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PROCESS DESIGN AND CONTROL

On-Line Wavelets Filtering with Application to Linear Dynamic Data
Reconciliation

Hsiao-Ping Huang* and Kuo-Yuan Luo
Department of Chemical Engineering, National Taiwan &émsity, Taipei 10617, Taiwan, Republic of China

An on-line robust wavelet filtering is presented and applied to the dynamic data reconciliation problem via

a constrained Kalman filter approach. The wavelet filtering is used to remove outliers and provide data
smoothing prior to the reconciliation. Matrix computation is presented to facilitate the implementation of
discrete wavelet transform (DWT) and inverse discrete wavelet transform (IDWT) for on-line filtering. An
endpoint correction method is presented to overcome the endpoint effect that is caused by wavelet filtering
on an on-line moving data window. The filtered outputs are treated as the output measurements in the subsequent
Kalman filter estimations. This latter filter is to estimate the state variables, subject to both dynamic and
static equality constraints. Using accumulative balancing constraints, a method is proposed to detect and
isolate the existence of single gross error in a dynamic system. A simulated example is used to illustrate the
use and performance of this proposed dynamic data reconciliation method.
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In a dynamic process, process variables are constrained by,
both differential and algebraic equations. Measurements of these "
process variables are prone to be contaminated by noises. ‘ | ‘ ‘
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Therefore, data reconciliation is useful to procure accurate and”
consistent data from measurements for purposes such ag
material/energy balances, and control. In the context of state s
estimations, Kalman filtering is useful to estimate the states of o,
a dynamic system from its measured outputs. In this capacity,
it has been used in the problems of dynamic data reconciliation. e Fiere (1) i Fitered (2)
Applications of the Kalman filter approach to the dynamic data %
reconciliation have been reported in the literattn®The reason 2 2

why Kalman filtering prevails is that it provides minimum- 20
variance estimations for the state variables in a dynamic way |, ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
2 4 (C) 6 8 4 (d) 6 8
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and has a recursive formulation, which is suitable for online o
implementation, provided that all these process variables to be
reconciled are observable from its measured outputs. It was °
mentioned in the book by Narasimhan and Jord&tat such
Kalman filter estimations are identical to problems of steady-
state data reconciliation. In the application of Kalman filter for Figure 1. Performance of the median filtering: (a) raw signal 1, (b) raw
data reconciliation, two major difficulties may be encountered. fé%ﬂ?tl g; (S%m rzned'an fitered result of signal 1, and (d) the median filtered
First, the original formulation of the Kalman filter does not '

consider equality constraints. Second, not all the process etc., are easier for on-line uses. In these cases, the tuning
variables to be reconciled are state variables in the representatiorb‘,irm.neters in the filters are essential for their performances.
of system dynamics. To overcome the first difficulty, some late 5ne common drawback among these filters is that they are not
works7‘_9 have provided theoretical bases_ to incorporate equality capable of removing data outliers. To remove non-Gaussian
constraints and, thus, can be used for this purpose. To OVercome, jiers, nonlinear filters such as the mean filter and the-FIR
t_he second d|ff_|culty mentioned, variables originally not in the edian hybrid (FMH) filte}? have been used. In the application
list of state variables can be augmented as new state variablesys ¢,ch nonlinear filters. tradeoffs between performance and
By doing so, measurement errors in these variables will be e jength or computation efforts always must be made. The
carried over to become state uncertainties. Thus, filtering the 5¢rementioned nonlinear filters are good for preserving sharp
data to reduce these uncertainties due to measurement NOiIS€Shanges in the data and removing the outliers. They are most
becomes desirable and is one of the objectives of this researchg jiiaple for off-line uses and have difficulties for on-line

