥ ′(xk+0.5) + ∇̃g′(yk), x− xk+1〉

]
≤ Ek1

[
γ〈H(xk+0.5) + ∇̃g′(yk), x− xk+0.5〉

]
+

1

2
Ek1

[
γ2‖H ′ξk(xk+0.5)−H ′ξk(wk)‖2

]
+

1

2
Ek1

[
(1− p1)‖xk+1 − xk‖2 − (1− p1) ‖xk+0.5 − xk‖2 + p1‖xk+1 − wk‖2 − p1‖xk+0.5 − wk‖2

]
+
γε̄2

xk+0.5

2µh
+

1

2
Ek1

[
γµh‖xk+0.5 − x‖2

]
.

Combine with (48):

1

2
Ek1

[
‖xk+1 − x‖2 − (1− p1)‖xk − x‖2 − p1‖wk − x‖2 + (1− p1) ‖xk+0.5 − xk‖2

]
+Ek1

[
γ〈H(xk+0.5) + ∇̃g′(yk), xk+0.5 − x〉

]
≤ 1

2
Ek1

[
γ2‖H ′ξk(xk+0.5)−H ′ξk(wk)‖2 − p1‖xk+0.5 − wk‖2

]
+
γε̄2

xk+0.5

2µh
+

1

2
Ek1

[
γµh‖xk+0.5 − x‖2

]
≤ 1

2
(2γ2L2

h − p1)‖xk+0.5 − wk‖2+
γε̄2

xk+0.5

2µh
+

1

2
Ek1

[
γµh‖xk+0.5 − x‖2

]
+ γ2Ek1

[
(εxk+0.5 + εwk)2

]
.

The last inequality is due to the following relation:

Ek1
[
‖H ′ξk(xk+0.5)−H ′ξk(wk)‖2

]
≤ Ek1

[
2‖Hξk(xk+0.5)−Hξk(wk)‖2

]
+ Ek1

[
2
(
‖H ′ξk(xk+0.5)−Hξk(xk+0.5)‖+ ‖H ′ξk(wk)−Hξk(wk)‖

)2
]

≤ 2L2
h‖xk+0.5 − wk‖2 + 2Ek1

[
(εxk+0.5 + εwk)2

]
. (52)

Rearrange the terms with the strong monotonicity of H(·):

Ek1
[
γ〈H(x) + ∇̃g′(yk), xk+0.5 − x〉+ γµh‖xk+0.5 − x‖2 +

1

2
(p1 − 2γ2L2

h)‖xk+0.5 − wk‖2
]

≤ Ek1
[
γ〈H(xk+0.5) + ∇̃g′(yk), xk+0.5 − x〉+

1

2
(p1 − 2γ2L2

h)‖xk+0.5 − wk‖2
]

≤ 1

2
Ek1

[
−‖xk+1 − x‖2 + (1− p1)‖xk − x‖2 + p1‖wk − x‖2 − (1− p1) ‖xk+0.5 − xk‖2

]
+
γε̄2

xk+0.5

2µh
+

1

2
Ek1

[
γµh‖xk+0.5 − x‖2

]
+ γ2Ek1

[
(εxk+0.5 + εwk)2

]
,
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which gives us

Ek1
[
γ〈H(x) + ∇̃g′(yk), xk+0.5 − x〉

]
≤ 1

2
Ek1

[
(1− p1)‖xk − x‖2 + p1‖wk − x‖2 − ‖xk+1 − x‖2

]
−1

2
Ek1

[
(p1 − 2γ2L2

h)‖xk+0.5 − wk‖2
]
− 1

2
Ek1

[
γµh‖xk+0.5 − x‖2

]
− 1

2
(1− p1) ‖xk+0.5 − xk‖2

+
γε̄2

xk+0.5

2µh
+ γ2Ek1

[
(εxk+0.5 + εwk)2

]
≤ 1

2
Ek1

[
(1− p1)‖xk − x‖2 + p1‖wk − x‖2 − ‖xk+1 − x‖2

]
−1

2
Ek1

[
(p1 − 2γ2L2

h)‖xk+0.5 − wk‖2
]
− Ek1

[
1

4
γµh‖xk − x‖2 −

1

2
γµh‖xk+0.5 − xk‖2

]
−1

2
(1− p1)Ek1

[
‖xk+0.5 − xk‖2

]
+
γε̄2

xk+0.5

2µh
+ γ2Ek1

[
(εxk+0.5 + εwk)2

]
≤ 1

2
Ek1

[
(1− p1 −

1

2
γµh)‖xk − x‖2 + p1‖wk − x‖2 − ‖xk+1 − x‖2

]
−1

2

(
p1 − 2γ2L2

h

)
Ek1

[
‖xk+0.5 − wk‖2

]
− 1

2
(1− p1 − γµh)Ek1

[
‖xk+0.5 − xk‖2

]
+
γε̄2

xk+0.5

2µh
+ γ2Ek1

[
(εxk+0.5 + εwk)2

]
, (53)

completing the proof.
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A.2 Proof of Lemma 2.2

