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Abstract

In this study, we investigate theoretically
the electrophoresis of spherical colloids in a
suspension or in a spherical cavity at arbitrary
applied electric field. This analysis is applicable
for arbitrary double layer thickness, surface
potential and applied electric field. Moreover,
the effects of double layer polarization and the
overlapping are taken into account. We find that
we have to solve a set of non-linear
electrokinetic equations if the surface potential is
high or the applied electric field is strong when
the double layer thickness is in the medium
range. For the case of the concentrated
suspension, we conclude: For fixed surface
potential and applied electric field, the higher the
concentration of colloids the smaller the
mobility. Moreover, the effect of double layer
polarization is important if the double layer is
thick, the applied electric field is strong and the
concentration of suspension is low. For the case
of the spherical cavity, we conclude: The local
minimum of the mobility will disappear when

the applied electric filed is high enough. In
addition, when the surface potential is high, the
mobility will increase with the increasing
applied electric field. The existence of the

boundary will influence the double layer
thickness and the degree of double layer
polarization.

Key Words : electrophoresis, double layer
polarization, mobility.
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The electrophoretic velocity of a charged colloid
particle in an applied electric field depends on -
the physicochemical properties of both the
particle and the liquid phase, the geometry of the
system, and the magnitude of the applied electric ~
field. A complete description of the problem
under consideration involves a system of
coupled partial differential equations, known as
electrokinetic equations.! Typical assumptions
made in the relevant analyses include: (1) The
particle with the adjacent liquid within the shear
surface is treated as a rigid sphere. (2) The
properties of the liquid phase, such as density,
electric conductivity, electric permitivity, and
viscosity are constant, and are position
independent. (3} The particle is nonconducting,
and the charge on its surface distributes
uniformly. (4)The classic Gouy-Chapman theory
is applicable for the description of the space
charge density and electric potential within the
electric double layer. (5) The boundary effects
are negligible, i.e., an isolated particle in an
infinite electrolyte solution is considered. (6)
The level of the applied electric field is low, and
its effect can be simulated by considering a
perturbation from the corresponding equilibrium
state. In this case, the equation governing the
transport of ions can be approximated by a linear
expression. (7} The electrical potential of the
system under consideration is low relative to the
thermal energy, and the equation governing the
spatial variation of electrical potential can be
approximated by a linear expression. (8) The
velocity of a particle is slow, and the resultant
fluid flow has a negligible effect on the
distributions of electrical potential and ion
concentration. That is, the relaxation effects
can be neglected. In general, this assumption is
realistic for the case when xa >>1, where x and
a respectively the radius of the particle and the
reciprocal Debye length. Based on these
assumptions Smoluchchowski’ was able to
derive the relation between the zeta-potential, ¢,
and the electrophoretic mobility, U/E, of a
particle
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where U is the electrophoretic velocity, E is the
magnitude of the applied electric field, € is the
dielectric constant of the particle, and n is the
viscosity of the liquid phase. Due to assumption
(8), eq.(1) is not apphcable for moderate values
of xa. The relaxation effects were analyzed
theoretically by Overbeek* and Booth®, and they
found that the deviation from eq.(1) increases
with £. However, their quantitative validity was
limited to low &. For the case of a general £ a
numerical scheme is necessary. Wiersema® and
O’Brain’, for example, solved numerically the
electrokinetic equations and  obtained
qualitatively similar results. They found that, if {
is sufficiently high, the electrophoretic mobility
has a local minimum as x= varies, and the
higher the &, the lower the local minimum. The
result of Wiersema, however, diverges at high £,
and that of O’Brain’s is restricted to assumption
(6). The electrophoretic behavior of a polyion in
an infinite fluid was examined recently by
Allison and Nambi;® the governing equations
were solved by a combined DIE/finite difference
algorithm. Their work was also limited to
assumption (6); the same problem was also
solved by a boundary element method.” Allison
and Nambi concluded that the accuracy of the
spatial variation of electrical potential and ion
density is crucial in the estimation of the
electrophoretic mobility of a charged entity.

If the presence of a boundary needs to be
considered, the problem becomes even more
complicated. Previous results'>'” were limited to
assumptions (1)-(8). Also, it was assumed that
the equation describing the electric field could
be decoupled from the hydrodynamic equation.
This is appllcable only if ka—w, i.e., thin double
layers. Zydney'® incorporated electric forces into
the hydrodynamic equation and thus his results
are applicable to all xa, but both the relaxation
effects and the distortion of ion cloud under the
applied field were neglected. Zydney' evaluated
the electrophoresis of a sphere at the center of a
spherical cavity, and under the condition of low
surface potential, the essentially one-
dimensional problem was solved analytically.
Although the geometry considered is an
idealized one it is capable of providing insights
in the electrophoretic behaviors of a colloid
particie in porous media. The simple geometry
was also adopted to simulate a concentrated
colloidal dispersion.'”* Lee et al.**** extended
the analysis of Zydney by taking the relaxation
effects and double layer polarization into
account. They showed that, similar to the case of
an infinite fluid, if the surface potential is
sufficiently high, the electrophoretic mobility
has a local minimum as ka varies. Although

assumptions (7) and (8} were, ehmmatad in their
study, the results of Lee et al.*** were limited to
assumption {6).