Generally, linear filters such as mean filter, exponential filter, o5 qjications. As illustrated in Figure 1, the filter removes outliers
and the exponentially weighted moving average (EWMA) filter, ,1vin one direction. This fact is attributed to those virtual data
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robust wavelet filtering method is proposed to prefilter the data high-pass bands and one low-pass band,the raw signalT 5

and remove possible outliers. In this prefiltering approach, the is the decomposition matrix, afid is the reconstruction matrix.
DWT and IDWT algorithm is adoptet. An algorithm is In ¢, all the DWT coefficients are included, up to a prescribed
proposed to correct the possible outliers in the measurement.analysis level. The thresholding methods are those which screen
A wavelet filtering method based on the concepts of “Translation ¢ to be used in eq 2 for reconstruction. For dynamic data
Invariant” and “Boundary Correction” is proposed to enhance reconciliation, generally, the low-pass signals are more mean-
its performance and robustness. Then, a reformulated Kalmaningful for material/energy balances than the high-frequency
filter is used to estimate the state variables and detect constansignals. Consequently, only part ofwill be used for recon-
biased gross errors in the data. The advantages of this presentestruction. Thus, Mallat’s pyramidal algorithm can be expressed
method include (i) a new way to overcome the difficulty as eq 3 if only the low-pass coefficients of analysis |gvaie
encountered in applying wavelet for filtering data in a short kept:

moving data window, which is required for on-line implementa-

tion, aryql (i) a new .reformulated constrained Kalman filter fqr yO = S8, ST T,Ty=Ay (3)
reconciling estimations and to detect gross error by checking

Finally, a storage-tank process is used to illustrate the perfor- regpectively. In eq 3y0) is the approximate or filtered signal,

mances of the proposed method. of which only the low-pass coefficients up to leedre kept.
Determination of the level (i.ej) for analysis will be given
2. Filtering by Wavelets later. With the adopted padding strategy (in this paper, constant

padding is adopted];; andS; are given in the Appendix. Notice
that matrix T; is used to generate thgh-level low-pass
coefficients ;) from the { — 1)th-level coefficients4;-1) using
the following relationship:

Recently, wavelet analysis has been a useful tool for data
filtering. The principle behind filtering is to perform a threshold
step on the corresponding coefficients obtained from a wavelet
analysis and reconstruct the thresholded coefficients via an
inverse transformation. Several threshold methods, such as Hard A=TAi 4)
shrink, Soft shrink, VisuShrink, and SureShrink, to name a o
few,12714 have been reported in.the literature. These methods Let k denote the length of a moving data window. According
have a tendency to restore spurious features near large changes Wis gi b ltiolving the | A by v:
in the measurement data. Corrections to those spurious featurel® €4 3.Yc Is given by multiplying the last row of\; by y:
have also been proposed by some researéhétasing the so- i
called “Translation Invariant” concepts. For on-line applications, Yg (0 = Ay(ky(t) ()
one inherent weakness of this filter is the need for future data )
in computation. Methods to pad known data points (e.g., periodic Notice thaty? is the filtered output from the current moving
padding, mirroring padding, etc) or to design boundary filters data window along the current time
are presented to overcome this difficulfyHowever, these 2.2. Determining the Wavelets Filtering Level.To preserve
padding approaches do not work in cases where the datathe low-frequency contents in the signal after filtering, one must
have outliers. Nounou and Bak¥hcombined the use of the  seta proper number for the analysis Igysb that detail portions
"VisuShrink" threshold method and the multi-scale median up to thisjth level are removed. The remaining low-pass signal
method of Bruce et aP for filtering. This method is good for  is designated ag®). In a previous work, Huang and L&bo
filtering Gaussian noises, single outliers, and outlier patches. proposed thig value as the level below that where removal of
However, it demands a maximum available dyadic length, which the next higher portion causes a sudden increase in the mean
results in huge computation burdens. Moreover, it has the sameof the high-pass errors. This is because a sudden increase in
drawback that the median method has. In fact, the method ofthe mean values from the removal of the high-pass portion at
Bruce et al® was originally proposed for outlier removal in  levelj + 1 means that some significant low-frequency signal
off-line and batch filtering. Doymaz et &.also presented a  components are included in that discarded portion and should
robust filtering methodology through a combination of median be avoided. This method requires some modification to address
filtering and the wavelet “WienerShrink” approach. However, a moving window for on-line application. The modification is
the boundary problem is not considered in their approach.  to incorporate a Studerttest and ay? hypothetical test, in

