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Identification of Block-Oriented Nonlinear Processes Using
Designed Relay Feedback Tests

Jyh-Cheng Jeng,† Ming-Wei Lee,‡ and Hsiao-Ping Huang*,†

Department of Chemical Engineering, National Taiwan University,
Taipei, Taiwan 106, Republic of China, and Center for Environmental, Safety and Health Technology
Development, Industrial Technology Research Institute, Building 51, 195-10 Section 4, Chung Hsing Road,
Chutung, Hsinchu, Taiwan 310, Republic of China

A systematic approach to identifying Hammerstein and Wiener models, including the model
structure and parameters, for nonlinear processes is presented. A sequence of predesigned relay
magnitude changes is applied in a relay feedback experiment to generate dynamic response for
identification. By way of this proposed approach, the identifications of linear and nonlinear
elements in the block-oriented models are fully separated and the needs for iterative optimization
procedures can be relaxed. With the nonlinear models obtained, nonlinear control strategies
are developed to achieve a better control performance. The effectiveness of the proposed
identification method and control strategy is demonstrated with simulated examples.

1. Introduction

Many chemical processes have nonlinear dynamics
that can be represented by block-oriented nonlinear
models.1 These block-oriented models are composed of
linear dynamics and nonlinear static functions as blocks
in series. The Wiener and Hammerstein models, as
shown in Figure 1, are the most popular ones in this
class. The Wiener model has a linear dynamic element
preceding the nonlinear static element, while the Ham-
merstein model has a configuration in a reverse order.
Because of the increasing popularity and the need for
control applications, in past years, a considerable amount
of research has been published on the identification of
such models. For example, regarding the Weiner pro-
cess, Bai2 proposed a frequency-domain identification
approach by activating the process with a series of
sinusoidal inputs that have different frequencies. Vörös3

used uniformly distributed random inputs as excitations
to the process and a two-segment polynomial for model-
ing the static nonlinearity. He also presented an itera-
tive method with an internal variable to estimate the
model parameters. Sung4 used a specially designed test
signal consisting of binary and multistep signals to
excite a dynamic Hammerstein system and identify the
linear dynamic subsystem and nonlinear static function
therein. Bai5 adopted the same test signals as those of
Bai2 for frequency-domain identification of the Ham-
merstein process. Notice that the excitations of the
process in the aforementioned works are conducted
under open loop.

On the other hand, because experiments using relay
feedback for excitation can be conducted under closed
loop, the autotuning experiments of Åström and Häg-
glund6 have been adopted for the identification of linear
and nonlinear Wiener or Hammerstein models. Huang
et al.7 presented an online adjustable block in a relay
feedback loop to identify the static nonlinear part of a

Wiener model. However, the functional form of this
block must be given in advance. Authors such as Luyben
and Eskiant8 and Balestrino et al.9 identified the
Hammerstein process by adjusting the relay output to
produce symmetrical oscillations. The experiment is
conducted in a trial-and-error manner so that the relay
feedback experiment has to be repeated with different
relays in order to obtain enough equations for identifi-
cation. Recently, Sung and Lee10 proposed a specially
designed relay experiment to identify the Wiener pro-
cess. The relay excitation covers the whole region of the
nonlinear function, whereas the information obtained
for the linear element is only the ultimate data. Park
et al.11 also presented a relay feedback approach for the
identification of the Hammerstein process, but an
additional triangular-type input test is required subse-
quently.

Most of these methods mentioned assume that the
model structure has been determined a priori. There-
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Figure 1. Two types of block-oriented nonlinear processes: (a)
Wiener-type process; (b) Hammerstein-type process.
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fore, only algorithms for parameter estimation were
emphasized. These algorithms are a bit different from
each other according to the type of process being
identified. Thus, a reasonable procedure for identifica-
tion is to identify the structure of the model in the first
step and choose the appropriate algorithm for parameter
estimation in the next.

