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PROCESS DESIGN AND CONTROL

On-Line Wavelets Filtering with Application to Linear Dynamic Data
Reconciliation

Hsiao-Ping Huang* and Kuo-Yuan Luo

Department of Chemical Engineering, National Taiwan UniVersity, Taipei 10617, Taiwan, Republic of China

An on-line robust wavelet filtering is presented and applied to the dynamic data reconciliation problem via
a constrained Kalman filter approach. The wavelet filtering is used to remove outliers and provide data
smoothing prior to the reconciliation. Matrix computation is presented to facilitate the implementation of
discrete wavelet transform (DWT) and inverse discrete wavelet transform (IDWT) for on-line filtering. An
endpoint correction method is presented to overcome the endpoint effect that is caused by wavelet filtering
on an on-line moving data window. The filtered outputs are treated as the output measurements in the subsequent
Kalman filter estimations. This latter filter is to estimate the state variables, subject to both dynamic and
static equality constraints. Using accumulative balancing constraints, a method is proposed to detect and
isolate the existence of single gross error in a dynamic system. A simulated example is used to illustrate the
use and performance of this proposed dynamic data reconciliation method.

1. Introduction
In a dynamic process, process variables are constrained by

both differential and algebraic equations. Measurements of these
process variables are prone to be contaminated by noises.
Therefore, data reconciliation is useful to procure accurate and
consistent data from measurements for purposes such as
material/energy balances, and control. In the context of state
estimations, Kalman filtering is useful to estimate the states of
a dynamic system from its measured outputs. In this capacity,
it has been used in the problems of dynamic data reconciliation.
Applications of the Kalman filter approach to the dynamic data
reconciliation have been reported in the literature.1-5 The reason
why Kalman filtering prevails is that it provides minimum-
variance estimations for the state variables in a dynamic way
and has a recursive formulation, which is suitable for online
implementation, provided that all these process variables to be
reconciled are observable from its measured outputs. It was
mentioned in the book by Narasimhan and Jordache6 that such
Kalman filter estimations are identical to problems of steady-
state data reconciliation. In the application of Kalman filter for
data reconciliation, two major difficulties may be encountered.
First, the original formulation of the Kalman filter does not
consider equality constraints. Second, not all the process
variables to be reconciled are state variables in the representation
of system dynamics. To overcome the first difficulty, some late
works7-9 have provided theoretical bases to incorporate equality
constraints and, thus, can be used for this purpose. To overcome
the second difficulty mentioned, variables originally not in the
list of state variables can be augmented as new state variables.
By doing so, measurement errors in these variables will be
carried over to become state uncertainties. Thus, filtering the
data to reduce these uncertainties due to measurement noises
becomes desirable and is one of the objectives of this research.

Generally, linear filters such as mean filter, exponential filter,
and the exponentially weighted moving average (EWMA) filter,

etc., are easier for on-line uses. In these cases, the tuning
parameters in the filters are essential for their performances.
One common drawback among these filters is that they are not
capable of removing data outliers. To remove non-Gaussian
outliers, nonlinear filters such as the mean filter and the FIR-
median hybrid (FMH) filter10 have been used. In the application
of such nonlinear filters, tradeoffs between performance and
filter length or computation efforts always must be made. The
aforementioned nonlinear filters are good for preserving sharp
changes in the data and removing the outliers. They are most
suitable for off-line uses and have difficulties for on-line
applications. As illustrated in Figure 1, the filter removes outliers
only in one direction. This fact is attributed to those virtual data
beyond the endpoint being taken as zero.

Motivated by the aforementioned difficulties, a new approach
is proposed for dynamic data reconciliation. In this approach, a

* To whom correspondence should be addressed. Tel.:+886-2-
2363-8999. Fax:+886-2-2362-3935. E-mail address: huanghpc@
ntu.edu.tw.

