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A System of Procedures for Identification of Simple Models Using
Transient Step Response

Hsiao-Ping Huang,* Ming-Wei Lee, and Cheng-Liang Chen

Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China

In this paper, a system of procedures for identification using the transient step response is
presented. The identification aims at modeling dynamic processes with simple models that have
general second-order dynamics. The procedures consist of three parts, including classification
of the response, selection of the model structure, and the estimation of parameters. Technically,
this proposed system provides a strategy based on quantitative measures to identify the model
structure and extends the identification of models to include possible RHP/LHP zeros and dead
time. One important aspect of this proposed system of procedures is the minimization of the
need for human decisions to be made during the identification process. With this advantage, it
is then possible to facilitate the development of software to perform the identification
automatically.

1. Introduction

In the past, numerous papers have been published
on the topic of model identification using on-line and
off-line methods. The terminology concerning the on-
line methods is used to refer to those methods that (1)
infer the model at the same time as data collection, (2)
update the model using a recursive algorithm at each
time instant when new data are collected, and (3)
employ the model to support decisions to be taken on-
line for purposes of control,1 such as adaptive control
or filtering. Extensive developments of such methods
can be found in many books.1-3 There are also a number
of papers regarding developments of off-line methods.
This category of methods includes those that use batch-
wise data to perform identification for either time-
domain or frequency-domain models. In those cases,
there is no need for decisions when data are collected,
but the model development requires special inputs for
open-loop experiments. A good summary of such meth-
ods can be found in the book by Juang.4 Each of these
two categories of methods has its advantages and
disadvantages, and the justification for which method
to be employed is determined by the application of the
model, in other words, the objective of the identification.

One of the developments in common to both categories
of methods is the use of estimations with recursive least
squares, which are directly applied to the measured
input and output data. Regarding the method of recur-
sive least squares, there are some major disadvantages
in contrast to the off-line methods of nonleast squares.
First, such methods require an a priori decision on what
model structure to use before the procedure the proce-
dure. This means that the estimation procedures have
to be repeated on models with several different struc-
tures. Second, within a presumed model structure, the
estimation of dead time can be done in two ways. If
linear least squares are to be formulated for identifica-
tion, then estimation of the dead time has to be carried
out by trials, which means repetitive estimations for

parameters are needed. Otherwise, estimations with
nonlinear least squares might be encountered, and the
algorithms would become much more complicated and
fragile. In general, these methods do not give as ac-
curate a description of the model as those off-line
methods using nonleast squares.1 More difficulties that
these methods might encounter include the choice of
sampling interval, selection of step size for iterations,
bias of the results, convergence of the algorithms,
nonunique conversion from discrete-time to continuous-
time models,5 etc. Recently, developments of least-
squares identification methods that apply transformed
input and output data for continuous-time models have
also been reported.6,7 Nevertheless, the difficulties
mentioned have not been resolved.

By the facts described above, it seems that an off-line
method of nonleast squares that uses transient step
response for identification is more convenient for in-
dustrial uses, because the experiments are easy to
perform and the development of models for designs does
not involve decisions or instant needs for a model during
the identification process. In literature, nonleast-
squares methods using step responses have been used
to develop simple models such as FOPDT (first-order
plus dead time) or SOPDT (second-order plus dead
time)8-18 for process control. However, these identifica-
tion methods usually need to presume that the model
structure has been decided a priori, and there seems to
be no quantitative criteria for making such decisions.
The identification methods thus focused on parameter
estimations and ignored the issue of determining the
model structure. Furthermore, there is in lack of non-
least-squares methods that use step response to develop
models that have RHP/LHP zeros. These kind of models
will find more and more uses in performing advanced
control, such as in tuning advanced PID controllers,19

tuning the controllers in a cascaded control loop, and
tuning controllers in a multi-loop system.

To address the deficiencies just mentioned, a system
of procedures for modeling dynamic systems with simple
models of the following forms is presented
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where model I is assigned with ú < 1 and model II with
ú g 1.

This system of procedures consists of three parts. In
the first part, the transient dynamic response of a given
process is classified with its appearance into four
classes. Second, a key parameter (i.e., ú or η) of the
system is determined to select a model structure. Third,
estimation of the parameters of the model in accord with
the selected model structure is performed. Finally, the
resulting model is validated by comparing the predicted
step response with the experimental one. Technically,
this proposed system provides a strategy based on
quantitative measures to identify the model structure
and extends the identification of models to include
possible RHP/LHP zeros. The estimation of dead time
is also included in each of models. One important aspect
of this proposed system of procedures is that it mini-
mizes the need for human decisions during the identi-
fication process. Thus, with the development of com-
puter software, the identification process can be auto-
mated.

2. Strategies for Model Structure Identification

As is well-known, a higher-order dynamic process can
be described with models in the form of model I or model
II in eq 1. Because the steady-state gain, kp, can be
obtained from the changes in the input and output at
steady state, the kp value is assumed to be known and
is not included in the study that follows.