In the following, in terms of matrix algebra, a quick addition to the MSE on the residuals of the filtered signals at
computation formula for filtering and a method to achieve the different levels. The residuad®) at thejth level is defined as
filtering robustness in dealing with the endpoint effect will be ' .
presented. d0 =y —y0 (6)

2.1. DWT and IDWT Analysis for Filtering. The wavelets
analysis is known as a multiresolution analysis (MRA), which The Student-variable and thg? variable for a certain levgl
divides the frequency contents of a signal into low and high are defined in eqs 7 and 8:
sub-bands. In practice, DWT and IDWT involve a pyramidal

algorithm based on convolutions with corresponding FIR {0 = d? 7
filters.}! Based on Mallat’s algorithm, DWT and IDWT can also B 0/ /Kk+ 1 @)
be expressed in the matrix forh: ~
d(J)Td(J)
c=Ty (1) =g @
y=Tg¢ (2)

wheres!! is the standard deviation af) and is obtained from
wherec is a matrix that consists of coefficients from several eq 9.
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Figure 2. Translation of the data points near the end of the data window.

i = Arg maxd¥'d? =
j

Yo Median Yy, :initial data window
2, )2 2, j 7 -
¥ G)Sg) |X 0 < Cl—al(v) andt(” < 771_%} (10) Filtering
wherec;—,(v) is the value of¢?, which hasy degrees of freedom Yk Measurement Window Wavelet Filtering: R
at a confidence level;. The constany is the value of the " Correction | | Update | . Tf;‘ﬂslagi""*: Yk
Studentt-variable at a confidence level af,. The Student T P
t-variable and the? variable are used to ensure that both the Delay —=
mean and the variance of the residuals are normally distributed S
after the filtering. sttt T

Translation Tterative

2.3. Robust Wavelet Filtering Method. The proposed on- i
line wavelet filtering method starts with an initial data window. | P .
The median filtering is applied to the data in this initializing } -i:: ------ ~f—*Mean [—>,
data window to ensure that there is no obvious outlier in this | : S 7
} Window p H

Window 1 DWT[IDWT

window. Whenever the window moves, a preconditioning step
is taken. The preconditioning step is to make correction to the e !

new measurement via the following: Figure 3. lllustration of the proposed robust filtering approach.
Y(®) = Gt = 1) + 3 x signgi) — Hit — 1) x sy N

(if [y () — it — 1)1 > 3sy) (11) 3 g " Messured
wherej(t — 1) designates the last filtered data from the previous s | P

window, yk(t) is the latest raw data adopted into the window at
current timet, andsy is the variance of the signal in the data 2
window. Estimation of the terrg; is discussed in next section.
Equation 11 is used to correct the suspected outlier measure’ - .
ments. o HEE

After finishing the preconditioning step to this new data 4
window, eq 5 is applied to this new window to give a filtered zof:
output at the current time Since padding data are used in the
implementation of DWT, the filter output thus obtained is prone
to have greater distortion. This distortion is known as the end-
point effect, which primarily affects the on-line filtering resuilt.
Correction to this distortion to improve the filtering robustness 5
is the main p_urpose here. .AS shown in Figure 2,_after_havmg Figure 4. Filtering result of the two approaches. Mean-square-error (MSE)
the preconditioned data window, several translation windows yajyes: wavelet, 0.1314; proposed, 0.0623. (The term “wavelet” denotes
are generated by performing cycle-spinning on a section of datathe approach by Nounou and Bak#)i.
in this preconditioned data window. Then, to each of the
translation windows, eq 5 is applied, to obtain its provisional the simulation. The filtering results of the two approaches are
output. This provisional output then is used to update and apply compared by calculating their MSE values. Using Nounou and
eq 5 on the translation window iteratively until it converges. Bakshi's approacke the resulting MSE is 0.1314. On the other
Finally, an averaged value of all converged filtered outputs from hand, the MSE that resulted from the proposed approach is
all the translated widows is taken as the final output at ime  0.0623. The results of the data are illustrated in Figure 4.