In this paper, a system of procedures for identifying
block-oriented nonlinear models is presented. These
procedures include the design of relay experiments and
the identification of the model structure and parameters
therein. As a first step, the type of model selected is
based on an important feature of the response from a
relay feedback test. Then, for parameter estimation, a
relay feedback experiment is designed accordingly. The
static nonlinearity of the proposed model is represented
by an invertible function defined on an operation range.
After a constant cycle has achieved peak values between
the switches of relay, the parameters in this function
are determined by a simple least-squares procedure that
aims to find coefficients that “best fit” the static
nonlinear function to the data obtained from the de-
signed relay experiment. On the basis of the nonlinear
function identified, a simple transfer function of the
linear subsystem represented by an FOPDT or SOPDT
model is determined using the frequency-domain method.
By way of this approach, identification of the linear and
nonlinear parts is separated in sequence and can be
done without any iterative procedure. To demonstrate
the advantages of the proposed method, numerical
examples and nonlinear control systems based on the
identified models have been simulated.

2. Identification of the Model Structure

The models in block-oriented form most used for
representing the nonlinear processes are the Wiener and
Hammerstein types, as shown in Figure 1. Both of them
comprise a static nonlinearity N(‚) and a linear dynamic
subsystem Gp(s), but the order of these components is
different. In Figure 1, u and y denote the process input
and output, respectively, which are known or measur-
able, whereas the internal signal, v, is not measurable.
In this paper, the static nonlinear function is assumed
to be monotonic, crossing the origin and, hence, invert-
ible. Besides, the linear dynamic subsystem is assumed
to be open-loop stable.

For the modeling of block-oriented nonlinear pro-
cesses, identification of the model structure is the first
step because parameter estimation in the next step
counts on the model structure being identified. Several
researchers have studied the identification of the model
structure,1,12-14 but they have different levels of com-
plexity in computation.

In general, it is desirable that experimental data
obtained at the stage of structure identification can also
be used for parameter estimations so that no extra tests
are required. The relay feedback test, as shown in
Figure 2a, is suitable for this purpose. The relay output
(ur) is given according to the sign of the error (e) as
follows:

The relay is called a symmetric relay if h+ ) |h-|;
otherwise, it is called an asymmetric relay. From the
relay feedback test, two parameters are normally ob-

tained. One is the amplitude of the periodic output
curve, and the other is the period. T+ (or T-) and a+ (or
a-) are the time period and maximum amplitude,
respectively, in a constant cycle, during which the
system has positive (or negative) output. If the process
in this relay feedback loop is a linear one, symmetric
output cycles with T+ ) T- and a+ ) a- will be observed.
However, with the existence of static nonlinearity in a
nonlinear process, the symmetry in the output of the
relay and the system disappears. With different se-
quences of blocks in a nonlinear model, the features of
the output cycles differ. Huang et al.15 presented a
strategy for selecting a feasible model structure based
on the observed outputs from a symmetric relay feed-
back test. Table 1 summarizes the important features
of the output curve from linear, Wiener, and Hammer-
stein systems. On the basis of the results as shown in
Table 1, the feasible model structure of the nonlinear
dynamic system can be identified. After the model
structure has been determined, estimation of the pa-
rameters can then proceed.

Although the identification of the model structures
is derived from the dynamic behavior of the Wiener and
Hammerstein processes, it may apply to Wiener-
Hammerstein-type or Hammerstein-Wiener-type pro-
cesses within a little more conservative range.

3. Parameter Estimations of Nonlinear
Processes

The proposed procedures for parameter estimations
of nonlinear processes apply to a class of processes with
monotonic and static nonlinear function. They consist
of two steps. Because this proposed method will be
focused on their application to control, especially for
proportional-integral-derivative (PID; linear or non-
linear) systems, the linear model structure adopted for
identification will be confined to transfer functions of
FOPDT or SOPDT. First, to identify the static nonlinear
function, the relay feedback test of the nonlinear process

ur(t) ) {h+ > 0 e(t) > 0
h- < 0 e(t) < 0

(1)

Figure 2. (a) Relay feedback experiment for structure identifica-
tion of the nonlinear process and parameter estimation of the
Wiener-type process. (b) Relay feedback experiment for parameter
estimation of the Hammerstein-type process.