By considering sj ) τs and θh ) θ/τ in eq 1, G(s) can be
changed into the dimensionless form

where yj ) y/kp and aj ) a/τ.
The unit step response resulting from eq 2 is given

in the equation

where (th - θ/τ). Thus, excluding the true time delay,
the dynamics of a general second-order system can be
characterized by two additional dimensionless param-
eters. They are ú and aj for model I and η and aj for model
II. Based on many simulations with various combina-

tions of these key parameters, some typical step re-
sponses are shown in Table 1. These typical step
responses are grouped into four categories according to
their features such as the existence of oscillation,
overshoot, inverse response, etc. These four groups
are: group A, those that are oscillatory; group B, those
that are nonoscillatory and do not have overshoot at all
times, nor do they respond in the reverse direction;
group C, those that are nonoscillatory and have over-
shoot; and group D, those that are nonoscillatory and
have an inverse response.

Table 2 depicts the important features of the step
response of these four categories. In table 2, an entry
with the digit 1 designates that the indicated feature
relating to the status of the corresponding parameters
is feasible, and an entry with a + designates that the
feature is conditionally feasible. A strategy for identify-
ing the statuses of ú and aj is thus presented in Figure
1. Notably, groups B, C, and D include some ú values
less than 1. It is desirable to devise an index from the
step responses to identify the status of ú. For this
purpose, R1(x) is defined as

where tx is the time when y(tx)/y∞ ) x, 0 e x e 1. Notably,
the computation of R1(x) in eq 4 does not need a model
in the form of either model I or model II.

By the definition of th, R1(x) can also be written as

where thx ) (tx - θ)/τ is the dimensionless time derived
from tx and yj(thx) ) x.

y(s)
u(s)

) G(s) )

{ kp(1 + as)e-θs

τ2s2 + 2úτs + 1
0 < ú < 1 (model I)

kp(1 + as)e-θs

(τs + 1)(ητs + 1)
0 < η e 1 (model II)

(1)

y(sj)
kpu(sj)

)
yj(sj)
u(sj)

) Gh (sj) ) { (1 + ajsj)e-θhsj

sj2 + 2úsj + 1
(model I)

(1 + ajsj)e-θhsj

(sj + 1)(ηsj + 1)
(model II)

(2)

yj(th) ) {1 - [ ú - aj

x1 - ú2
sin(x1 - ú2th) + for model I

+ cos(x1 - ú2t̃)]
1 - 1 - aj

1 - η
e-th - η - aj

η - 1
e-th/η for model II

(3)

Figure 1. Flowchart for identification of model structure.

R1(x) t
tx - t(x-0.2)

t(x-0.2) - t(x-0.4)
(4)

R1(x) )
thx - th(x-0.2)

th(x-0.2) - th(x-0.4)

(5)
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With eq 5, theoretical values of R1(x) can be calculated
if models as well as their parameters of eq 1 are given.
To understand why this quantity can be used to identify
the status of ú, we can resort to Figure 2. In that figure,
values of R1(0.7) and R1(0.9) have been calculated
extensively for model I and model II with different
parameters. Domain maps for ú < 1 and for ú g 1 have
been traced and plotted in the figure with R1(0.7) and
R1(0.9) as the coordinates. Notice that the circle in the
middle of two dark and dotted areas belongs to an
FOPDT system. Thus, if we have a step response and
R1 values from experiment, by referring to Figure 2, we
will be able to make a choice among model I, model II,
or FOPDT models for identification.

Algorithms to estimate the parameters using the step
response in each group are depicted as in the following
section.

3. Algorithms for Parameters Estimation
In the previous section, we explained that the iden-

tification of models depends on whether ú < 1 or ú g 1,

and, on whether aj < 0 or aj g 0. Thus, the parametric
estimation algorithms are devised according to the
status of these key parameters. In the following, four
algorithms are presented for estimating model param-
eters for the four categories of models.

3.1. Algorithm A for Oscillatory Step Responses.
From Table 2, a feasible model for an oscillatory step
response is model I with ú < 1 and aj ∈(-∞, ∞). For
further identification, it is desirable to differentiate aj
into three cases, i.e., aj < 0, aj ) 0, and aj > 0. It is easy
to conclude that aj < 0 when an inverse response occurs.
However, to differentiate between a response with aj )
0 and one with aj * 0 the following lemma is needed:

Lemma 1. Consider a system of model I having ú < 1
and aj ∈(-∞, ∞). Let tp,i and tm,i be the time instants
when the output, y, reaches its ith peak and ith valley,

Table 1. Some Typical Unit Step Responses for Model I and Model II with Various Parametric Values

Table 2. Categories of Features for Step Responses

oscillatory nonoscillatoy

∆ ) P/2a ∆ * P/2a
inverse

responseb
inverse

responseb overshootb

ú < 1
a ) 0 1 0 0 0 0
a > 0 0 1 0 0 +
a < 0 0 1 1 1 0

ú g 1
a ) 0 0 0 0 0 0
a > 0 0 0 0 0 +
a < 0 0 0 0 1 0

a ∆ ) tp,1 - tm,0. P ) period of oscillations. b 1 ) feasible; 0 )
infeasible; + ) conditionally feasible.