The procedures are illustrated in the block diagram shown in  2.4.2. Example 2Again, consider the same Havisine signal
Figure 3. When window moves on, the filtered output is that has a patch of outliers. The colored noise is used besides
generated sequentially with the aforementioned procedures,the patch of the outliers. The colored noise is generated by the
along with the window moves. autoregressive noise model with the fosr= 0.5@-1 + &).

2.4. lllustrative Examples. 2.4.1. Example 1.Consider The white noised;) has a variance of 0.2. Using Nounou and
filtering a Havisine signal, using Nounou and Bakshi’s ap- Bakshi's approackg the length of the moving window is set to
proach® for comparison. The lengths of the moving window 1024, the length of the median filter is set to 29, the number of
and the median filter used in the Nounon and Bakshi's méthod analysis level is set to 6, and a Daubechies wavelet with an
are set as 1024 and 15, respectively. Furthermore, the analysiorder of 2 is adopted. For the proposed method, the length of
depth is set as 6 and a Daubechies wavelet with an order of 2the moving window is set to 32, the length of the translations
is adopted. On the other hand, for the proposed method, theis set to 12, and a Daubechies wavelet with an order of 6 is
length of the moving window is taken as 64, the length of the adopted. The results are illustrated in Figure 5. From the
translations is 20, and a Daubechies wavelet with an order of 6illustration, an unfavorable performance occurs because of the
is adopted. In both cases, 1024 data points are collected frompatch of outliers in Nounou and Bakshi's approagh.

18-
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Figure 5. Filtering result of the two approaches.

3. Data Reconciliation with a Moving Data Window

Recently, Simon and CHiaas reported a constrained Kalman

Ind. Eng. Chem. Res., Vol. 46, No. 25, 2008749

Table 1. Values of the Coefficient
wavelets level 5

2

4/3

8/7
16/15
32/31
64/63
128/127
256/255

oO~NO O~ WNE

reformulated matriXQ, as system noise, is then equal to

-[* 0]

The constrained estimations are obtained by the following
equation:

(16)

X=X - PD"(DPD") (DX — d) (17)

whereX = [xa x]T, X is the estimation of the augmented state
vector without considering the constrains, d@é the covari-

filter approach for dynamic systems that has equality constraints ance matrix of the state estimations.
on state variables. The state-constrained problem was also The standard deviation for each raw measured variah)e (

discussed by Porrilland Hayward, where the perfect measure-

can be roughly estimated by applying eq 18 to each measure-

ment approach was considered. To apply the constrained Kalmarment; in the moving data window:

filter for on-line data reconciliation, each moving data window

that contains raw measurements is updated by its latest
measurements. The wavelet filtering is then applied to each data

window to generate wavelefilter outputs. The wavelet filtering

outputs serve as the measurement outputs in the Kalman filter

estimation. With previously estimated values of state as initial

k .
Zl (yi,p - i,)p ?
S

1 (18)

values, the Kalman filter with equality constraints computes the wherey; , is thepth measurement in the data windowofy?,
next new estimated state. The procedures are repeated as thig the corresponding wavelets filtered value, afdis a

new raw measurements become available.