Using the Lipchistz continuity of g(·):

g(vk+1) ≤ g(yk) + 〈∇g(yk), vk+1 − yk〉+
Lg
2
‖vk+1 − yk‖2

= g(yk) + 〈∇g(yk), (1− α− β)vk + αxk+0.5 + βw̄k − yk〉+
Lgα

2

2
‖xk+0.5 − xk‖2

= (1− α− β)
(
g(yk) + 〈∇g(yk), vk − yk〉

)
+ α

(
g(yk) + 〈∇g(yk), xk+0.5 − yk〉

)
+β
(
g(yk) + 〈∇g(yk), w̄k − yk〉

)
+
Lgα

2

2
‖xk+0.5 − xk‖2

≤ (1− α− β)g(vk) + α
(
g(x) + 〈∇g(yk), xk+0.5 − x〉

)
+β
(
g(yk) + 〈∇g(yk), w̄k − yk〉

)
+
Lgα

2

2
‖xk+0.5 − xk‖2

= (1− α− β)g(vk) + β
(
g(yk) + 〈∇g(yk), w̄k − yk〉

)
+
Lgα

2

2
‖xk+0.5 − xk‖2

+α
(
g(x) + 〈∇̃g′(yk), xk+0.5 − x〉+ 〈∇g(yk)− ∇̃g(yk), xk+0.5 − x〉

)
+α〈∇̃g(yk)− ∇̃g′(yk), xk+0.5 − x〉. (54)

Let us first bound the last term α〈∇̃g(yk)− ∇̃g′(yk), xk+0.5 − x〉 in the above inequality (54). By

taking the expectation Ek2 [·]:

αEk2
[
〈∇̃g(yk)− ∇̃g′(yk), xk+0.5 − x〉

]
≤ Ek2

[
4α

µh

∥∥∥∇̃g(yk)− ∇̃g′(yk)
∥∥∥2
]

+ Ek2
[αµh

16
‖xk+0.5 − x‖2

]
≤ Ek2

[
4α

µh

∥∥∥∇̃g(yk)− ∇̃g′(yk)
∥∥∥2
]

+ Ek2
[αµh

8
‖xk+0.5 − xk‖2

]
+ Ek2

[αµh
8
‖xk − x‖2

]
.

(55)

Note that

Ek2
[∥∥∥∇̃g(yk)− ∇̃g′(yk)

∥∥∥2
]

≤ Ek2
[(
‖∇g(w̄k)−∇g′(w̄k)‖+ ‖∇gζk(w̄k)−∇g′ζk(w̄k)‖+ ‖∇gζk(yk)−∇g′ζk(yk)‖

)2
]

≤ 2ρ̄2
w̄k + 2Ek2

[
(ρw̄k + ρyk)2

]
.
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Also note that:

Ek2
[
〈∇g(yk)− ∇̃g(yk), xk+0.5 − x〉

]
= Ek2

[
〈∇g(yk)− ∇̃g(yk), xk+0.5 − xk〉

]
≤ Ek2

[
β

2αLg
‖∇g(yk)− ∇̃g(yk)‖2

]
+ Ek2

[
αLg
2β
‖xk+0.5 − xk‖2

]
≤ β

α

(
g(w̄k)− g(yk)− 〈∇g(yk), w̄k − yk〉

)
+ Ek2

[
αLg
2β
‖xk+0.5 − xk‖2

]
. (56)

In the second inequality, we use the following relation:

Ek2
[
‖∇g(yk)− ∇̃g(yk)‖2

]
= Ek2

[
‖∇gζk(w̄k)−∇gζk(yk)−

(
∇g(w̄k)−∇g(yk)

)
‖2
]

≤ Ek2
[
‖∇gζk(w̄k)−∇gζk(yk)‖2

]
=

m2∑
i=1

1

πi
‖∇gi(w̄k)−∇gi(yk)‖2

≤
m2∑
i=1

2Lg(i)

πi

(
gi(w̄

k)− gi(yk)− 〈∇gi(yk), w̄k − yk〉
)

= 2Lg

m2∑
i=1

(
gi(w̄

k)− gi(yk)− 〈∇gi(yk), w̄k − yk〉
)

= 2Lg

(
g(w̄k)− g(yk)− 〈∇g(yk), w̄k − yk〉

)
, (57)

where the first inequality is from E‖ζ − Eζ‖2 = E‖ζ‖2 − ‖Eζ‖2 ≤ E‖ζ‖2 and the second inequality

is from Theorem 2.1.5 in [23]

Combine (54), (55) and (56):

Ek2
[
g(vk+1)

]
≤ Ek2

[
(1− α− β)g(vk) + αg(x) + βg(w̄k)

]
+Ek2

[
α〈∇̃g′(yk), xk+0.5 − x〉

]
+

(
α2Lg

2
+
α2Lg
2β

+
αµh

8

)
Ek2

[
‖xk+0.5 − xk‖2

]
+
αµh

8
Ek2

[
‖xk − x‖2

]
+

8α

µh
Ek2 [ρ̄2

w̄k ] +
8α

µh
Ek2

[
(ρw̄k + ρyk)2

]
,

implying

Ek2
[
g(vk+1)− g(x)

]
≤ Ek2

[
(1− α− β)

(
g(vk)− g(x)

)
+ β

(
g(w̄k)− g(x)