Table 1. Features of the Response in the Symmetric
Relay Feedback Test

linear
process

Wiener-type
process

Hammerstein-type
process

period T+ ) T- T+ ) T- T+ * T-
amplitude a+ ) a- a+ * a- a+ * a-
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is conducted, where the outputs of relay are sequentially
assigned to have different magnitudes. Then, a linear
model of FOPDT or of SOPDT will be identified by
making use of frequency analysis of the resulting cycling
responses. One of the particular reasons for using the
frequency-domain method is that it estimates the
ultimate frequency better than other time-domain meth-
ods, especially when a low-order model is the goal. The
details of identification procedures for these two types
of models will be described in the following.

3.1. Identification Procedures for the Wiener-
Type Model. If a Wiener-type model is identified to be
appropriate for a nonlinear process, the remaining work
is to estimate the parameters in the model. Toward this
purpose, the relay feedback experiment is conducted in
two periods of time. In the first period of time, desig-
nated as Ω1 in Figure 3, a sequence of different
magnitude levels of symmetric relay outputs are used.
Each level of magnitude is applied over two or three or
more cycles and is switched to another level and so on.
At this stage, the maximum and minimum values of the
constant cycles for each different level of relay output
are recorded. In the second period of time, designated
as Ω2, the relay becomes slightly asymmetric and the
system outputs in one constant cycle are collected. The
entire input and output responses of such an experiment
are as shown in Figure 3.

After completion of the experiment, the static non-
linear function is estimated by a nonlinear curve-fitting
procedure using data generated from stage Ω1. When
the static nonlinearity is finished, the internal variable
v(t) is reconstructed through an inverse function of the
obtained nonlinear function. Also, a linear model of
FOPDT or SOPDT is identified using u(t) and v(t) in
the time period of Ω2 as the input and output of the
linear subsystem, respectively. The details of the iden-
tification procedures are given as follows.

3.1.1. Identification of a Static Nonlinear Func-
tion. Assume that h+,i and h-,i are the relay outputs,
which are symmetric (h+,i ) |h-,i| ) hi) in the period of
Ω1. For the Wiener-type process, the relay shifts syn-
chronically with v(t), which is proportional in magnitude
to the magnitude of the relay output being applied when

a stable limit cycle is achieved. Thus, the following
results can be found in each designed magnitude of the
relay signals:

where v+,i and v-,i represent the maximum and mini-
mum of v(t), respectively, in one constant cycle. Notice
that v+,i ) |v-,i| ) vi.

It is important to note that, in the block-oriented
nonlinear models such as the Wiener one, any two [Gp-
(s)/R, N(R)] pairs with different values of R (R * 0) are
essentially equivalent. To make the identification con-
sistent and unique, when a proper R is chosen, the value
of v1 can be taken as 1. With this assumption and the
relations in eq 2, although being unmeasurable, the
maximum and minimum values of v(t) can be implied
by the relay magnitude being applied.

The static nonlinearity [N(‚)] then maps the internal
variables v+,i and v-,i to y+,i and y-,i, respectively, where
y+,i and y-,i are the maximum and minimum values of
system output y(t). That is, for each designed relay
signal, we have

As a result, for each relay magnitude (i.e., for each i),
two points, (h+,i/h1, y+,i) and (h-,i/h1, y-,i), on the N(‚)
curve can be obtained.