3.1. Data Reconciliation Using the Constrained Kalman
Filter Approach. The constrained Kalman filter approach of
Simon and Chi&is adopted as the theoretical basis here for
formulating the reconciliation. The solution to this constrained

coefficient that is dependent on which wavelets filtering level
is being selected. The value é&fis dependent on the wavelet
filtering level, and thes values obtained are listed in Table 1.
The elements of the covariance matéxin eq 16 are taken
as the variance of the wavelet-filter output, designateskas

estimation problem consists of two steps. First, an unconstrainedwhich can be roughly estimated by making use of eq 5 as
estimation is computed; then, the estimation is corrected. Thefollows:

unconstrained Kalman filter solution can be found in some text
books (e.g., see the work of Grewal and Andr&vs

Consider a time-invariant system with the following con-
straints:

X, = Ax, + Bx, + w, (12)
= & ][] e 13)

Xa Xa
D Xb] =d or DE[Xb] =d (14)

wherex, and x, are vectors of the state and input variables,
respectively.Y (Y = [Y1 Y2 ---]) is a vector of measurement
outputs. The system noise/{) and measurement noise) @re
assumed to have covariance matrid®s and R. For the
reconciliation application, the aforementioned system is refor-
mulated to the augmented state system as

Xa — A B Xa Wa

Sl = +

Xy 0 Xy Wy,
where wy, is assumed to have a variance mat@y. In the
reconciliation problemC, and Cy, are identity matrices. The

(15)

s¢2 = Ap(kDAL(K)s, (19)
Matrix Q is assumed to have the following diagonal matrix
form:

Q = diagfs; *sy ” ] (20)
A guess of the initial state (i.eX¢) and a guess of error
covariance matrixRo) are required to start the estimations at
the beginningXy can use the initial wavelet filtering outputs,
andPg can be set aQ in the augmented Kalman filter system.

3.2. Detection and Isolation of Single Gross ErrorSingle

gross error that result from measurement bias or process leaks
is considered here. Because the measurement outputs in the
Kalman filter estimation are replaced by the wavelet filtering
outputs, any abrupt or constant change caused by gross error
will be smeared. As a result, the instantaneous residuals from
the minimum variance estimation may not be significant for
the detection of constant or biased gross errors. Nevertheless,
whenever a gross error occurs in some of the state variables,
the normality assumptions of the residuals may have been
violated. An examination of the history of these residuals can
help to investigate the abnormal situations. Besides, an integra-
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tion of the constraints to form long-term-based constraints may
disclose these violations to help isolate the source of the error.
Thus, the gross error detection methodology is described as
follows. Definery, be the normalized residual from the Kalman
filter estimation forY; as follows:

ry=—<— (21)

Where\A(i,K is the estimation value after Kalman filtering f¥r.

The distribution of residualy, for Y; is assumed normal in the
Kalman filter estimation. A2 variable, which is defined based
on history of the residuals, is used to detect the occurrence of
the gross error. Define a series mf as follows:

Reservoir

Figure 6. Schematic of a four-tank system.

Table 2. Parameters of the Four-Tank System

symbol state/parameter value
ry = [Mvk-141 = Ty k1 rYi,k]T (22) h level (cm) [20.4; 20.4; 11.5; 11.5]
i i flow out of the tanki (cm?®/S) [3; 3; 6;6]
L . fi flow into the tank (crd/S) [3; 3; 3;3; 6; 6]
where the subscript indelk representsy, at the current time aj area of the drain (cA) [3; 3; 2;2]
instant; the other subscript indeX) (epresents the length of g gtravgatg)g anﬁtam ﬁlm”ﬁ( ) 980109
H H H i H Of Standar eviation or 1flow (cm .
the_hlstory sequenge. B_ecausﬁha_s a n(_)rmal_dlstrlbut.lon with on standard deviation of level (cm) 0.3
variance of 1, thes? variable §v,) is defined in eq 23: A, area of the tanks (ci 1
Yy =Ty Ty (23) the normalizeds by V; as
The gross error is detected by testing the hypothégisagainst Y
_ ! K=o (31)
Hm’o. [ Vl
il
HioVy < Pri—a The expected value af is zero; otherwise, gross errors occur
Ho vy = pia (24) in the corresponding constraints. The nodal test uses the
m1/7Y, — Fll-a