Figure 1. Performance of the median filtering: (a) raw signal 1, (b) raw
signal 2, (c) the median filtered result of signal 1, and (d) the median filtered
result of signal 2.
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robust wavelet filtering method is proposed to prefilter the data
and remove possible outliers. In this prefiltering approach, the
DWT and IDWT algorithm is adopted.11 An algorithm is
proposed to correct the possible outliers in the measurement.
A wavelet filtering method based on the concepts of “Translation
Invariant” and “Boundary Correction” is proposed to enhance
its performance and robustness. Then, a reformulated Kalman
filter is used to estimate the state variables and detect constant
biased gross errors in the data. The advantages of this presented
method include (i) a new way to overcome the difficulty
encountered in applying wavelet for filtering data in a short
moving data window, which is required for on-line implementa-
tion, and (ii) a new reformulated constrained Kalman filter for
reconciling estimations and to detect gross error by checking
the estimation results with accumulative balancing constraints.
Finally, a storage-tank process is used to illustrate the perfor-
mances of the proposed method.

2. Filtering by Wavelets

Recently, wavelet analysis has been a useful tool for data
filtering. The principle behind filtering is to perform a threshold
step on the corresponding coefficients obtained from a wavelet
analysis and reconstruct the thresholded coefficients via an
inverse transformation. Several threshold methods, such as Hard
shrink, Soft shrink, VisuShrink, and SureShrink, to name a
few,12-14 have been reported in the literature. These methods
have a tendency to restore spurious features near large changes
in the measurement data. Corrections to those spurious features
have also been proposed by some researchers,15,16using the so-
called “Translation Invariant” concepts. For on-line applications,
one inherent weakness of this filter is the need for future data
in computation. Methods to pad known data points (e.g., periodic
padding, mirroring padding, etc) or to design boundary filters
are presented to overcome this difficulty.17 However, these
padding approaches do not work in cases where the data
have outliers. Nounou and Bakshi18 combined the use of the
"VisuShrink" threshold method and the multi-scale median
method of Bruce et al.19 for filtering. This method is good for
filtering Gaussian noises, single outliers, and outlier patches.
However, it demands a maximum available dyadic length, which
results in huge computation burdens. Moreover, it has the same
drawback that the median method has. In fact, the method of
Bruce et al.19 was originally proposed for outlier removal in
off-line and batch filtering. Doymaz et al.20 also presented a
robust filtering methodology through a combination of median
filtering and the wavelet “WienerShrink” approach. However,
the boundary problem is not considered in their approach.

In the following, in terms of matrix algebra, a quick
computation formula for filtering and a method to achieve the
filtering robustness in dealing with the endpoint effect will be
presented.

2.1. DWT and IDWT Analysis for Filtering. The wavelets
analysis is known as a multiresolution analysis (MRA), which
divides the frequency contents of a signal into low and high
sub-bands. In practice, DWT and IDWT involve a pyramidal
algorithm based on convolutions with corresponding FIR
filters.11 Based on Mallat’s algorithm, DWT and IDWT can also
be expressed in the matrix form:17

wherec is a matrix that consists of coefficients from several

high-pass bands and one low-pass band,y is the raw signal,Ta

is the decomposition matrix, andTs is the reconstruction matrix.
In c, all the DWT coefficients are included, up to a prescribed
analysis level. The thresholding methods are those which screen
c to be used in eq 2 for reconstruction. For dynamic data
reconciliation, generally, the low-pass signals are more mean-
ingful for material/energy balances than the high-frequency
signals. Consequently, only part ofc will be used for recon-
struction. Thus, Mallat’s pyramidal algorithm can be expressed
as eq 3 if only the low-pass coefficients of analysis levelj are
kept:

whereT j andSj are decomposition and reconstruction matrices,
respectively. In eq 3,y(j) is the approximate or filtered signal,
of which only the low-pass coefficients up to levelj are kept.
Determination of the level (i.e.,j) for analysis will be given
later. With the adopted padding strategy (in this paper, constant
padding is adopted),T j andSj are given in the Appendix. Notice
that matrix T j is used to generate thejth-level low-pass
coefficients (λj) from the (j - 1)th-level coefficients (λj-1) using
the following relationship:

Let k denote the length of a moving data window. According
to eq 3,yk

(j) is given by multiplying the last row ofΛj by y:

Notice thatyk
(j) is the filtered output from the current moving

data window along the current timet.
2.2. Determining the Wavelets Filtering Level.To preserve

the low-frequency contents in the signal after filtering, one must
set a proper number for the analysis levelj, so that detail portions
up to thisjth level are removed. The remaining low-pass signal
is designated asy(j). In a previous work, Huang and Luo21

proposed thisj value as the level below that where removal of
the next higher portion causes a sudden increase in the mean
of the high-pass errors. This is because a sudden increase in
the mean values from the removal of the high-pass portion at
level j + 1 means that some significant low-frequency signal
components are included in that discarded portion and should
be avoided. This method requires some modification to address
a moving window for on-line application. The modification is
to incorporate a Studentt-test and aø2 hypothetical test, in
addition to the MSE on the residuals of the filtered signals at
different levels. The residual,d(j) at thejth level is defined as

The Studentt-variable and theø2 variable for a certain levelj
are defined in eqs 7 and 8:

wheresd
(j) is the standard deviation ofd(j) and is obtained from

eq 9.

c ) Tay (1)

y ) Tsc (2)

y(j) ) S1S2 · · · SjT j · · · T2T1y ) Λjy (3)

λj ) T jλj-1 (4)

yk
(j)(t) ) Λj(k,:)y(t) (5)

d(j) ) y - y(j) (6)

t(j) ) d(j)

sd
(j)/xk + 1

(7)

ø2,(j) ) d(j)T
d(j)

sd
(j)2

(8)
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The desired numberj, which is designated asj*, is determined
by the following:

wherec1-R1(ν) is the value ofø2, which hasν degrees of freedom
at a confidence levelR1. The constantη is the value of the
Studentt-variable at a confidence level ofR2. The Student
t-variable and theø2 variable are used to ensure that both the
mean and the variance of the residuals are normally distributed
after the filtering.

2.3. Robust Wavelet Filtering Method.The proposed on-
line wavelet filtering method starts with an initial data window.
The median filtering is applied to the data in this initializing
data window to ensure that there is no obvious outlier in this
window. Whenever the window moves, a preconditioning step
is taken. The preconditioning step is to make correction to the
new measurement via the following:

whereŷk(t - 1) designates the last filtered data from the previous
window,yk(t) is the latest raw data adopted into the window at
current timet, andsd is the variance of the signal in the data
window. Estimation of the termsd is discussed in next section.
Equation 11 is used to correct the suspected outlier measure-
ments.

After finishing the preconditioning step to this new data
window, eq 5 is applied to this new window to give a filtered
output at the current timet. Since padding data are used in the
implementation of DWT, the filter output thus obtained is prone
to have greater distortion. This distortion is known as the end-
point effect, which primarily affects the on-line filtering result.
Correction to this distortion to improve the filtering robustness
is the main purpose here. As shown in Figure 2, after having
the preconditioned data window, several translation windows
are generated by performing cycle-spinning on a section of data
in this preconditioned data window. Then, to each of the
translation windows, eq 5 is applied, to obtain its provisional
output. This provisional output then is used to update and apply
eq 5 on the translation window iteratively until it converges.
Finally, an averaged value of all converged filtered outputs from
all the translated widows is taken as the final output at timet.
The procedures are illustrated in the block diagram shown in
Figure 3. When window moves on, the filtered output is
generated sequentially with the aforementioned procedures,
along with the window moves.

2.4. Illustrative Examples. 2.4.1. Example 1.Consider
filtering a Havisine signal, using Nounou and Bakshi’s ap-
proach18 for comparison. The lengths of the moving window
and the median filter used in the Nounon and Bakshi’s method18

are set as 1024 and 15, respectively. Furthermore, the analysis
depth is set as 6 and a Daubechies wavelet with an order of 2
is adopted. On the other hand, for the proposed method, the
length of the moving window is taken as 64, the length of the
translations is 20, and a Daubechies wavelet with an order of 6
is adopted. In both cases, 1024 data points are collected from

the simulation. The filtering results of the two approaches are
compared by calculating their MSE values. Using Nounou and
Bakshi’s approach,18 the resulting MSE is 0.1314. On the other
hand, the MSE that resulted from the proposed approach is
0.0623. The results of the data are illustrated in Figure 4.