)]
+Ek2

[
α〈∇̃g′(yk), xk+0.5 − x〉

]
+

(
α2Lg

2
+
α2Lg
2β

+
αµh

8

)
Ek2

[
‖xk+0.5 − xk‖2

]
+
αµh

8
Ek2

[
‖xk − x‖2

]
+

8α

µh
Ek2 [ρ̄2

w̄k ] +
8α

µh
Ek2

[
(ρw̄k + ρyk)2

]
,

completing the proof.
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A.3 Proof of Theorem 2.3

In view of Lemma 2.1 and Lemma 2.2, we can establish the following inequality

Ek2
[
Q(vk+1;x)

]
= Ek2

[
〈H(x), vk+1 − x〉+ g(vk+1)− g(x)

]
= Ek2

[
(1− α− β)〈H(x), vk − x〉+ α〈H(x), xk+0.5 − x〉+ β〈H(x), w̄k − x〉

]
+ Ek2

[
g(vk+1)− g(x)

]
≤ Ek2

[
(1− α− β)〈H(x), vk − x〉+ α〈H(x), xk+0.5 − x〉+ β〈H(x), w̄k − x〉

]
+Ek2

[
(1− α− β)

(
g(vk)− g(x)

)
+ β

(
g(w̄k)− g(x)

)]
+Ek2

[
α〈∇̃g′(yk), xk+0.5 − x〉

]
+

(
α2Lg

2
+
α2Lg
2β

+
αµh

8

)
Ek2

[
‖xk+0.5 − xk‖2

]
+
αµh

8
Ek2

[
‖xk − x‖2

]
+

8α

µh
Ek2 [ρ̄2

w̄k ] +
8α

µh
Ek2

[
(ρw̄k + ρyk)2

]
= (1− α− β)Ek2

[
〈H(x), vk − x〉+ g(vk)− g(x)

]
+ βEk2

[
〈H(x), w̄k − x〉+ g(w̄k)− g(x)

]
+αEk2

[
〈H(x) + ∇̃g′(yk), xk+0.5 − x〉+

(
αLg

2
+
αLg
2β

+
µh
8

)
‖xk+0.5 − x̄k‖2

]
+
αµh

8
Ek2

[
‖xk − x‖2

]
+

8α

µh
Ek2 [ρ̄2

w̄k ] +
8α

µh
Ek2

[
(ρw̄k + ρyk)2

]
≤ (1− α− β)Ek2

[
Q(vk;x)

]
+ βEk2

[
Q(w̄k;x)

]
+
α

2γ
Ek2

[(
1− p1 −

1

2
γµh +

γµh
4

)
‖xk − x‖2 + p1‖wk − x‖2 − ‖xk+1 − x‖2

]
− α

2γ

(
p1 − 2γ2L2

h

)
Ek2

[
‖xk+0.5 − wk‖2

]
− α

2γ

(
1− p1 − γµh − αγLg −

αγLg
β
− γµh

4

)
Ek2

[
‖xk+0.5 − xk‖2

]
+
αEk2

[
ε̄2
xk+0.5

]
2µh

+ αγEk2
[
(εxk+0.5 + εwk)2

]
+

8α

µh
Ek2 [ρ̄2

w̄k ] +
8α

µh
Ek2

[
(ρw̄k + ρyk)2

]
,

where the last inequality is due to Lemma 2.1.

Our goal now is to construct a proper potential function while keeping the coefficients of ‖xk+0.5−
wk‖2 and ‖xk+0.5−xk‖2 non-positive. To this end, let us introduce the following bound while noting

the expectation Ek1+[·] := E[·|wk, xk+1]:

Ek2
[
‖wk+1 − x‖2

]
= Ek2

[
Ek1+

[
‖wk+1 − x‖2

]]
= p1Ek2

[
‖xk+1 − x‖2

]
+ (1− p1)Ek2

[
‖wk − x‖2

]
= Ek2

[
p1‖xk+1 − x‖2 + (1− p1 − c)‖wk − x‖2 + c‖wk − x‖2

]
≤ Ek2

[
p1‖xk+1 − x‖2 + (1− p1 − c)‖wk − x‖2

]
+Ek2

[
2c‖xk − x‖2 + 4c‖xk − xk+0.5‖2 + 4c‖xk+0.5 − wk‖2

]
,
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where c > 0 is a parameter that needs to satisfy certain constraints to be determined later. Combine

the above inequality with the previous inequality on Q(vk+1;x), we have:

Ek2
[
Q(vk+1;x)

]
+

α

2γ
Ek2

[
(1− p1)‖xk+1 − x‖2 + ‖wk+1 − x‖2

]
≤ (1− α− β)Ek2

[
Q(vk;x)

]
+ βEk2

[
Q(w̄k;x)

]
+
α

2γ
Ek2

[
(1− p1 −

1

4
γµh + 2c)‖xk − x‖2 + (1− c)‖wk − x‖2

]
− α

2γ

(
p1 − 2γ2L2

h − 4c
)
Ek2

[
‖xk+0.5 − wk‖2

]
− α

2γ

(
1− p1 −

5

4
γµh − αγLg −

αγLg
β
− 4c

)
Ek2

[
‖xk+0.5 − xk‖2

]
+
αEk2

[
ε̄2
xk+0.5

]
2µh

+ αγEk2
[
(εxk+0.5 + εwk)2

]
+

8α

µh
Ek2 [ρ̄2

w̄k ] +
8α

µh
Ek2

[
(ρw̄k + ρyk)2

]
. (58)