Figure 2. R1(0.7) vs R1(0.9).
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respectively. Then, if and only if aj ) 0, we have

Notably, the value of tp,1 - θ is taken as tp,1 - tm,0
from Figure 3. Thus, the criterion to establish that aj )
0 is to determine whether tp,1 - tm,0 is equal to tp,2 -
tm,1. Then, the estimation of the parameters can be
obtained by carrying computations of the following
quantities:

where

and

and

The use of algorithm A for identification is illustrated
with the following example.

Example A. Consider the following three processes:

The step responses of these Gp’s are as shown in Figure
4. All three responses are oscillatory, and response c
has an inverse response. It is found that only response
a has equal values for tp,2 - tm,1 and tp,1 - tm,0. The
identification results based on these observations are
given in Table 3. The unit step responses of the resulting
models are given in Figure 4.

3.2. Algorithm B for Nonoscillatory Step Re-
sponse without Overshoot or Inverse Response.
The feasible model for this class of response is either
model I or model II having aj ∈ [0,1]. However, it seems
trivial to find a nonzero aj for this case, because it is
always possible to find a model in terms of model I or
model II with aj ) 0 that fits the given step response.
Thus, models for this category are assumed to be
represented by eq 1 with aj ) 0. By this assumption, we
obtain advantages in managing the derivations of the
algorithm.

By assuming that aj ) 0, the thx value at any given x is
a function of ú or η. This value can be easily obtained
by solving eq 3 with a single MATLAB instruction. For
later uses, the values of thx at x ) 0.3, 0.5, 0.7, and 0.9

tp,1 - θ ) tp,i+1 - tm,i ) tm,i - tp,i ) P
2

)

πτ

x1 - ú2
∀ i g 1, j > i

(1) the time constant, τ, of the system

τ ) Px1 - ú2

2π
) P

x4π2 + P2ø2
(6)

ø ) { 1
tp,1 - tp,2

ln(yjp,2 - 1
yjp,1 - 1) ∀aj g 0

1
tm,1 - tp,1

ln(yjp,1 - 1
1 - yjm,1

) ∀aj < 0
(7)

yjp,i ) yj(tp,i), i ) 1, 2, ...

(2) the damping ratio, ú, of the system

ú ) {x ln2(yjp,1 - 1)

π2 + ln2(yjp,1 - 1)
for aj ) 0

Pø

x4π2 + P2ø2
∀aj * 0

(8)

(3) the parameters aj and θ of the system

(a) for aj ) 0

θ ) tp,1 + τ
ú

ln(yp,1 - 1) (9)

(b) for aj * 0

using the following two equations to calculate
aj and θ sequentially

aj ) {ú + xú2 + [1 - (yp,1 - 1

e-úthp,1 )2] ∀aj > 0

ú - xú2 + [1 - (1 - yjm,1

e-úthm,1 )2] ∀aj < 0
(10)

θ ) {tp,1 - P
2π(π - tan-1 aj x1 - ú2

1 - ajú ) ∀aj > 0

tm,1 + P
2π (tan-1 ajx1 - ú2

1 - ajú ) ∀aj < 0
(11)

Figure 3. Step response for underdamped system with aj g 0.

Figure 4. Step responses of example A.

Gp(s) ) { e-s

(4s2 + 2s +1)(s2 + s + 1)
(a)

(2s + 1)e-2s

(4s2 + 2s + 1)(s2 + s + 1)
(b)

(-2s + 1)e-3s

(4s2 + 2s + 1)(s2 + s + 1)
(c)
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have been calculated and correlated with ú (or η) into a
functional form as follows (also see Figures 5 and 6):

Next, we define the quantity R2(x) as

where M designates the integrations of y∞ - y(t) with

respect to time t.

Mh (th) is the normalized value of M(t)

It is straightforward to show that

Values of R2(x) at x ) 0.5 and at x ) 0.9 are plotted in
Figure 7. It is found that, for each value of R2(x) at a
given x, there is only one value of ú (or η) in cor-
respondence. Thus, from the two curves in Figure 7, we
have two values of ú (or η). As a result, an average of
these two values can be taken as the estimate for ú (or
η). For later uses, the values of R2(x) at x ) 0.5 and x )
0.9 have been calculated and correlated with ú and η

Table 3. Simulation Results for Example A

(a) (b) (c)

process e-s/(4s2+2s+1)(s2+s+1) (2s+1)e-2s/(4s2+2s+1)(s2+s+1) (-2s+1)e-3s/(4s2+2s+1)(s2+s+1)

tp,1, yp,1 9.03, 1.41 6.79, 1.40 12.19, 1.27
tp,2, yp,2

a 23.54, 1.06 21.12, 1.01 5.70, -0.23
tm,0, tp,1 - tm,0 1.75, 7.28 2.21, 4.58 -, -
P 14.51 14.33 13.80
ø 0.25 0.26 0.23
τ 2.00 1.97 1.96
ú 0.44 0.51 0.45
aj 0 1.33 -0.90
θ 2.03 3.50 4.50
resulting model e-2.03s/(4.00s2+1.76s+1) (2.62s+1)e-3.50s/(3.88s2+2.01s+1) (-1.76s+1)e-4.50s/(3.84s2+1.76s+1)

a tm,1 and ym,1 for Gp,c.

Figure 5. thx for underdamped process with aj ) 0 (th0.3, thin line;
th0.5, normal line; th0.7, thick line; and th0.9, dotted line).