following hypotheses:

wherep is the y? statistical value foll degrees of freedom at )

the confidence leveb. In each case, if no gross error is {HnYO"‘i <3

considered to existino holds; otherwiseHy, 1 holds. Hipk = 3
The integrating constraints are obtained by integrating the |t 4 gross error in the constrainis true,Hn o holds; otherwise,

system dynamic equations over a prescribed length window asy_ . holds. '

follows: (

(32)

Combining the two hypothesis tests, the gross error detection
and isolation strategy is described as follows:

(1) If Hn1 holds for a certain constraint aridi,; holds for
variableY; (Y; € xp) in this constraint, then a measurement bias
of Y; is diagnosed.

X
X, — Xo0=[A Blz—[-1 A B][Za] + X0 =

X
0— Dl[za] +X,0="0 (25)

wherez = [z, z]7, Za = [Xa dt, andz, = Xy dt. The standard
deviation ofz can be estimated according to eq 26rointegral
points.

5, = Vs, (26)
s, =Vnrs_ (27)
The variance of the constraints then is estimated as
Vv, =D,VD] (28)
whereV is the variance matrix of the variablegs andz:
. 2 2 2
V= d|ag([s5(ayi s Sla.i .oe Szh,i ...]) (29)

The residual of the constraints (i.g),can be obtained in eq 25
as follows:

v=D [’Z(] + R0 (30)

where X, is the current Kalman filter state antl is the

(2) If only Hy1 holds forY; (Y; € xa), then a measurement
bias ofY; is diagnosed.

(3) If Hy1 holds for a certain constraint ardl, 1 holds for
Yi (Yi € Xa), then a process leak in this constraint unit is
diagnosed.

4. Example

4.1. lllustration Example of a Four-Tank System.A four-
tank system as shown in Figure 6 is illustrated as an example.
The system’s four differential and algebraic equations are as
follows:

dh,
A, o —ay/20h + ag/2gh, + 1, (33a)
dh
A, d_t2 = —a,/2gh, + a,,/2gh, +f,  (33b)
dh,
Ar3 E = —a3 29?5 + f3 (33C)
h,
.y E = —ay 29h4 + f4 (33d)

Steady-state values and the default measurement noises of the

corresponding time integration. The nodal test is used to examineflows and levels in the process are listed in Table 2. Assume
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MSE

parameter by filtered data by raw data 51

hy 0.050 0.492 L

hy 0.153 0.491

hs 0.207 0.607

hs 0.056 0.79

0 0.043 0.302

(o7} 0.063 0.291

Os 0.036 0.270

Qa 0.038 0.259

f1 0.019 0.221

fa 0.051 0.269 " Taemad|

f3 0027 0307 === True

fs 0.044 0.258 TS — Kaiman'

fs 0.087 0.299 Kaiman®

fo 0.209 0.299

50 100 150 200 250

that all the tank levels and flows are measured and must be o - _
reconciled. The system model can be described using theFigure 7. Reconciliation result for variabls.

following differential equations: 5.4
dhl + Measured
A i +0o;+f; (34a) 82 =,
dh, 62 T F e
Arzﬁz_%""%""fz (34b) S o @il
dh, ‘
A, o B + 13 (34c)
dh,
AQE =0yt f (34d)

Equality constraints for material balances in this system that s&
should be considered are

5'?0 a0 100 150 200 250
Figure 8. Reconciliation result for variablg,.