If assumption (6) is applicable, the
equation describing the transport of ions can be
approximated by a linear expression. This
implies that the magnitude of the applied
electrical field will not affect the distribution of
scaled mobility. In this case, the electrokinetic
equations become linear, and the problem under
consideration can be divided into two sub-
problems, which implies that tedious iterations
can be avoided in the calculation of the
electrophoretic  mobility.™* In practice,
however, since the magnitude of the electric
field can have a significant effect on the spatial
distribution of the scaled variables, a more
general treatment is highly desirable. This is .
done in the present. Here, a pseudo-spectral
numerical scheme is used to solve the general
electrokinetic equations for the case when a -
boundary is present For illustration, the
geometry of Zydney'® is adopted and the
nonlinear effects of the magnitude of the applied
field are analyzed.
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Referring to Fig.1, we consider a rigid, non-
conducting sphere of radius a at the center of a
non-conducting spherical cavity of radius b. A
uniform electric field £ is applied in the z-
direction. The spherical coordinates (r,8,p) with
its origin located at the center of the cavity are
adopted. The electrokinetic equations include
that for the conservation of ions, that for the
electrical potential, and the hydrodynamic
equations. The conservation of ions leads to

— = ﬁo{Dj[‘f’nj + z":;"' §¢:|+nﬁ} (2)

where V is the gradient operator, n;, »,, and
z, are respectively the number concentratlon,
the diffusivity, and the valence of ionic species },
e is the elementary charge, ¢ is the electric
potential, ¥

v 1s the fluid velocity, and ky and T
are respectively the Boltzmann constant and the
absolute temperature. We assume that the
glectrical potential can be described by the
Poisson equation

‘?’¢=-§=-i% _ 3)

where £ is the permittivity of the liquid phase ,
p is the space charge density, and M is the total
number of ionic species.

Suppose that the flow field around the
sphere can be described by the Navier-Stokes
equations in the creeping flow regime with
electrical body forces considered. We have

T5=0 (4)
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In these expressions p is the pressure, and p,
and 5 are the fluid density and viscosity
respectively. 'We assume that the motion of the
particle is slow so that the system is at a quasi-
steady state, and the terms that involve the time
derivative in the governing equations can be
neglected.
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Figure 2 shows the variation of scaled
mobility ¢/, as a function of xs at various
levels of scaled applied field E, for the case of
low surface potential, the corresponding results
for higher surface potentials are presented in
Figs.3 and 4.

As pointed out by Chu et al.**, if the
surface potential is low, the electric field can be
described satisfactorily by a linearized Poisson-
Boltzmann equation. As suggested by Fig.2, if
the surface potential is sufficiently low, using the
linearized Poisson-Boltzmann equation is
appropriate regardless of the level of E..
Figures3 and 4 reveal that, however, as ¢,
becomes appreciable, both the quantitative and
the qualitative behaviors of U), -xz curve based
the linearized Poisson-Boltzmann equation (liner
model) and those based on the original nonlinear
Poisson-Boltzmann equation (nonlinear model)
are different. For example, Fig.3 shows that if
E, is low (linear model is applicable), i/,
exhibits a local minimum as «z varies. This
local minimum vanishes if E, is sufficiently high.
Also, the deviation of nonlinear model from the
corresponding linear model increases with the
level of E,. On the other hand, if xa— 0, both
linear model and nonlinear model lead to the
same U, regardless of the levels of ¢, and E,,
as can be seen from Figs.2 through 4. The
disappearance of the local minimum of ¢/, -«a
curve if E, is high can be explained by the
behavior of K, as xa wvaries. According to
eqs.(29) and (30), K; is a measure for the

contribution to electrophoretic mobility by the

electrostatic force. In eq.(29), (3¢, /or")

el
increases with xa, but the reverse is true for

(O, ;aa')r.ﬂ . This is because the larger the xa,

the faster the spatial variation of electrical
potential in the double layer, i.e., the larger the
-¥'¢ . This has the effect of reducing the
influence of the applied electric field. The
variation of 2K, as a function of «s at various
levels of scaled applied field E, for the case .
#.=3 is presented in Fig.5, and that for a higher
#, 1s shown in Fig.6. These figures reveal that if .
Ez is low, K has a local minimum as x varies,
and the higher the ¢, the more pronounced the
local minimum. However, if K is sufficiently
high, the local minimum disappears. This is
because if E, is low, K. is dominated by

(¢, /&r").,, and it is dominated by

4, 188") ._, i E, is high.