By imposing the following constraints on c:{
1− 1

4γµh + 2c ≤ 1,

1− 1
4γµh + 2c ≥ 1− c

⇐⇒ γµh
12
≤ c ≤ γµh

8
,

let us first take c = γµh
12 and impose another set of constraints on γ and α:{

p1 − 2γ2L2
h −

γµh
3 ≥ 0,

1− p1 − 19γµh
12 − αγLg − αγLg

β ≥ 0,
(59)

then (58) can be reduced to:

Ek2
[
Q(vk+1;x)

]
+

α

2γ
Ek2

[
(1− p1)‖xk+1 − x‖2 + ‖wk+1 − x‖2

]
≤ (1− α− β)Ek2

[
Q(vk;x)

]
+ βEk2

[
Q(w̄k;x)

]
+
αEk2

[
ε̄2
xk+0.5

]
2µh

+ αγEk2
[
(εxk+0.5 + εwk)2

]
+
α

2γ
Ek2

[(
1− p1 −

γµh
12

)
‖xk − x‖2 +

(
1− γµh

12

)
‖wk − x‖2

]
+

8α

µh
Ek2 [ρ̄2

w̄k ] +
8α

µh
Ek2

[
(ρw̄k + ρyk)2

]
≤ (1− α− β)Ek2

[
Q(vk;x)

]
+ βEk2

[
Q(w̄k;x)

]
+
αEk2

[
ε̄2
xk+0.5

]
2µh

+ αγEk2
[
(εxk+0.5 + εwk)2

]
+
(

1− γµh
12

) α

2γ
Ek2

[
(1− p1) ‖xk − x‖2 + ‖wk − x‖2

]
+

8α

µh
Ek2 [ρ̄2

w̄k ] +
8α

µh
Ek2

[
(ρw̄k + ρyk)2

]
.

Now we only need to add the term Q(w̄k+1;x) to the LHS, by noting:

φEk2
[
Q(w̄k+1;x)

]
= φEk2

[
Ek2+

[
Q(w̄k+1;x)

]]
= φp2Ek2

[
Q(vk+1;x)

]
+ φ(1− p2)Ek2

[
Q(w̄k;x)

]
,
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for any φ > 0.

Add the above identity to the previous inequality and take the total expectation, we have:

E
[
(1− φp2)Q(vk+1;x) + φQ(w̄k+1;x)

]
+

α

2γ
E
[
(1− p1)‖xk+1 − x‖2 + ‖wk+1 − x‖2

]
≤ E

[
(1− α− β)Q(vk;x) + (β + φ(1− p2))Q(w̄k;x)

]
+
(

1− γµh
12

) α

2γ
E
[
(1− p1) ‖xk − x‖2 + ‖wk − x‖2

]
+E

[
αEk2

[
ε̄2
xk+0.5

]
2µh

+ αγEk2
[
(εxk+0.5 + εwk)2

]
+

8α

µh
Ek2 [ρ̄2

w̄k ] +
8α

µh
Ek2

[
(ρw̄k + ρyk)2

]]
, (60)

where E
[
Ek2

[
ε̄2
xk+0.5

]]
= E

[
E′
[
ε̄2
xk+0.5

]]
≤ 2m1σ

2
h + 2m2

1δ
2
h

E
[
Ek2

[
(εxk+0.5 + εwk)2

]]
= E

[
E′
[
(εxk+0.5 + εwk)2

]]
≤ 2 ·

(
2Lh · (σ2

h + δ2
h) ·

m1∑
i=1

1
Lh(i)

)
= 2σ̃2

h. E
[
Ek2 [ρ̄2

w̄k
]
]

= E
[
E′[ρ̄2

w̄k
]
]
≤ 2m2σ

2
g + 2m2

2δ
2
g

E
[
Ek2

[
(ρw̄k + ρyk)2

]]
= E

[
E′
[
(ρw̄k + ρyk)2

]]
≤ 2 ·

(
2Lg · (σ2

g + δ2
g) ·

m2∑
i=1

1
Lg(i)

)
= 2σ̃2

g .

By taking x = x∗ in (60) together with the expression of ∆h and ∆g, we obtain (18), thus complete

the proof.

A.4 Proof of Proposition 2.4

We first show that the parameters specified in Proposition 2.4 satisfy the constraint (59). Indeed,

the constraints will be reduced to the following:

p1 −
p1

8
− p1

12
≥ 0,

15

16
− 67p1

48
≥ 0,

where the second inequality holds because p1 = 1
m1

and we assume trivially that m1 ≥ 2.

Next, inequality (18) in Theorem 2.3 implies that the reduction rate is given by:

Cred1 := max

{
1− α− β
1− φp2

,
β + φ(1− p2)

φ
, 1− γµh

12

}
.