(35a)
(35h)

fo="f, +1f,
fo="f,+f,

34

« Measured
wemene TrUE
— Kalman'
Kal man2

In the first filtering step, the “Daubechies 6” wavelet is -
selected and a moving-data window with a length equal to 36
is assigned. The length of translations for robust wavelet filtering 32 --
is 12. The guess of the initial state (i.¥p) is obtained by first I
calculating the wavelets’ filtered values. The guesses of the 3./
covariance matrix Bo and Q) are set as described. The AT
standardized MSE values (as defined in eq 36) for all the ~* 2+ |
variables are evaluated. :

29

'S 2 1 l
1N ([Yik— Y: 5
MSE = — —_— (36) '
A i
N Sd 27
where\?i,K is the estimation value after Kalman filtering f#r 26, g - . - o
1 1

in each of the moving-data windows; is the corresponding
true value, ands, is the standard deviation set in the simula-
tion. N is the total number of points collected in a simulation.
Table 3 shows that the reconciliation results are superior to the10 and 11, we can see only the measurement test afid the
approaches that use raw measurements. The performances amecond nodal test exceed the confident limits. Thgaswith
illustrated in Figures 7, 8, and 9 fbi, g,, andf,, respectively. fault is identified.

4.2. Measurement Bias and Process Leak Detection and 4.2.2. Case 2Consider a process leak in tank 1 with a
Isolation. In the following test, the length ofy, in the magnitude of 0.2 that occurs 15 s from the time origin. The
measurement test is taken as 10. Under this setting, the adoptedesults show that both the statistical valuehgfand the first
»? value, with a confidence level of 0.001, is 29.59, and the constraint exceed their confidence limits, as shown in Figures
number of integral points in the nodal test is assumed to be 20.12 and 13. Therefore, we conclude that a leak occurs in tank 1.

4.2.1. Case l.n the first case, assume thap has a 4.2.3. Case 3Consider a measurement bias hp with a
measurement bias with a magnitude of 0.3 that occurs 100 smagnitude of 1 that occurs 100 s from the time origin. We can
from the beginning. From the test charts, as shown in Figures see that only the measurement teshpéxceeds its confident

Figure 9. Reconciliation result for variabl&.
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Figure 10. Measurement test for case 1.
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Figure 12. Measurement test for case 2.

level, none in the nodal test, as shown in Figures 14 and 15. constraints, for the estimations. To ensure that the constraints

Therefore,h; with the measurement bias is identified. are being satisfied without biases, accumulative balancing
constraints are formulated. From the residuals of each formulated
5. Conclusions balancing constraints, single gross errors such as constant

measurement bias or process leaking flow can be identified. A
four-tank linear system is illustrated as an example. The
reconciliation performances exhibit significant improvement
over those from the un-pretreated data.

In this research, an on-line robust filtering method is presented
and applied to the dynamic data reconciliation via a Kalman
filter approach. By setting the decomposition and reconstruction
matrices, simple wavelet filtering can be easily computed. Based
on this simple algorithm and the combining uses of the aAppendix
“Translation Invariant” and “Boundary Correction” concepts, _ _
the filtering method (which is robust to the effects of outliers) ~ MatricesH, H, G, andG are FIR digital filter arrays, each
is presented. After the wavelet filtering, most high-frequency with a lengthl. Different wavelets have different such FIR filters
noises and outliers are removed. The wavelet-filter outputs thenand different lengths. The elements of these FIR filters are
go through a Kalman filter, which takes into account the equality denoted as, h;, gi, andg;, respectively. With a given analysis
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Figure 13. Nodal test for case 2.
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Figure 14. Measurement test for case 3.
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Figure 15. Nodal test for case 3.

level j, in the computation of; from 4;-1, T; consists of three parts, i.€[;, T,, and T3, as given in eq 37.