After all of the data sets of (h+,i/h1, y+,i) and (h-,i/h1,
y-,i), i ) 1, 2, ..., I, are collected, the nonlinear static
function is identified to correlate these data sets by
linear regression. Let θ be the parameter vector of the
nonlinear static function to be determined, i.e., y )
N̂(v;θ). Usually, this function is a polynomial and θ
consists of its coefficients of different orders. Thus, the

Figure 3. Response of the relay feedback experiment for identification of the Wiener-type process.

h+,i

h+,1
)

v+,i

v+,1
or

h+,i

h1
)

v+,i

v1

h-,i

h-,1
)

v-,i

v-,1
or

h-,i

h1
)

v-,i

v1
(2)

y+,i ) N(v+,i) ) N(h+,i/h1)

y-,i ) N(v-,i) ) N(h-,i/h1) (3)
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identification problem for the static nonlinearity is
formulated as the following curve-fitting problem:

Notice that a standard least-squares software routine
can be used to solve this above problem. At the same
time, the inverse function of the static nonlinearity,
N̂-1(‚), can also be found using the same data set in
reverse order. This inverse function will be used in the
next step to identify the dynamic linear subsystem.
More importantly, the inverse function is very useful
for the nonlinear controller design.

3.1.2. Identification of a Dynamic Linear Sub-
system. Because the inverse function of the static
nonlinearity of the process has been identified, the
unmeasurable internal signal can be reconstructed from
v̂(t) ) N̂-1[y(t)]. As a result, by taking v̂(t) as the system
output, identification of a linear subsystem in a Wiener
model is the same as that of a linear system in a relay
feedback test.

The data collected in the period of Ω2, where the relay
output is asymmetric, are used in this step. The asym-
metric relay employed has two main purposes. One is
to compute the steady-state gain of the linear sub-
system, and the other one is to classify the model
structure of this linear subsystem.

When the system at stage Ω2 exhibits constant cycles
with period Pr, from the dc components of the input and
output of the linear subsystem, i.e., ur(t) and v̂(t), the
steady-state gain of Gp(s) can be computed as

Also, the frequency responses of Gp(s) at certain nonzero
frequencies can be estimated from the coefficients of
Fourier series expansion of ur(t) and v̂(t) as

where ωr ) 2π/Pr. So far, the steady-state gain and
frequency response, at the frequency nωr, of Gp(s) have
been estimated. Next, a transfer function model for the
linear subsystem is to be identified. The models con-
sidered for this identification are confined to being of
FOPDT or SOPDT. This is because these two types of
models resemble most dynamic behaviors of real pro-
cesses. Model structures between these two are deter-
mined along with the estimation of the parameters in
that model being considered. The procedures of the
identification of such a linear model are described as
follows.

(i) Model Structure Identification. For a truly
first-order process, its dead time is equal to the time
period from v̂ ) 0 to when v̂ reaches a peak (designated
as Π+) or that from v̂ ) 0 to when v̂ reaches a valley
(designated as Π-), in an asymmetric relay feedback
test. Otherwise, for a higher-order process, Π+ will not

be equal to Π-. Accordingly, a simple criterion to
validate if a FOPDT model is adequate for representing
the linear subsystem is to check if Π+/Π- is close enough
to 1. This criterion can be written as

where ε is an arbitrarily small value as the tolerance
for estimation error. When a proper value is given to ε,
eq 7 is used to justify the adequacy of a FOPDT model.
If eq 7 is not satisfied, the linear subsystem would be
identified as a SOPDT model.

(ii) Estimation of the FOPDT Model. Assume that
the unknown Gp(s) is represented as the following
FOPDT model:

Using the magnitude of Gp(jωr), the time constant of the
process can be directly calculated as follows:

After τ has been obtained, the dead time of the process
is then estimated by taking the average value as

(iii) Estimation of the SOPDT Model. If Gp(s) is
found suitable to be characterized by a SOPDT model,
then

The parameters a and b are estimated to minimize the
error between |Ĝp(jnωr)| and the calculated |Gp(jnωr)|
from eq 6, for n ) 1 to some specified value nc. This
optimization problem can be simply solved by a least-
squares method, and the values of a and b can be
directly estimated from the following equation:

Once the values of a and b are found, the dead time
of the process is estimated as the mean of values
obtained from the argument relation at each frequency,
i.e.