(1) for model I

th0.3 ) 0.7954 + 0.2204ú + 0.0631ú2 + 0.0184ú3

th0.5 ) 1.0472 + 0.3952ú + 0.1577ú2 + 0.0784ú3

th0.7 ) 1.2662 + 0.6045z + 0.2834ú2 + 0.2868ú3

th0.9 ) 1.4655 + 0.9862ú - 0.1236ú2 + 1.5732ú3

(12)

(2) for model II

th0.3 ) 0.3548 + 1.1211η - 0.5914η2 + 0.2145η3

th0.5 ) 0.6862 + 1.1682η - 0.1704η2 - 0.0079η3

th0.7 ) 1.1988 + 1.0818η + 0.4043η2 - 0.2501η3

th0.9 ) 2.3063 + 0.9017η + 1.0214η2 + 0.3401η3

(13)

R2(x) )
M∞ - t(x-0.2)

tx - t(x-0.2)

)
Mh ∞ - th(x-0.2)

thx - th(x-0.4)

(14)

Figure 6. thx for overdamped process with aj ) 0 (th0.3, thin line;
th0.5, normal line; th0.7, thick line; and th0.9, dotted line).

Figure 7. R2(x) for model I and model II with aj ) 0.

M(t) ) ∫0

t
[y∞ - y(τ)] dτ (15)

Mh (th) ) ∫0

th
[1 - yj(τ)] dτ (16)

M(t) ) [Mh (t)τ + θ]kp (17)
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into a functional form as follows:

Thus, by using eqs 18 and 19 and the experimental
values of R2, the value of ú or η can be obtained. With
this obtained value, the values of thx at x ) 0.3, 0.5, 0.7,
and 0.9 can be calculated. Then, τ can be estimated by
the following equation:

where i and j are any integers. Consequently, model
parameters for group B can be estimated by conducting
the following procedures:

(1) Calculate R2(x) at x ) 0.5 and x ) 0.9 from the
experimental step response, and determine ú or η from
Figure 7 or from eq 18 or 19.

and

(2) Calculate τ (or τ1) as follows:

where th0.3, th0.5, th0.7, and th0.9 are given in eq 12 or eq 13.
(3) Estimate θ as

An illustration of the above algorithm is given in
example B.

Example B. Consider the following two processes:

The step responses, as shown in Figure 8, are nonoscil-
latory. Also, there are neither overshoots nor inverse
responses in those responses. Some important values
related to the identification and the resulting model
parameters are given in Table 4. The predicted step
responses for each of the models compared with those
from the real process are shown in Figure 8.

The example in part c is used for comparison with
the method of Kwak et al.6 According to their work, the
high-order model for part c is

In their work, this high-order model is used to provide
the required frequency response data for finding a
reduced second-order model. This reduced model for
approximation is

which is to be compared with the model from the
proposed method

Table 4. Simulation Results for Example B

(a) (b) (c)

process 1/(s+1)5 e-0.5s/(2s+1)(s+1)(1/2s+1) e-0.2s/(s+1)3

t0.3, t0.5 3.63, 4.67 2.75, 3.48 2.11, 2.87
t0.7, t0.9 5.89, 7.99 4.67, 7.01 3.82, 5.52
M∞ 5.00 4.00 3.20
R1(0.7), R1(0.9) 1.18, 1.72 1.31, 1.95 1.24, 1.81
R2(0.5), R2(0.9) 1.32, -0.42 1.57, -0.29 1.43, -0.36
ú or η 0.85 0.74 0.92
τ 2.02 1.80 1.41
θ 1.53 0.86 0.61
resulting model e-1.53s/(4.08s2+3.43s+1) e-0.86s/(1.80s+1)(1.33s+1) e-0.61s/(1.99s2+2.59s+1)

(1) for model I (ú < 1)

R2(0.5) ) -3.1623 + 9.3343ú - 5.7804ú2 + 1.1588ú3

R2(0.9) ) -6.1991 + 14.6087ú - 12.1250ú2 +

3.4080ú3 (18)

(2) for model II (ú g 1)

R2(0.5) ) 1.9108 + 0.2275η - 5.5504η2 +

12.8123η3 - 11.8164η4 + 3.9735η5

R2(0.9) ) -0.1871 + 0.0736η - 1.2329η2 +

2.1814η3 - 1.5317η4 + 0.3937η5 (19)

τ )
tx,i - tx,j

thx,i - thx,j

(20)

ú )
ú0.5 + ú0.9

2
(21)

η )
η0.5 + η0.9

2
(22)

τ ) 1
3[t0.9 - t0.7

th0.9 - th0.7

+
t0.7 - t0.5

th0.7 - th0.5

+
t0.5 - t0.3

th0.5 - th0.3
] (23)

θ )
t0.9 + t0.7 + t0.5 + t0.3

4
-

th0.9 + th0.7 + th0.5 + th0.3

4
(24)

Figure 8. Step responses of example B.