T, 37)

The structures and dimensions ©f, T,, and T3 are given as follows, wheng means the length of the coefficients
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hyte+h h 0 -
hy++h hy hy h 0 -

T = Pl ) e (38)
hoptothhye  hh o (_)(>
2
T, and T3 have two different forms, depending on whether the length; ¢ odd or even.
h hyh,e hh o
h h_y« hyhyh 0«

T,= (39)

-0h hyho, < h, hy

-0 h h «e g hy 0y E.(y-1+2)x(n,_y)
hhyh,e hh 0o -
h h_y e hyhy h 0

T,= (40)

w0 h h_yh, o hy hy

0o h h, hy h, hy 0.-1+1)x(n—1)
0h h_y - h, hy+--+hs
Ts= 0 h hoyh,h+eth g (“41)
o h h+e+h E,(I;z)x(nj_l)
2
0 h hy e hs h+-+h
Ta= -0 h h_ b1+".+hl—2 (42)
-0 ht-+h 0.012)x(ny_y)

where the subscripts E and O denote even and odd Iengmsﬁfis obtained froniTl; by replacing eacln; with h.
Similarly, at a given analysis levgl S also has two different forms, according to whethgis odd or evensS; is composed of

g, as follows:
] |

9-1 9-3° GBS

9 G2 U
9-19-3° 9B %
9 92U D

S= - (43)

9-19-3° 9%
9 G2 AP
9-19-3° B %
l 9 Y- U Qzl E.(_)x(n)
-1 Y3 B G
9% G2 9D
91 %3 B9

% G2 U D
S= - (44)

G-1 %3 B9
% G2 U D
G-1 Y-3 > O3 Qllo,(nj,l)x(nj)

5, is obtained fromS by replacing eacly; with .

Nomenclature A, = area of the tank
a = area of the drain B = system input matrix of the Kalman filter approach
a; = colored noise input ¢ = Studentt-statistical value for level determination

A = system matrix of the Kalman filter approach ¢ = set of wavelet coefficients



Ca, Cp = measurement matrix of the system

d = constant term of the equality constraint

d® = residuals of the measurements and jthelevel filtered

signal

d® = mean ofd®

D = state equality constraint matrix

& = colored noise output

e = measurement noises of the system
i = flow i into the tank

g = gravitation constant

G = the low-pass filter for reconstruction

G = the high-pass filter for reconstruction
h; = level of tanki

H = the low-pass filter for decomposition
H = the high-pass filter for decomposition

j = wavelet analysis level

k = the length of the wavelets filtering window

P = state error covariance

Qa = covariance matrix ofvy,

Qp = covariance matrix ofvy

g = flow i out of the tank

rv, = normalized residual from Kalman filter estimation
ry = time series ofy,

R = covariance matrix oé

S.; = Standard deviation of,;
., = standard deviation afy;
Sz,; = Standard deviation af,;

¥ = standard deviation af®

Sy, = standard deviation of;

sy, = standard deviation of the wavelets filtered signal

§ = reconstruction matrix for approximate coefficients at level

J
tl) = Studentt-statistical value
T, = discrete wavelet analysis matrix
Ts = inverse discrete wavelet analysis matrix
T; = decomposition matrix for approximate coefficients at level

J

v = residual of the constraint

V = covariance matrix of the constraint

V1 = covariance matrix of the integral variables

Wa, Wp = system disturbance

Xa = set of state variables

Xp = set of state variables

X = augmented state variable of the Kalman filter approach

y = the last filtered point in the data window

Yi = measurement of variabMg

%K = estimation of Kalman filter for variabl#

y = data window of the measurements

yl) = reconstructed signal from the low-pass coefficients at level
J

Y = measurements of the Kalman filter approach

Z=27=[z42)7, Wherez, = [X, dt andz, = [xp dt

Greek Letters

Yy = r;ry,

p = x? statistical value for gross error detection
n = x? statistical value for level determination
& = coefficient for standard deviation

Ind. Eng. Chem. Res., Vol. 46, No. 25, 2008755

ki = normalized residual of the constraint

%0 = chi-squared statistical value df?)

of = standard deviation of flow

on = standard deviation of tank level

A0 = the set ofjth level wavelet function coefficients
Aj = the wavelet filter matrix of levej
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