Figures 7 through 10 illustrate the
contours for the net scaled ion concentrations
CD defined as ( n, - n; } for various combinations
of .z and E,. Since the particle is positively
charged, CD is negative. Figure 7 shows that if
E, is low, the contour is circular even if the
double layer is thick, that is, double-layer
polarization is insignificant. This is expected
since the velocity of the particle is small. Figure
8 suggests that if double layer is thin, its
polarization is also insignificant even if the
applied electric field is appreciable. As stated

previously, this is because -3¢ /o).

increases with sz, which has the effect of
reducing the influence of the applied electric
field.
significant, however, if E, is sufficiently high or

Double-layer polarization becomes



the double layer is sufficiently thick, as
suggested by Figs.9 and 10. These figures reveal
that the concentration of anions at the bottom of
a particle is higher than that at the top of the
particle, that is, anions are concentrated on the
bottom of the particle.

movement of the particle is in the direction

This is because the

pointing toward the top of the particle.

Figures 11 through 13 simulate the effect
of the presence of a boundary on the
electrophoretic behavior of a particle. The
variation of scaled mobility ¢, as a function of
sa at various i(=a’b) is shown in Fig.ll.
Figures 12 through 13 illustrate the contours for
the net scaled ion concentrations CD defined as
(n -ny ) for various combinations of xz and 2.
Figare 11 shows that for fixed surface potential
and applied electric field, the -electrophoretic
mobility of a particle decreases with the increase
in 4. That is, the closer the particle to the cavity
wall the smaller the mobility. Apparently, the
flow field is influenced by the presence of the
boundary, which has the effect of reducing the
terminal velocity of the particle. The presence of
the boundary will also affect the variation in the
thickness of double layer, and the degree of
double-layer polarization. A  comparison
between Figs.8 and 12, for example, reveals the
former where the rate of decrease in the
thickness of double layer is slower if 2 is larger.
As can be seen in Fig.13, if double layer is thick
and A is small, the effect of the top and the
bottom parts of the cavity wall on CD is more
significant than that of the left and the right parts
of the cavity wall. This leads to the elliptical-
shaped contour near cavity wall. This may be
due to the fact that the movement of the particle
is in the direction from: the bottom to the top.
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Fig.l, Schematic representation of the system where a
sphere of radius a is placed at the center of a spherical
cavity of radius b,

Fig.2. Variation of {/,, as a function of xz at various



levels of scaled applied field E, for the case the sphere is
positively charged with §,=1 and the cavity uncharged.
Key: A =0.5,a =1, and Pe,=Pe,=0.01.
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Fig.3. Variation of scaled mobility ¢/, as a function of
xa at various levels of scaled applied field E, for the case
¢, =3. Key: same as Fig.2.
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Fig.4. Variation of scaled mobility ¢/,, as a function of
xu at various levels of scaled applied field E, for the case
#,=3. Key: same as Fig.2,
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Fig.5. Variation of 2K, as a function of xa at various
levels of scaled applied field E, for the cased, =3. Key:
same as Fig.2.
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Fig.6. Variation of 2K; as a function of xz at various

levels of scaled applied field E, for the case ¢,=5. Key:
same as Fig.2.
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Fig.7. Contours for the net scaled ion concentrations CD
(=n, —n, ) for the case @,.=3,4a=0.01, 1 =0.5, £=0.0],
Pe,=Pe,=0.01, and a=l.
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Fig.8. Contours for the net scaled ion concentrations CD
(=m —n;) for the case ¢, =3, xa=3.6, 1=035, E=],
Pe,=Pe,=0.01, and a=1.
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Fig.9. Contours for the net scaled ion concentrations CD
(=n, —n;) for the case ¢,=3, xa=0.01, 1=0.5, E~l,
Pe,=Pe,=0.01, and a=1.
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Fig.10. Contours for the net scaled ion concentrations CD



(=mn; —n; ) for the case ¢ =3, x=0.01, 1=0.5, E=5,
Pe,=Pe,=0.1, and a =1,
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Fig.11. Variation of scaled mobility U/,, as a function of
Ka at various JA(=a/b} for the case ¢ =1, E=3,
Pe,=Pe,=0.01, and «=l.
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Fig.12. Contours for the net scaled ion concentrations CD
(=n, —n;) for the case ¢ =1,x0=5.6,4=0667, E=3,
Pe,=Pe,=0.01,and a=1.
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Fig.13. Contours for the net scaled ion concentrations CD
(=n, —n,) for the case ¢, =1,an =0.01,4=0.25 E=3,
Pe,=Pe,=0.01, and o =1.
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