Gp(s) ) { 1
(s + 1)5 (a)

e-0.5s

(2s + 1)(s + 1)(12s + 1) (b)

e-0.2s

(s + 1)3 (c)

G(s) )
0.00002s4 - 0.0007s3 + 0.0144s2 - 0.1764s + 1

-0.0007s3 + 0.0317s4 + 1.0986s3 + 3.1005s2 + 3.0325s + 1

G(s) ) e-0.60s

2.10s2 + 2.61s + 1
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Figure 8 shows that both models fit the step response
equally well.

3.3. Algorithm C for Nonoscillatory Step Re-
sponse withOvershoot. The step responses of this
category can result from a dynamic system of model I
or model II with an LHP zero.

As before, according to R1(x) values and Figure 1, the
status of ú can be identified at the very beginning. Thus,
the estimation procedure is divided into two parts: one
for ú g 1 and one for ú < 1.

In the following, let tp (or thp) designate the duration
of time (or the normalized time) that is required for the
output of the system to reach its maximum. Also, let tR
(or thR) designate that for rising time of the output. To
derive algorithm C, we need expressions for thp and thR.
We also need some expressions for yj and Mh at these time
instants. These expressions are given below.

The proofs of this property can be found in the Ap-
pendix.

With all of the aforementioned results, the estimation
of the parameters for this class of step responses can
be conducted by the following procedures.

(1) For model I (ú < 1)
(a) It can be shown that, for an underdamped system,

the following equalities hold:

and

Thus, from the measured values tp, tR, Mp, MR, M, and,
yp, the values of ú and τ can be estimated from the
following equations:

and

(b) The estimate of aj is thus obtained from the
solution of the following equation:

(c) Having obtained these values, the dead time, θ,
can be calculated as

Proofs of the above equations are given in the Appendix.
(2) For model II (ú g 1):
(a) to estimate η and τ, we use the following equations:

and

From the measured quantities Mp, M∞, tp, tR, and yjp,
we can calculate η and τ from the above two equations.

(b) The value of aj can be solved from the following
equation:

so that a becomes a ) τ aj.

G(s) ) e-0.61s

1.99s2 + 2.57s + 1

(1) Useful results concerning thp, yj(thp), thR, and yj(thR):

(a) for step response from model I

thp ) 1

x1 - ú2
[π + tan-1(ajx1 - ú2

ajú - 1 )] (25)

yjp ) 1 + (x1 - 2ajú + aj2)e-úthp (26)

thR ) 1
1 - ú2

tan-1(x1 - ú2

aj - ú ) (27)

(b) for step response from model II

thp (or thm) ) ln 1 - aj
1 - yjp

) η
η - 1

ln
η(1 - aj)

η - aj
(28)

yjp (or yjm) ) 1 - (1 - aj)[η(1 - aj)
η - aj ]η/η-1

(29)

thR ) ( η
η - 1) ln(1 - aj

η - aj) (30)

(2) Useful results concerning Mh (th) at thp and thR:

(a) for underdamped systems

Mh (thp) ) 2ú(yjp - 1) + Mh ∞ (31)

where

Mh ∞ ) lim
thf∞

Mh (th) ) 2ú - aj (32)

(b) for overdamped systems

Mh (thp) ) (η + 1)(aj - 1)e-thp + Mh ∞ (33)

where

Mh ∞ ) lim
thf∞

Mh (th) ) 1 + η - aj (34)

thp - thR ) 1
ú

ln(2ú
Mh R - Mh ∞

Mh p - Mh ∞
) (35)

Mh p - Mh ∞ ) 2ú(yjp - 1) (36)

tp - tR

Mp - M∞
)

1
ú
ln(2ú

MR - M∞

Mp - M∞
)

2ú(yjp - 1)
(37)

τ )
Mp - M∞

2ú(yjp - 1)
(38)

tp - tR

τ
) (- 1

ú
ln

yjp - 1

x1 - 2ajú + aj2) -

[ 1

x1 - ú2
tan-1(x1 - ú2

aj - ú )] (39)

θ ) 1
2{[tp + τ

ú
ln

yjp - 1

x1 - 2ajú + aj2] + [M∞ - (2ú + aj)τ]}
(40)

tp - tR

Mp - M∞
)

ln[(η + 1)
MR - M∞

Mp - M∞]
(η + 1)(yjp - 1)

(41)

τ )
Mp - M∞

(η + 1)(yp - 1)
(42)

tp - tR

τ
) ln( 1 - aj

1 - yjp
) - ( η

η - 1) ln (1 - aj
η - aj) (43)
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(c) The dead time, θ, can be estimated as

Notably, the nonlinear algebraic equations (such as eqs
37, 39, 41, and 43 can be solved by using any simple
strategy for a one-dimensional search.

In addition to the estimations described above, un-
derdamped systems that have very small decay ratios
(say, less than 0.05) will give step responses that could
be classified into this category. Thus, when the over-
shoot is less than 20%, an alternative modeling proce-
dure can be taken as follows:

(1) Estimate the damping factor as

(2) Compute tx values for x ) 0.3, 0.5, 0.7, and 0.9
according to eq 12

(3) Estimate τ with eq 23.
(4) Estimate θ with eq 24.
An illustration of algorithm C is provided in example

C.
Example C. Consider the following two processes:

The step responses of the processes, as well as those
of the models, are shown in Figure 9. Notice that, in
part a of the example, the response has a small
overshoot of 0.12, which corresponds to a decay ratio of
0.014. Thus, the feasible model is taken as model I with
a ) 0. Parameters are thus estimated according to the
algorithm just mentioned above. Details of the results
are shown in the Table 5. The good fit between the
process and the model is also shown in Figure 9.