With the choice of φ and p2, the following bounds hold:

1− α− β
1− φp2

=
1− 2α

1− α
≤ 1− α,

and

β + φ(1− p2)

φ
= 1− 1

m2
+

1

(1 + α)m2
= 1− α

(1 + α)m2
≤ 1− α

2m2
.
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Therefore, the reduction rate is can be further expressed as

max

{
1− α− β
1− φp2

,
β + φ(1− p2)

φ
, 1− γµh

12

}
≤ max

{
1− α, 1− α

2m2
, 1− γµh

12

}
= max

{
1− α

2m2
, 1− γµh

12

}
= max

{
max

(
1−

√
µh

24
√
Lgm2

, 1− 1

24m2

)
,max

(
1− µh

48Lh
√
m1

, 1−
√
µh

48
√
Lgm2

, 1− 1

48m1

)}

= max

{
1−

√
µh

24
√
Lgm2

, 1− 1

24m2
, 1− µh

48Lh
√
m1

, 1−
√
µh

48
√
Lgm2

, 1− 1

48m1

}
:= Cred2,

and (18) becomes

E
[
(1− φp2)Q(vk+1;x∗) + φQ(w̄k+1;x∗)

]
+

α

2γ
E
[
(1− p1)‖xk+1 − x∗‖2 + ‖wk+1 − x∗‖2

]
≤ E

[
(1− α− β)Q(vk;x∗) + (β + φ(1− p2))Q(w̄k;x∗)

]
+
(

1− γµh
12

) α

2γ
E
[
(1− p1) ‖xk − x∗‖2 + ‖wk − x∗‖2

]
+ ∆h + ∆g

≤ Cred1 ·
(
E
[
(1− φp2)Q(vk;x∗) + φQ(w̄k;x∗)

]
+

α

2γ
E
[
(1− p1) ‖xk − x∗‖2 + ‖wk − x∗‖2

])
+ ∆h + ∆g

≤ Cred2 ·
(
E
[
(1− φp2)Q(vk;x∗) + φQ(w̄k;x∗)

]
+

α

2γ
E
[
(1− p1) ‖xk − x∗‖2 + ‖wk − x∗‖2

])
+ ∆h + ∆g

≤ Ck+1
red2 ·

(
E
[
(1− φp2)Q(v0;x∗) + φQ(w̄0;x∗)

]
+

α

2γ
E
[
(1− p1) ‖x0 − x∗‖2 + ‖w0 − x∗‖2

])
+

k∑
i=0

Cired2 (∆h + ∆g) .

Note v0 := w̄0 := w0 = x0. Therefore,

E
[
(1− p1)‖xk+1 − x∗‖2 + ‖wk+1 − x∗‖2

]
≤ 2γ

α
· Ck+1

red2 ·
(
E
[
(1− φp2)Q(v0;x∗) + φQ(w̄0;x∗)

]
+

α

2γ
E
[
(1− p1) ‖x0 − x∗‖2 + ‖w0 − x∗‖2

])
+

2γ

α

k∑
i=0

Cired2 (∆h + ∆g)

≤ Ck+1
red2 ·

(
4γ

α
Q(x0;x∗) + 2‖x0 − x∗‖2

)
+

2γ

α

k∑
i=0

Cired2 (∆h + ∆g)

≤ Ck+1
red2 ·

(
γ

αµh

∥∥H(x0) +∇g(x0)
∥∥2

+ 2‖x0 − x∗‖2
)

+
2γ

α

k∑
i=0

Cired2 (∆h + ∆g)

By using the expression of Cred2, the above rate guarantees the iteration complexity for reducing
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the deterministic error to ε is

O
(

1

1− Cred2
log

d0

ε

)
= O

((
m1 +m2 +

√
Lgm2

µh
+
Lh
√
m1

µh

)
ln
d0

ε

)
(61)

where the expected per iteration gradient cost is O(p1m1 + p2m2 + 4) = O(1).

The additional stochastic error (per iteration) has the order:

∆h = O

(√
m2(m1σ

2
h +m2

1δ
2
h)√

Lgµh
+
Lh
Lg
· (σ2

h + δ2
h) ·

m1∑
i=1

1

Lh(i)

)
,

∆g = O

(( √
m2√
Lgµh

)(
m2σ

2
g +m2

2δ
2
g + Lg · (σ2

g + δ2
g) ·

m2∑
i=1

1

Lg(i)

))
.

The total stochastic error after reducing the deterministic error to ε is then multiplied by the factor

k∑
i=0

Cired2 = O
(

1

1− Cred2

)
,

and is summarized as

O

((
m1 +m2 +

√
Lgm2

µh
+
Lh
√
m1

µh

)
· γ
α
· (∆h+∆g)

)
.