2.4.2. Example 2.Again, consider the same Havisine signal
that has a patch of outliers. The colored noise is used besides
the patch of the outliers. The colored noise is generated by the
autoregressive noise model with the formet ) 0.5(et-1 + at).
The white noise (at) has a variance of 0.2. Using Nounou and
Bakshi’s approach,18 the length of the moving window is set to
1024, the length of the median filter is set to 29, the number of
analysis level is set to 6, and a Daubechies wavelet with an
order of 2 is adopted. For the proposed method, the length of
the moving window is set to 32, the length of the translations
is set to 12, and a Daubechies wavelet with an order of 6 is
adopted. The results are illustrated in Figure 5. From the
illustration, an unfavorable performance occurs because of the
patch of outliers in Nounou and Bakshi’s approach.18

sd
(j) )

x∑
i)1

k

(di
(j) - d(j)2

)

k - 1
(9)

j* ) Arg max
j

{d(j)T
d(j) )

ø2,(j)sd
(j)2 | ø2,(j) < c1-R1

(ν) andt(j) < η1-R2
} (10)

yk(t) ) ŷk(t - 1) + 3 × sign(yk(t) - ŷk(t - 1)) × sd

(if |yk(t) - ŷk(t - 1)| > 3sd) (11)

Figure 2. Translation of the data points near the end of the data window.

Figure 3. Illustration of the proposed robust filtering approach.

Figure 4. Filtering result of the two approaches. Mean-square-error (MSE)
values: wavelet, 0.1314; proposed, 0.0623. (The term “wavelet” denotes
the approach by Nounou and Bakshi.18)
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3. Data Reconciliation with a Moving Data Window

Recently, Simon and Chia9 has reported a constrained Kalman
filter approach for dynamic systems that has equality constraints
on state variables. The state-constrained problem was also
discussed by Porrill7 and Hayward,8 where the perfect measure-
ment approach was considered. To apply the constrained Kalman
filter for on-line data reconciliation, each moving data window
that contains raw measurements is updated by its latest
measurements. The wavelet filtering is then applied to each data
window to generate wavelet-filter outputs. The wavelet filtering
outputs serve as the measurement outputs in the Kalman filter
estimation. With previously estimated values of state as initial
values, the Kalman filter with equality constraints computes the
next new estimated state. The procedures are repeated as the
new raw measurements become available.

3.1. Data Reconciliation Using the Constrained Kalman
Filter Approach. The constrained Kalman filter approach of
Simon and Chia9 is adopted as the theoretical basis here for
formulating the reconciliation. The solution to this constrained
estimation problem consists of two steps. First, an unconstrained
estimation is computed; then, the estimation is corrected. The
unconstrained Kalman filter solution can be found in some text
books (e.g., see the work of Grewal and Andrews22).

Consider a time-invariant system with the following con-
straints:

wherexa and xb are vectors of the state and input variables,
respectively.Y (Y ) [Y1 Y2 ‚‚‚]) is a vector of measurement
outputs. The system noise (wa) and measurement noise (e) are
assumed to have covariance matricesQa and R. For the
reconciliation application, the aforementioned system is refor-
mulated to the augmented state system as

where wb is assumed to have a variance matrixQb. In the
reconciliation problem,Ca and Cb are identity matrices. The

reformulated matrixQ, as system noise, is then equal to

The constrained estimations are obtained by the following
equation:

whereX ) [xa xb]T, X̂ is the estimation of the augmented state
vector without considering the constrains, andP is the covari-
ance matrix of the state estimations.

The standard deviation for each raw measured variable (sYi)
can be roughly estimated by applying eq 18 to each measure-
mentYi in the moving data window:

whereyi,p is thepth measurement in the data window ofYi, yi,p
(j)

is the corresponding wavelets filtered value, andê is a
coefficient that is dependent on which wavelets filtering level
is being selected. The value ofê is dependent on the wavelet
filtering level, and theê values obtained are listed in Table 1.

The elements of the covariance matrixQ in eq 16 are taken
as the variance of the wavelet-filter output, designated assŶi

2,
which can be roughly estimated by making use of eq 5 as
follows:

Matrix Q is assumed to have the following diagonal matrix
form:

A guess of the initial state (i.e.,X̂0) and a guess of error
covariance matrix (P0) are required to start the estimations at
the beginning.X̂0 can use the initial wavelet filtering outputs,
andP0 can be set asQ in the augmented Kalman filter system.