3.2. Identification Procedures for the Hammer-
stein-Type Model. For a Hammerstein-type process
in a feedback loop that has a symmetric relay controller,
the internal signal to the linear subsystem becomes
asymmetric because of the static nonlinearity block. In

θ* )

arg min
θ

∑
i

{[N̂(h+,i

h1

;θ) - y+,i]2

+ [N̂(h-,i

h1

;θ) - y-,i]2}
(4)

K )
∫t

t+Prv̂(t) dt

∫t

t+Pr ur(t) dt
(5)

Gp(jnωr) )
∫t

t+Prv̂(t) e-jnωrt dt

∫t

t+Prur(t) e-jnωrt dt
for n ) 1, 2, 3, ...

(6)

∆ ) |1 -
Π+

Π-
| e ε (7)

Ĝp(s) ) Ke-ds

τs + 1
(8)

τ ) x( K
|Gp(jωr)|)

2
- 1

ωr
2

(9)

d ) 1
3[Π+ + Π- +

arctan(-ωrτ) - ∠Gp(jωr)
ωr

] (10)

Ĝp(s) ) Ke-ds

as2 + bs + 1
(11)

a2|Gp(jnωr)|2(nωr)
4 + (b2 - 2a)|Gp(jnωr)|2(nωr)

2 )

K2 - |Gp(jnωr)|2 n ) 1, 2, ..., nc (12)

d )
1

nc
∑
n)1

nc [arctan( -bnωr

1 - anωr
2) - ∠Gp(jnωr)

nωr
] (13)
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other words, although having a symmetric input to the
Hammerstein process, the linear subsystem is es-
sentially activated by the asymmetric relay signal.
Therefore, the output of the linear subsystem will not
be symmetric with respect to the setpoint, and the
following result will be found for a linear subsystem:

where v+ [)N(h+)] and v- [)N(h-)] represent the values
of output from the nonlinear block driven by the relay.

The key to identifying the static nonlinearity in a
Hammerstein model is to have several points on the N(‚
) curve. To attain this, the following lemma9 will be
useful.

Lemma 3.1. If the relay feedback system of a Ham-
merstein-type process, as shown in Figure 2a, exhibits
a stable limit cycle and the linear element Gp(s) includes
an integrator, then the following relation holds:

where T+ and T- are the time durations in a constant
cycle during which v(t) has a value of v+ and v-,
respectively.

Accordingly, when the nonlinear process is of the
Hammerstein type after the symmetric relay feedback
test for model structure identification (designated as
stage Ω1), an additional integrator is inserted into the
feedback path of the relay feedback system, as shown
in Figure 2b. In this second stage (designated as stage
Ω2), the relay will see the linear element as if it includes
an integrator so that lemma 3.1 can be applied. Con-
sequently, a designed sequence of relay signals is used
to estimate the static nonlinearity of the process. This
sequence of relay output (i.e., h+,i and h-,i) is arranged
as follows:

(1) For i ) 1, h+,1 ) |h-,1| ) h1. This relay output is
the same as that used in model structure identification.

(2) For i ) 2, 3, ..., I1, the positive relay output is fixed,
h+,i ) h+,1, and the negative relay output h-,i is varied
for different i.

(3) For i ) I1 + 1, ..., I1 + I2, the negative relay output
is fixed, h-,i ) h-,1, and the positive relay output h+,i is
varied for different i.

Each magnitude of the relay output is applied over
two or three cycles to develop constant cycles, and then
the relay output is switched to another magnitude and
so on. The entire input and output responses of such
an experiment are as shown in Figure 4. The procedures
for the identification of nonlinear and linear blocks are
given in the following.