A.5 Proof of Lemma 3.3

The proof of this lemma follows the similar logic to the proof of SAVREP in Section 2. We first

consider the sequences related to the VI mapping: {x̄k}, {xk+0.5}, {xk}, {wk}. It is immediate

that we reach the following inequality:

Ek1
[
γk〈Ĥ ′(xk+0.5) + ∇̃g′(yk), x− xk+1〉

]
≤ Ek1

[
γk〈H(xk+0.5) + ∇̃g′(yk), x− xk+0.5〉

]
+ Ek1

[
γk〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]
+

1

2
Ek1

[
γ2
k‖H ′ξk(xk+0.5)−H ′ξk(wk)‖2 + (1− p1)‖xk+1 − xk‖2

−(1− p1)‖xk+0.5 − xk‖2 + p1‖xk+1 − wk‖2 − p1‖xk+0.5 − wk‖2
]
, (62)

which is the same as (50) in the proof of Lemma 2.1, except that the parameter γk now depends

on the iteration k.
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Combining with the bound in (48), we have:

1

2
Ek1

[
‖xk+1 − x‖2 − (1− p1)‖xk − x‖2 − p1‖wk − x‖2 + (1− p1) ‖xk+0.5 − xk‖2

]
+Ek1

[
γk〈H(xk+0.5) + ∇̃g′(yk), xk+0.5 − x〉

]
≤ 1

2
Ek1

[
γ2
k‖H ′ξk(xk+0.5)−H ′ξk(wk)‖2 − p1‖xk+0.5 − wk‖2

]
+ Ek1

[
γk〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]
≤ 1

2
(2γ2

kL
2
h − p1)‖xk+0.5 − wk‖2 + γ2

kEk1
[
(εxk+0.5 + εwk)2

]
+ Ek1

[
γk〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]
,

where the last inequality is due to the bound (52). The monotonicity of H(·) implies:

Ek1
[
γk〈H(x) + ∇̃g′(yk), xk+0.5 − x〉+

1

2
(p1 − 2γ2

kL
2
h)‖xk+0.5 − wk‖2

]
≤ Ek1

[
γk〈H(xk+0.5) + ∇̃g′(yk), xk+0.5 − x〉+

1

2
(p1 − 2γ2

kL
2
h)‖xk+0.5 − wk‖2

]
≤ 1

2
Ek1

[
−‖xk+1 − x‖2 + (1− p1)‖xk − x‖2 + p1‖wk − x‖2 − (1− p1) ‖xk+0.5 − xk‖2

]
+γ2

kEk1
[
(εxk+0.5 + εwk)2

]
+ Ek1

[
γk〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]
.

Rearranging the terms, we get:

Ek1
[
γk〈H(x) + ∇̃g′(yk), xk+0.5 − x〉

]
≤ 1

2
Ek1

[
(1− p1)‖xk − x‖2 + p1‖wk − x‖2 − ‖xk+1 − x‖2

]
−Ek1

[
1

2
(p1 − 2γ2

kL
2
h)‖xk+0.5 − wk‖2

]
− 1

2
(1− p1)Ek1

[
‖xk+0.5 − xk‖2

]
+γ2

kEk1
[
(εxk+0.5 + εwk)2

]
+ Ek1

[
γk〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]
. (63)

The next part of the analysis follows the similar logic to the proof of Lemma 2.2, which establishes

the relation among the sequences {yk}, {vk}, {w̄k}. It is immediate that we get an inequality similar

to (54):

g(vk+1) ≤ (1− αk − βk)g(vk) + βk

(
g(yk) + 〈∇g(yk), w̄k − yk〉

)
+
Lgα

2
k

2
‖xk+0.5 − xk‖2

+αk

(
g(x) + 〈∇̃g′(yk), xk+0.5 − x〉+ 〈∇g(yk)− ∇̃g(yk), xk+0.5 − x〉

)
+αk〈∇̃g(yk)− ∇̃g′(yk), xk+0.5 − x〉

with parameters αk, βk depending on the iterations k. Combined with (56), we get:

Ek2
[
g(vk+1)− g(x)

]
≤ Ek2

[
(1− αk − βk)

(
g(vk)− g(x)

)
+ βk

(
g(w̄k)− g(x)

)]
+αkEk2

[
〈∇̃g′(yk), xk+0.5 − x〉

]
+

(
α2
kLg
2

+
α2
kLg

2βk

)
Ek2

[
‖xk+0.5 − xk‖2

]
+αkEk2

[
〈∇̃g(yk)− ∇̃g′(yk), xk+0.5 − x〉

]
.

41



The next steps follow similarly the proof of Theorem 2.3, by noticing:

Ek2
[
Q(vk+1;x)

]
= Ek2

[
〈H(x), vk+1 − x〉+ g(vk+1)− g(x)

]
= Ek2

[
(1− αk − βk)〈H(x), vk − x〉+ αk〈H(x), xk+0.5 − x〉+ βk〈H(x), w̄k − x〉

]
+ Ek2

[
g(vk+1)− g(x)

]
≤ Ek2

[
(1− αk − βk)〈H(x), vk − x〉+ αk〈H(x), xk+0.5 − x〉+ βk〈H(x), w̄k − x〉

]
+Ek2

[
(1− αk − βk)

(
g(vk)− g(x)

)
+ βk

(
g(w̄k)− g(x)

)]
+αkEk2

[
〈∇̃g′(yk), xk+0.5 − x〉

]
+

(
α2
kLg
2

+
α2
kLg

2βk

)
Ek2

[
‖xk+0.5 − xk‖2

]
+αkEk2

[
〈∇̃g(yk)− ∇̃g′(yk), xk+0.5 − x〉

]
= (1− αk − βk)Ek2

[
〈H(x), vk − x〉+ g(vk)− g(x)