3.4. Algorithm D for Nonoscillatory Step Re-
sponse with Inverse Response. The feasible model
for this category is either model I or model II with a <
0. The status of ú is identified according to the calculated
values of R1(x) at the beginning step. Thus, having this

status, the estimation procedure is divided into two
parts: one for ú g 1 and another for ú < 1. Unlike the
previous algorithm, an iterative procedure is adopted
for the estimation. The parametric estimation algorithm
goes as follows:

(1) For ú < 1
(a) At the beginning, take ú* ) 0.85 as an initial guess.
(b) The time constant, τ, is calculated using eq 31

where yjm is the lowest height of the response beneath
zero in the reverse direction.

(c) The value of aj can be solved from the equation

(d) Using the results obtained from the last two steps,
the dead time, θ, can be calculated from

where thm is the time instant when yj reaches its lowest
position in the inverse response and thc is the time
instant when yj return to zero from an inverse response.

Table 5. Simulation Results for Example C

(a) (b)

process 3s+1/(s+1)5 (5s+1)e-2s/(2s+1)(s+1)(1/2s+1)

t0.3, t0.5 1.93, 2.47 2.44, 2.62
t0.7, t0.9 3.03, 3.73 2.81, 3.01
tR, MR 4.24, 2.48 3.13, 2.62
tp, yp 6.00, 1.12 4.67, 1.51
Mp, M∞ 2.34, 2.00 2.06, 0.50
R1(0.7), R1(0.9) 1.04, 1.25 1.01, 1.10
ú or η 0.56 1.00
τ 1.37 1.52
aj - 3.22
θ 0.65 2.40
resulting model e-0.65s/(1.88s2+1.53s+1) (4.89s+1)e-2.40s/(1.52s+1)(1.52s+1)

θ ) 1
2{[tp - τ ln( 1 - aj

1 - yjp
)] + [M∞ - (1 + η - aj)τ]}

(44)

r )
yp - y∞

y∞

ú ) x (ln r)2

π2 + (ln r)2

Gp(s) ) {(3s + 1)

(s + 1)5 (a)

(5s + 1)e-2.0s

(2s + 1)(s + 1)(12s + 1) (b)

Figure 9. Step responses of example C.

τ )
Mm - M∞

2ú(yjm - 1)
(45)

- 1
ú

ln
1 - yjm

x1 - 2ajú + aj2
) 1

x1 - ú2
tan-1 ajx1 - ú2

ajú - 1
(46)

Mc - M∞

Mm - M∞
)

aj
2ú

sin(x1 - ú2 tc - θ
τ )

sin(x1 - ú2 tm - θ
τ )

e-ú(tc-tm)/τ - 2ú - aj
(2ú)(yjm - 1)

(47)
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(e) Finally, the new ú can be calculated from eq 32.

(f) Update the assumed ú, and repeat the procedure
starting from step 2 until ú converges.

(2) For ú g 1
(a) At the beginning, take θ* as an initial guess.
(b) Compute aj, τ, η, and θ according to the following

steps:

(c) Update the assumed θ with the new value, and
repeat the procedure starting from step 2 until θ
converges.

In example D, an illustration of algorithm D for
identification is provided.

Example D. Consider the following two processes:

The step responses of the parts of this example are
shown in Figure 10, and the estimation results are given

in Table 6.

4. Remarks on Results

The modeling of step responses with models I and II
has been described in the above sections. In fact, these
identified models have reduced dynamic orders and are
treated as approximations to the real processes. Because
of the use of step input for exciting dynamic modes and
the use of reduced-order models, a few points regarding
the results of this identification are required.

(1) In all cases, the fitting to the transient step
responses resulting from the identified models is re-
markable.

(2) In addition to the good fit to the step responses,
justification for the resulting models can have different
views. For control design, the capability of the model
in predicting the ultimate gain and the ultimate fre-
quency is a major concern. For this, the estimated and
true values of the ultimate properties for all four of the
examples are given in Table 7. Feasible prediction
regions in terms of frequencies are also given to
emphasize the regions in which the prediction errors
will be less than 10% of their true values.

Table 6. Simulation Results for Example D

(a) (b)

process -2s+1/(s+1)5 (-2s+1)e-0.5s/(2s+1)(s+1)(1/2s+1)

t0.3, t0.5 5.37, 6.24 4.17, 4.98
t0.7, t0.9 7.35, 9.34 6.12, 8.41
tc, Mc 4.10, 4.43 3.16, 3.59
tm, ym 2.67, -0.16 1.79, -0.27
Mm, M∞ 2.85, 7.00 1.99, 6.00
R1(0.7), R1(0.9) 1.27, 1.81 1.40, 2.02
ú or η 0.88 0.70
τ 2.03 1.86
aj -0.91 -1.10
θ 1.60 0.84
resulting model (-1.85s+1)e-1.60s/(4.12s2+3.57s+1) (-2.05s+1)e-0.84s/(1.86s+1)(1.30s+1)

ú )
M∞ - θ + ajτ

2τ
(48)

(i) for zero time constant, a

a )
Mm - M∞

yjm - 1
- (M∞ - θ) (49)

(ii) the time constant τ

tm - θ
τ

) ln( 1 - a
τ

1 - yjm
) (50)

(iii) the parameter η

η )
Mh m - M∞

yjm - 1
- 1 (51)

(iv) a new value of θ

θ ) tc + τ ln(Mh c - Mh ∞ + η
aj - 1 ) (52)

Gp(s) ) {(-2s + 1)

(s + 1)5 (a)

(-2s + 1)e-0.5s

(2s + 1)(s + 1)(12s + 1) (b)

Figure 10. Step responses of example D.