3.2. Detection and Isolation of Single Gross Error.Single
gross error that result from measurement bias or process leaks
is considered here. Because the measurement outputs in the
Kalman filter estimation are replaced by the wavelet filtering
outputs, any abrupt or constant change caused by gross error
will be smeared. As a result, the instantaneous residuals from
the minimum variance estimation may not be significant for
the detection of constant or biased gross errors. Nevertheless,
whenever a gross error occurs in some of the state variables,
the normality assumptions of the residuals may have been
violated. An examination of the history of these residuals can
help to investigate the abnormal situations. Besides, an integra-

Figure 5. Filtering result of the two approaches.

x3 a ) Axa + Bxb + wa (12)

Y ) [Ca 0
0 Cb][xa

xb] + e (13)

D[xa

xb
] ) d or DE[xa

xb
] ) d (14)

[x3 a

x3 b
] ) [A B

0 0 ][xa

xb
] + [wa

wb
] (15)

Table 1. Values of the Coefficientê

wavelets level ê

1 2
2 4/3
3 8/7
4 16/15
5 32/31
6 64/63
7 128/127
8 256/255

Q ) [Qa

Qb] (16)

X̃ ) X̂ - PDT(DPDT)-1(DX̂ - d) (17)

sYi

2 ) ê

∑
p)1

k

(yi,p - yi,p
(j) )2

k - 1
(18)

sŶ i

2 ) Λj*(k,:)Λj*
T (k,:)sYi

2 (19)

Q ) diag[sŶ1

2 sŶ2

2 · · · ] (20)
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tion of the constraints to form long-term-based constraints may
disclose these violations to help isolate the source of the error.
Thus, the gross error detection methodology is described as
follows. DefinerYi be the normalized residual from the Kalman
filter estimation forYi as follows:

whereŶi,K is the estimation value after Kalman filtering forYi.
The distribution of residualrYi for Yi is assumed normal in the
Kalman filter estimation. Aø2 variable, which is defined based
on history of the residuals, is used to detect the occurrence of
the gross error. Define a series ofrYi as follows:

where the subscript indexk representsrYi at the current time
instant; the other subscript index (I) represents the length of
the history sequence. BecauserYi has a normal distribution with
variance of 1, theø2 variable (γYi) is defined in eq 23:

The gross error is detected by testing the hypothesisHm,1 against
Hm,0:

whereF is theø2 statistical value forI degrees of freedom at
the confidence levelR. In each case, if no gross error is
considered to exist,Hm,0 holds; otherwise,Hm,1 holds.

The integrating constraints are obtained by integrating the
system dynamic equations over a prescribed length window as
follows:

wherez ) [za zb]T, za ) ∫xa dt, andzb ) ∫xb dt. The standard
deviation ofz can be estimated according to eq 26 form integral
points.

The variance of the constraints then is estimated as

whereV is the variance matrix of the variablesxa andz:

The residual of the constraints (i.e.,v) can be obtained in eq 25
as follows:

where x̂a is the current Kalman filter state andẑ is the
corresponding time integration. The nodal test is used to examine

the normalizedv by V1 as

The expected value ofκi is zero; otherwise, gross errors occur
in the corresponding constraints. The nodal test uses the
following hypotheses:

If no gross error in the constrainti is true,Hn,0 holds; otherwise,
Hn,1 holds.

Combining the two hypothesis tests, the gross error detection
and isolation strategy is described as follows:

(1) If Hn,1 holds for a certain constraint andHm,1 holds for
variableYi (Yi ∈ xb) in this constraint, then a measurement bias
of Yi is diagnosed.

(2) If only Hm,1 holds forYi (Yi ∈ xa), then a measurement
bias ofYi is diagnosed.

(3) If Hn,1 holds for a certain constraint andHm,1 holds for
Yi (Yi ∈ xa), then a process leak in this constraint unit is
diagnosed.