]
+ βkEk2

[
〈H(x), w̄k − x〉+ g(w̄k)− g(x)

]
+αkEk2

[
〈H(x) + ∇̃g′(yk), xk+0.5 − x〉+

(
αkLg

2
+
αkLg
2βk

)
‖xk+0.5 − x̄k‖2

]
+αkEk2

[
〈∇̃g(yk)− ∇̃g′(yk), xk+0.5 − x〉

]
(63)

≤ (1− αk − βk)Ek2
[
Q(vk;x)

]
+ βkEk2

[
Q(w̄k;x)

]
+
αk
2γk

Ek2
[
(1− p1) ‖xk − x‖2 + p1‖wk − x‖2 − ‖xk+1 − x‖2

]
− αk

2γk

(
p1 − 2γ2

kL
2
h

)
Ek2

[
‖xk+0.5 − wk‖2

]
− αk

2γk

(
1− p1 − αkγkLg −

αkγkLg
βk

)
Ek2

[
‖xk+0.5 − xk‖2

]
+αkEk2

[
〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]
+ αkγkEk2

[
(εxk+0.5 + εwk)2

]
+αkEk2

[
〈∇̃g(yk)− ∇̃g′(yk), xk+0.5 − x〉

]
.

Using the relation

Ek2
[
‖wk+1 − x‖2

]
= Ek2

[
Ek1+

[
‖wk+1 − x‖2

]]
= p1Ek2

[
‖xk+1 − x‖2

]
+ (1− p1)Ek2

[
‖wk − x‖2

]
in the above inequality and rearranging terms, we get the next inequality,

Ek2
[
Q(vk+1;x)

]
+
αk
2γk

Ek2
[
(1− p1)‖xk+1 − x‖2 + ‖wk+1 − x‖2

]
≤ (1− αk − βk)Ek2

[
Q(vk;x)

]
+ βkEk2

[
Q(w̄k;x)

]
+
αk
2γk

Ek2
[
(1− p1)‖xk − x‖2 + ‖wk − x‖2

]
− αk

2γk

(
p1 − 2γ2

kL
2
h

)
Ek2

[
‖xk+0.5 − wk‖2

]
− αk

2γk

(
1− p1 − αkγkLg −

αkγkLg
βk

)
Ek2

[
‖xk+0.5 − xk‖2

]
+αkEk2

[
〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]
+ αkγkEk2

[
(εxk+0.5 + εwk)2

]
+αkEk2

[
〈∇̃g(yk)− ∇̃g′(yk), xk+0.5 − x〉

]
. (64)
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Note that with Ek1 [·], xk+0.5 is deterministic and E′
[
Ek1

[
Ĥ ′(xk+0.5)

]]
= E′

[
H ′(xk+0.5)

]
=

H(xk+0.5). Therefore,

E
[
〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]
= E

[
E′
[
Ek1

[
〈Ĥ ′(xk+0.5)−H(xk+0.5), x− xk+0.5〉

]]]
= 0. (65)

Similarly, we apply the above argument to Ek2 [·] and have

Ek2
[
〈∇̃g(yk)− ∇̃g′(yk), xk − x〉

]
= 〈∇g(yk)−∇g′(yk), xk − x〉

which results in

E
[
〈∇g(yk)−∇g′(yk), xk − x〉

]
= E

[
E′
[
〈∇g(yk)−∇g′(yk), xk − x〉

]]
= 0. (66)

Combine inequalities 64 65 66 together with the condition (23), we have

E
[
Q(vk+1;x)

]
+

αk

2γk
E
[
(1− p1)‖xk+1 − x‖2 + ‖wk+1 − x‖2

]
≤ E

[
(1− αk − βk)Q(vk;x) + βkQ(w̄k;x)

]
+

αk

2γk
E
[
(1− p1) ‖xk − x‖2 + ‖wk − x‖2

]
+αkγkEk

[
(εxk+0.5 + εwk)2

]
+ αkEk

[
〈∇̃g(yk)− ∇̃g′(yk), xk+0.5 − xk〉

]
− αk

2γk
(1− q)Ek2

[
‖xk+0.5 − xk‖2

]
≤ E

[
(1− αk − βk)Q(vk;x) + βkQ(w̄k;x)

]
+

αk

2γk
E
[
(1− p1) ‖xk − x‖2 + ‖wk − x‖2

]
+αkγkE

[
(εxk+0.5 + εwk)2

]
+

αkγk

2(1− q)
E
[
‖∇̃g(yk)− ∇̃g′(yk)‖2

]
≤ E

[
(1− αk − βk)Q(vk;x) + βkQ(w̄k;x)

]
+

αk

2γk
E
[
(1− p1) ‖xk − x‖2 + ‖wk − x‖2

]
+αkγk∆,

for a constant 0 < q < 1 to be determined later. Note that since E
[
(εxk+0.5 + εwk)2

]
≤ 2σ̃2

h by the

bound (15), and

E
[
‖∇̃g(yk)− ∇̃g′(yk)‖2

]
≤ 2E

[∥∥∥∇g(w̄k)−∇g′(w̄k)
∥∥∥2
]