Table 7. Estimated Ultimate Properties of the Examples

Ku ωc

example
true

value estimated
true

value estimated

feasible
region for
prediction

A (a) 1.059 1.117 0.577 0.592 ω e 1.07
(b) 0.747 0.711 0.624 0.628 ω e 0.82
(c) 0.657 0.678 0.367 0.366 ω e 1.12

B (a) 2.885 2.795 0.727 0.735 ω e 0.85
(b) 4.524 4.342 1.168 1.175 ω e 1.51
(c) 5.152 4.851 1.408 1.437 ω e 1.45

C (a) 2.635 2.632 1.234 1.229 ω e 1.69
(b) 0.713 0.675 1.051 1.043 ω e 1.43

D (a) 1.245 1.314 0.508 0.502 ω e 0.99
(b) 1.278 1.253 0.681 0.679 ω e 1.45
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(3) The predictions of the phases in each of the
examples are very close to their true values. Thus, all
of the examples give predicted ultimate frequencies with
reasonable accuracy (see Table 7).

(4) Nevertheless, good prediction of the amplitude
ratio is limited to a low-frequency region (see Table 7).
This limitation is common to any modeling or identifica-
tion methods that uses reduced-order approximations
and is mainly caused by the reduction of the dynamic
order. In the low-frequency region, the accuracy of the
predictions from the model is reasonably good. For the
high-frequency region, however, the accuracy degrades
as the frequency increases.

(5) The use of the model structure and the magnitude
of the dead time also affect the width of the reasonable
prediction region. For the former, it happens in the cases
when models with or without an LHP zero are all
feasible. In general, models with LHP zeros have a
better fit to the step response and a narrower region of
accurate prediction. The controllers thus designed will
have more conservative gains. The decision on which
model to use should be made according to the usage of
the models.

5. Conclusions

In this paper, we present a system of complete
procedures for identifying dynamic models in terms of
simple models of eq 1 for general dynamic systems.
Dynamic step responses are classified into four groups.
The type of model to be used is identified with a defined
index, which determines the status of a key parameter
in the second-order dynamics. Algorithms for estimating
the parameters in the chosen model are then derived
according to the step response of each type of model.

To start the procedures, there is no need to presume
the model structure to be used. The estimation does not
use least squares and is to be performed after a complete
set of step response data has been collected. Because of
the progress in computer software, the proposed proce-
dures provide a possibility of developing automation for
identification. The key parts of the software for this
automation would be the development of programs to
do the following:

(1) characterize the step responses with specific time
instants, peaks, valleys, oscillations or nonoscillations,
inverse or monotonic responses, etc.

(2) map the calculated R1(0.7) and R1(0.9) values to
the diagram in Figure 2 and return the value of the
damping factor ú

(3) classify a dynamic response according to the
flowchart in Figure 1

(4) project the value of ú or η using Figure 6 to obtain
thx

(5) collect the items and compute the required quanti-
ties that are needed for estimations in each different
class of dynamics

(6) perform, step-by-step, the estimation algorithms
of that class

The resulting models would be useful for the applica-
tions of advanced control, such as tuning advanced PID
controllers, tuning PID controllers in cascaded loop or
in multi-loop systems, etc.

Appendix

I. Proof of Lemma 1. From eq 3, the angular velocity

of the response in terms of th is ωj ) x1-ú2, so that

Thus, the period of oscillation becomes

By differentiating eq 3, we also have

By setting this first derivative to zero, we have the
extreme points at thn

/ satisfying the equation

or

Thus, we have

and

and

Thus, it is obvious that eq A-I-8 equals eq A-I-9 if and
only if aj equals zero.

II. Derivations for Eqs 26-30. (1) For eq 26, by
substituting eq A-I-6 into eq 3, we have

Q.E.D.