4. Example

4.1. Illustration Example of a Four-Tank System.A four-
tank system as shown in Figure 6 is illustrated as an example.
The system’s four differential and algebraic equations are as
follows:

Steady-state values and the default measurement noises of the
flows and levels in the process are listed in Table 2. Assume

rYi
)

Ŷi,K - Yi

sYi

(21)

rYi
) [rYi,k-I+1 · · · rYi,k-1 rYi,k ]T (22)

γYi
) rYi

TrYi
(23)

{Hm,0:γYi
< FI,1-R

Hm,1:γYi
g FI,1-R

(24)

xa - xa,0 ) [A B]z w [-I A B ][xa

z ] + xa,0 )

0 w D1[xa

z ] + xa,0 ) 0 (25)

szai
) xm*sxa,i

(26)

szbi
) xm*sxb,i

(27)

V1 ) D1VD1
T (28)

V ) diag([sxa,i

2 · · · sza,i

2 · · · szb,i

2 · · · ]) (29)

v ) D1[x̂a

ẑ ] + x̂a,0 (30)

Figure 6. Schematic of a four-tank system.

Table 2. Parameters of the Four-Tank System

symbol state/parameter value

hi level (cm) [20.4; 20.4; 11.5; 11.5]
qi flow out of the tanki (cm3/S) [3; 3; 6;6]
fi flow into the tank (cm3/S) [3; 3; 3;3; 6; 6]
ai area of the drain (cm2) [3; 3; 2;2]
g gravitation constant (cm/S2) 981
σf standard deviation of flow (cm) 0.09
σh standard deviation of level (cm) 0.3
Ari area of the tanks (cm2) 1

κi )
Vi

V1,ii
(31)

{Hn,0:κi < 3
Hn,1:κi g 3 (32)

Ar1

dh1

dt
) -a1x2gh1 + a3x2gh3 + f1 (33a)

Ar2

dh2

dt
) -a2x2gh2 + a4x2gh4 + f2 (33b)

Ar3

dh3

dt
) -a3x2gh3 + f3 (33c)

Ar4

dh4

dt
) -a4x2gh4 + f4 (33d)
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that all the tank levels and flows are measured and must be
reconciled. The system model can be described using the
following differential equations:

Equality constraints for material balances in this system that
should be considered are

In the first filtering step, the “Daubechies 6” wavelet is
selected and a moving-data window with a length equal to 36
is assigned. The length of translations for robust wavelet filtering
is 12. The guess of the initial state (i.e.,X̂0) is obtained by first
calculating the wavelets’ filtered values. The guesses of the
covariance matrix (P0 and Q) are set as described. The
standardized MSE values (as defined in eq 36) for all the
variables are evaluated.

whereŶi,K is the estimation value after Kalman filtering forYi

in each of the moving-data windows,Yi
t is the corresponding

true value, andsd
t is the standard deviation set in the simula-

tion. N is the total number of points collected in a simulation.
Table 3 shows that the reconciliation results are superior to the
approaches that use raw measurements. The performances are
illustrated in Figures 7, 8, and 9 forh2, q2, andf2, respectively.

4.2. Measurement Bias and Process Leak Detection and
Isolation. In the following test, the length ofrYi in the
measurement test is taken as 10. Under this setting, the adopted
ø2 value, with a confidence level of 0.001, is 29.59, and the
number of integral points in the nodal test is assumed to be 20.

4.2.1. Case 1.In the first case, assume thatq2 has a
measurement bias with a magnitude of 0.3 that occurs 100 s
from the beginning. From the test charts, as shown in Figures

10 and 11, we can see only the measurement test ofq2 and the
second nodal test exceed the confident limits. Thus,q2 with
fault is identified.

4.2.2. Case 2.Consider a process leak in tank 1 with a
magnitude of 0.2 that occurs 15 s from the time origin. The
results show that both the statistical value ofh1 and the first
constraint exceed their confidence limits, as shown in Figures
12 and 13. Therefore, we conclude that a leak occurs in tank 1.