+4E
[∥∥∥∇gζk(yk)−∇g′ζk(yk)

∥∥∥2
]

+ 4E
[∥∥∥∇gζk(w̄k)−∇g′ζk(w̄k)

∥∥∥2
]

(10),(16)

≤ 4m2σ
2
g + 8σ̃2

g ,

we have ∆ = 2σ̃2
h + 1

(1−q)(2m2σ
2
g + 4σ̃2

g) = O

(
σ2
hLh

m1∑
i=1

1
Lh(i)

+ σ2
gLg

m2∑
i=1

1
Lg(i)

)
.
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A.6 Proof of Corollary 4.3

The unbiasedness of G′i,ϕ(x, u) and H ′j,s,ϕ(x, u) follow immediately from Lemma 4.2. We shall show

the variance bound for G′i,ϕ(x, u), and the proof for H ′j,s,ϕ(x, u) follows similarly. Note that:

E′u
[∥∥G′i,ϕ(x, u)

∥∥2
]

= E′
[
Eu
[∥∥G′i,ϕ(x, u)

∥∥2
]]

= E′
[
Eu

[∥∥∥∥nϕ(g′i(x+ ϕu)− g′i(x))u

∥∥∥∥2
]]

(41)

≤ E′
[
2n
∥∥∇g′i(x)

∥∥2
]

+
ϕ2n2L2

i,g

2

= 2nE′
[
‖∇gi(x)‖2 + 2∇gi(x)>

(
∇g′i(x)−∇gi(x)

)
+
∥∥∇g′i(x)−∇gi(x)

∥∥2
]

+
ϕ2n2L2

i,g

2
(39)

≤ 2n
(
M2
i,g + ς2

g

)
+
ϕ2n2L2

i,g

2
.

In the first inequality, we apply the bound in (41) on the function g′i(·), which is the stochastic

function estimator of gi(·). Note that we use the same random variable to estimate the function at

the two points x+ϕu and x when calculating the stochastic zeroth-order gradient G′i,ϕ(x, u). Now,

since E′u
[
G′i,ϕ(x, u)

]
= ∇gi,ϕ(x), we have:

E′u
[∥∥G′i,ϕ(x, u)−∇gi,ϕ(x)

∥∥2
]

= E′u
[∥∥G′i,ϕ(x, u)

∥∥2 − ‖∇gi,ϕ(x)‖2
]

≤ E′u
[∥∥G′i,ϕ(x, u)

∥∥2
]
≤ 2n

(
M2
i,g + ς2

g

)
+
ϕ2n2L2

i,g

2
.

A.7 Proof of Corollary 4.4

We derive the bounds corresponding to H ′j(z). The bounds corresponding to ∇g′i(z) can be derived

similarly with simpler analysis.

With expressions in (37) and (44), we have:∥∥Hj(z)− E′
[
H ′j(z)

]∥∥2
=
∥∥∥Jhj(x)>y − E′

[
H ′j,ϕ(x, u)y

]∥∥∥2
+
∥∥hj(x)− E′

[
h′j(x)

]∥∥2

=

∥∥∥∥∥∑̀
s=1

ys
(
∇hj,s(x)− E′u

[
H ′j,s,ϕ(x, u)

])∥∥∥∥∥
2

=

∥∥∥∥∥∑̀
s=1

ys (∇hj,s(x)−∇hj,s,ϕ(x))

∥∥∥∥∥
2

≤

(∑̀
s=1

ys ‖∇hj,s(x)−∇hj,s,ϕ(x)‖

)2
40
≤

(
ϕn

2

∑̀
s=1

ysLj,s,h

)2

,

where the second equality is due to E′
[
h′j,s(x)

]
= hj,s(x) in our assumption (39). Therefore, by

denoting Lj,h := (Lj,1,h, Lj,2,h, ..., Lj,s,h)>,

∥∥Hj(z)− E′
[
H ′j(z)

]∥∥ ≤ ϕn

2

∑̀
s=1

ysLj,s,h ≤
ϕn

2
‖y‖ · ‖Lj,h‖ ≤

ϕnDy

2

√√√√∑̀
s=1

L2
j,s,h.
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The second bound can be derived by the following:

E′
[∥∥H ′j(z)− E′

[
H ′j(z)

]∥∥2
]

= E′
[∥∥H ′j,ϕ(x, u)y − E′u

[
H ′j,ϕ(x, u)y

]∥∥2
+
∥∥h′j(x)− E′

[
h′j(x)

]∥∥2
]

(39)

≤ E′
[∥∥H ′j,ϕ(x, u)y − E′u

[
H ′j,ϕ(x, u)y

]∥∥2
]

+ `$2 = E′
∥∥∥∥∥∑̀

s=1

ys
(
H ′j,s,ϕ(x, u)−∇hj,s,ϕ(x, u)

)∥∥∥∥∥
2
+ `$2

≤ E′
[
` ·
∑̀
s=1

y2
s

∥∥H ′j,s,ϕ(x, u)−∇hj,s,ϕ(x, u)
∥∥2

]
+ `$2

(43)

≤ ` · ς̃2
h ·
∑̀
s=1

y2
s +$2 ≤ `ς̃2

hD
2
y + `$2.
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