ω ) ωj
τ

)
x1 - ú2

τ
(A-I-1)

P ) 2π τ

x1 - ú2
(A-I-2)

dyj(th)
dth

)

[( 1 - ajú

x1 - ú2) sin(x1 - ú2th) + aj cos(x1 - ú2th)]e-úth

(A-I-3)

sin(x1 - ú2thn
/)

cos(x1 - ú2thn
/)

) tan(x1 - ú2thn
/) ) ajx1 - ú2

ajú - 1
(A-I-4)

thn
/ ) 1

x1 - ú2
[nπ + tan-1(ajx1 - ú2

ajú - 1 )] for

n ) 1, 2, ... (A-I-5)

thp,i ) 1

x1 - ú2
[(2i - 1)π + tan-1(ajx1 - ú2

ajú - 1 )] for

i ) 1, 2, ... (A-I-6)

thm,i ) 1

x1 - ú2
[2iπ + tan-1(ajx1 - ú2

ajú - 1 )] for

i ) 1, 2, ... (A-I-7)

tp,1 - θ ) τ

x1 - ú2
[π + tan-1(ajx1 - ú2

ajú - 1 )] (A-I-8)

tp,2 - tm,1 ) πτ

x1 - ú2
) P

2
) tp,i - tm,i-1 for i g 2

(A-I-9)

yjp )

1 - [( ú - aj

x1 - ú2) sin(x1 - ú2thp) + cos(x1 - ú2thp)]e-úthp

) 1 + (x1 - 2ajú + aj2)e-úthp (A-II-1)
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(2) For eq 27, at th ) thR, yj(thR) ) 1; thus

so that

and

Q.E.D.
(3) For eq 28, from eq 3, we have

so that

and

Q.E.D.
(4) For eq 29, by substituting eq A-II-7 into eq 3, eq

29 results, i.e.

Q.E.D.
(5) For eq 30, at th ) thR, yj(thR) ) 1; thus

so that

and

Q.E.D.

III. Derivations for Eqs 31, 33, and 35. (1) For eq
31

where

When th ) thp, we have

Q.E.D.
(2) For eq 33

where

When th ) thp, we have

Q.E.D.
(3) For eq 35

yj(thR) )

1 - [( ú - aj

x1 - ú2) sin(x1 - ú2thR) + cos(x1 - ú2thR)]e-úthR

(A-II-2)

sin(x1 - ú2thR)

cos(x1 - ú2thR)
) tan(x1 - ú2thR) )

x1 - ú2

aj - ú
(A-II-3)

thR ) 1

x1 - ú2
tan-1(x1 - ú2

aj - ú ) (A-II-4)

dyj(th)

dth |
th)thp

) (1 - aj
1 - η)e-thp + 1

η(η - aj
η - 1)e-thp/η

) 0 (A-II-5)

(1 - aj
1 - η)e-thp ) 1

η(η - aj
1 - η)e-thp/η (A-II-6)

thp ) η
η - 1

ln
η(1 - aj)

η - aj
(A-II-7)

yjp ) 1 - (1 - aj
1 - η)e-thp - (η - aj

η - 1)e-thp/η

) 1 - (1 - aj)e-thp

) 1 - (1 - aj)[η(1 - aj)
η - aj ]η/(η-1)

(A-II-8)

yj(thR) ) 1 - (1 - aj
1 - η)e-thR - (η - aj

η - 1)e-thR/η

) 1 (A-II-9)

(1 - aj
1 - η)e-thR ) (η - aj

1 - η)e-thR/η (A-II-10)

thR ) ( η
η - 1) ln(1 - aj

η - aj) (A-II-11)

Mh (th) )
M(t) - θ

τ

) ∫0

th
[1 - yj(th)] dth

) ∫0

th[( ú - aj

x1 - ú2) sin(x1 - ú2th)e-úth +

cos(x1 - ú2th)e-úth] dth

) [(1 + úaj - 2ú2

x1 - ú2 ) sin(x1 - ú2th) -

(2ú - aj) cos(x1 - ú2th)]e-úth + Mh ∞ (A-III-1)

Mh ∞ ) lim
thf∞

Mh (th) ) 2ú - aj (A-III-2)

Mh (thp) ) 2ú(yjp - 1) (A-III-3)

Mh (th) )
M(t) - θ

τ

) ∫0

th
[1 - yj(th)] dt

) ∫0

th[(1 - aj
1 - η)e-th + (η - aj

η - 1)e-th/η] dth

) - (1 - aj
1 - η)e-th - η(η - aj

η - 1)e-th/η + Mh ∞ (A-III-4)

Mh ∞ ) lim
thf∞

Mh (th) ) 1 + η - aj (A-III-5)

Mh p ) ∫0

thp[1 - yj(th)] dth ) (η + 1)(yjp - 1) + Mh ∞

(A-III-6)

Mh R - Mh ∞

Mh p - Mh ∞

)
(x1 - 2ajú + aj2)e-úthR

(2ú)(yjp - 1)
(A-III-7)
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so that

As a result, by substituting eq A-II-4 into eq A-III-8,
we have

so that

Q.E.D.
IV. Derivations for eq 47. From eq 3, we have

so that

As a result, by substituting eq A-IV-2 into eq A-III-2
and letting th ) thc, we have

There also exists some time tm such that dy(t)/dt|t)tm )
0. Then, the following relations hold:

and

From eq A-IV-3 and eq A-IV-5, we have

As a result, by substituting eq A-IV-4 into eq A-IV-6,
we have

Q.E.D.
V. Derivations for Eq 52. From eq 3, we have

so that

As a result, by substituting eq A-V-2 into eq A-III-5 and
letting th ) thc, we have

There also exists time tm such that dy(t)/dt|t)tm ) 0. Then

Thus, according to the definition of thm, eq 50 results and

Then

Q.E.D.
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