4.2.3. Case 3.Consider a measurement bias inh1 with a
magnitude of 1 that occurs 100 s from the time origin. We can
see that only the measurement test ofh1 exceeds its confident

Table 3. Comparisons of the Standardized MSE Values

MSE

parameter by filtered data by raw data

h1 0.050 0.492
h2 0.153 0.491
h3 0.207 0.607
h4 0.056 0.79
q1 0.043 0.302
q2 0.063 0.291
q3 0.036 0.270
q4 0.038 0.259
f1 0.019 0.221
f2 0.051 0.269
f3 0.027 0.307
f4 0.044 0.258
f5 0.087 0.299
f6 0.209 0.299

Ar1

dh1

dt
) -q1 + q3 + f1 (34a)

Ar2

dh2

dt
) -q2 + q4 + f2 (34b)

Ar3

dh3

dt
) -q3 + f3 (34c)

Ar4

dh4

dt
) -q4 + f4 (34d)

f5 ) f1 + f4 (35a)

f6 ) f2 + f3 (35b)

MSE )
1

N
∑
i)1

N (Ŷi,K - Yi
t

sd
t )2

(36)

Figure 7. Reconciliation result for variableh2.

Figure 8. Reconciliation result for variableq2.

Figure 9. Reconciliation result for variablef2.
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level, none in the nodal test, as shown in Figures 14 and 15.
Therefore,h1 with the measurement bias is identified.

5. Conclusions

In this research, an on-line robust filtering method is presented
and applied to the dynamic data reconciliation via a Kalman
filter approach. By setting the decomposition and reconstruction
matrices, simple wavelet filtering can be easily computed. Based
on this simple algorithm and the combining uses of the
“Translation Invariant” and “Boundary Correction” concepts,
the filtering method (which is robust to the effects of outliers)
is presented. After the wavelet filtering, most high-frequency
noises and outliers are removed. The wavelet-filter outputs then
go through a Kalman filter, which takes into account the equality

constraints, for the estimations. To ensure that the constraints
are being satisfied without biases, accumulative balancing
constraints are formulated. From the residuals of each formulated
balancing constraints, single gross errors such as constant
measurement bias or process leaking flow can be identified. A
four-tank linear system is illustrated as an example. The
reconciliation performances exhibit significant improvement
over those from the un-pretreated data.

Appendix

MatricesH, H, G, andG are FIR digital filter arrays, each
with a lengthl. Different wavelets have different such FIR filters
and different lengths. The elements of these FIR filters are
denoted ashi, hi, gi, andgi, respectively. With a given analysis

Figure 10. Measurement test for case 1.

Figure 11. Nodal test for case 1.

Figure 12. Measurement test for case 2.

8752 Ind. Eng. Chem. Res., Vol. 46, No. 25, 2007



level j, in the computation ofλj from λj-1, T j consists of three parts, i.e.,T1, T2, andT3, as given in eq 37.

The structures and dimensions ofT1, T2, andT3 are given as follows, wherenj means the length of the coefficientsλj:

Figure 13. Nodal test for case 2.

Figure 14. Measurement test for case 3.

Figure 15. Nodal test for case 3.

T j ) [T1

T2

T3
] (37)
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T2 andT3 have two different forms, depending on whether the length ofλj is odd or even.

where the subscripts E and O denote even and odd lengths ofλj. T j is obtained fromT j by replacing eachhi with hi.
Similarly, at a given analysis levelj, Sj also has two different forms, according to whethernj is odd or even.Sj is composed of

gi, as follows:

Sj is obtained fromSj by replacing eachgi with gji.

Nomenclature
ai ) area of the drain
at ) colored noise input
A ) system matrix of the Kalman filter approach

Ari ) area of the tanki
B ) system input matrix of the Kalman filter approach
c ) Studentt-statistical value for level determination
c ) set of wavelet coefficients

T1 ) [h2 + ·· · + hl h1 0 · · ·
h4 + ·· · + hl h3 h2 h1 0 · · ·
··· ··· ··· ··· ··· 0 · · ·
hl-2 + ·· · + hl hl-1 · · · h2 h1 0 · · ·

](l-2

2
)×(nj-1)

(38)

T2 ) [hl hl-1 hl-2 · · · h2 h1 0 · · ·
hl hl-1 · · · h3 h2 h1 0 · · ·

···
· · · 0 hl hl-1 hl-2 · · · h2 h1

· · · 0 hl hl-1 · · · h3 h2 h1

]
E,(nj-l+2)×(nj-1)

(39)

T2 ) [hl hl-1 hl-2 · · · h2 h1 0 · · ·
hl hl-1 · · · h3 h2 h1 0 · · ·

···
· · · 0 hl hl-1 hl-2 · · · h2 h1

· · · 0 hl hl-1 · · · h3 h2 h1

]
O,(nj-l+1)×(nj-1)

(40)

T3 ) [· · · 0 hl hl-1 · · · h4 h1 + ·· · + h3
··· ···

· · · 0 hl hl-1 hl-2 h1 + ·· · + hl-3

· · · 0 hl h1 + ·· · + hl-1
]

E,(l-2

2
)×(nj-1)

(41)

T3 ) [· · · 0 hl hl-1 · · · h3 h1 + ·· · + h2
··· ···
· · · 0 hl hl-1 h1 + ·· · + hl-2

· · · 0 h1 + ·· · + hl
]

O,(l/2)×(nj-1)

(42)

Si ) [gl-1 gl-3 · · · g3 g1

gl gl-2 · · · g4 g2

gl-1 gl-3 · · · g3 g1

gl gl-2 · · · g4 g2
···

···
gl-1 gl-3 · · · g3 g1

gl gl-2 · · · g4 g2

gl-1 gl-3 · · · g3 g1

gl gl-2 · · · g4 g2

]
E,(nj-1)×(nj)

(43)

Si ) [gf-1 gf-3 · · · g3 g1

gf gf-2 · · · g4 g2

gf-1 gf-3 · · · g3 g1

gf gf-2 · · · g4 g2
···

···
gf-1 gf-3 · · · g3 g1

gf gf-2 · · · g4 g2

gf-1 gf-3 · · · g3 g1

]
O,(nj-1)×(nj)

(44)
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Ca, Cb ) measurement matrix of the system
d ) constant term of the equality constraint
d(j) ) residuals of the measurements and thejth level filtered

signal
d(j) ) mean ofd(j)

D ) state equality constraint matrix
et ) colored noise output
e ) measurement noises of the system
fi ) flow i into the tank
g ) gravitation constant
G ) the low-pass filter for reconstruction
G ) the high-pass filter for reconstruction
hi ) level of tanki
H ) the low-pass filter for decomposition
H ) the high-pass filter for decomposition
j ) wavelet analysis level
k ) the length of the wavelets filtering window
P ) state error covariance
Qa ) covariance matrix ofwa

Qb ) covariance matrix ofwb

qi ) flow i out of the tank
rYi ) normalized residual from Kalman filter estimation
rYi ) time series ofrYi

R ) covariance matrix ofe
sxa,i ) standard deviation ofxa,i

sza,i ) standard deviation ofza,i

szb,i ) standard deviation ofzb,i

sd
(j) ) standard deviation ofd(j)

sYi ) standard deviation ofYi

sŶi ) standard deviation of the wavelets filtered signal
Sj ) reconstruction matrix for approximate coefficients at level

j
t(j) ) Studentt-statistical value
Ta ) discrete wavelet analysis matrix
Ts ) inverse discrete wavelet analysis matrix
T j ) decomposition matrix for approximate coefficients at level

j
v ) residual of the constraint
V ) covariance matrix of the constraint
V1 ) covariance matrix of the integral variables
wa, wb ) system disturbance
xa ) set of state variables
xb ) set of state variables
X ) augmented state variable of the Kalman filter approach
yk

(j) ) the last filtered point in the data window
Yi ) measurement of variableYi

Ŷi,K ) estimation of Kalman filter for variableYi

y ) data window of the measurements
y(j) ) reconstructed signal from the low-pass coefficients at level

j
Y ) measurements of the Kalman filter approach
z ) z ) [za zb]T, whereza ) ∫xa dt andzb ) ∫xb dt

Greek Letters

γYi ) rYi

T rYi

F ) ø2 statistical value for gross error detection
η ) ø2 statistical value for level determination
ê ) coefficient for standard deviation

κi ) normalized residual of the constraint
ø2,(j) ) chi-squared statistical value ofd(j)

σf ) standard deviation of flow
σh ) standard deviation of tank level
λ(j) ) the set ofjth level wavelet function coefficients
Λj ) the wavelet filter matrix of levelj
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