3.2.1. Identification of the Static Nonlinear Func-
tion. The experimental data generated in stage Ω2 are
used for identifying the nonlinear block. Let v+,i [)N(h+,i)]
and v-,i [)N(h-,i)] designate the positive and negative
values of v(t) when the relay shifts between h+,i and h-,i
in stage Ω2. Moreover, T+,i and T-,i are used to represent
the time durations in one cycle, within which v(t) and
ur(t) remain positive and negative values, respectively.
From the experimental data and applying lemma 3.1,
we have

When eq 16 is substituted into eq 18, it follows that

Again, as has been mentioned, the gains of nonlinear
and linear blocks are not unique, and any two [RN(‚),
Gp(s)/R] pairs with different values of R (R * 0) are

Figure 4. Response of the relay feedback experiment for identification of the Hammerstein-type process.
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essentially equivalent for the Hammerstein-type pro-
cess. Therefore, the value of v+,1 can be normalized to
be 1, without loss of generality. Consequently, with the
relations of eqs 16, 17, and 19, the unmeasurable signal
v(t) can be implied by the time durations between shifts
of ur(t), which is measurable. In this way, several points
of (h+,i, v+,i), i ) 1, I1 + 1, ..., I1 + I2, and (h-,i, v-,i), i )
1, 2, ..., I1, on the N(‚) curve can be obtained.

With these data sets, the static nonlinearity of the
process can be approximated by some nonlinear func-
tion. The method is similar to that for the Wiener-type
model. Let θ be the parameter vector of the nonlinear
static function to be determined, i.e., v ) N̂(u;θ). The
identification problem for the static nonlinearity is
formulated as the following curve-fitting problem:

Notice that the inverse function of the static nonlinear-
ity is not required for the following identification of the
linear subsystem. However, it can be similarly found
from the data sets if it is desired for other purposes.

3.2.2. Identification of the Linear Subsystem. For
the identification of the linear subsystem, the data of
stage Ω1 are used in this step. The procedures of the
identification for the linear subsystem of the Hammer-
stein process are the same as those described in the
Wiener process. In stage Ω1, the relay outputs are h+,1
and h-,1, which are mapped into v+,1 and v-,1, respec-
tively, through the nonlinearity. The values of v+,1
(assumed to be 1) and v-,1 have been found in the
previous step, and their durations, T+ and T-, can be
measured from ur(t). The identification of the linear
subsystem is rather straightforward. First, the steady-
state gain of the linear subsystem is computed as

where Pr ()T+ + T-) is the oscillation period in stage
Ω1. In addition, the frequency responses of Gp(s) can be
estimated as

For modeling Gp(s) as an FOPDT or SOPDT model,
the procedures are described as follows:

(1) In the beginning, the model structure of the linear
subsystem is identified by the simple criterion of eq 7.

(2) If Gp(s) can be represented by an FOPDT model,
compute τ with eq 9 and estimate d with eq 10.

(3) If Gp(s) has to be modeled as an SOPDT model,
estimate a and b with eq 12 through a least-squares
method and estimate d with eq 13.

Remarks.
(1) The relay signal is designed before the parameter

estimations so that no online adaptation of the relay
output is required. Performing the relay feedback test
in this way for identification will be more convenient
than trial with displacing the relay online.

(2) For the Wiener process, in stage Ω1, the number
of data points on the N(‚) curve can be obtained is 2I (I
for positive input and I for negative input) if the relay
outputs are designed as I different magnitudes. For the
Hammerstein process, in stage Ω2, the number of data
points on the N(‚) curve can be obtained is I1 + I2 + 1
(I2 + 1 for positive input and I1 for negative input) if
the relay outputs are designed as I1 + I2 different
magnitudes. With more data points obtained, better
accuracy can be achieved. Thus, tradeoff is necessary
between the accuracy of identification and the experi-
mental time.

(3) The duration of the experiment depends on the
nonlinearity of the static function and the dynamics of
the process because it is closely related to the poly-
nomial for representing the nonlinearity. Fortunately,
for simple monotonic static functions, a low-order
polynomial provides feasibility for curve fitting. Thus,
the duration of the experiment can be essentially
reduced to the time it takes for a few more constant
cycles rather than the time it takes for linear systems.

(4) The magnitude of the relay experiment is another
issue. The most important issue is to let the nonlinear
variable involved cover the possible operating range so
that no extrapolation to the nonlinear static model will
be needed for practical implementations.

3.3. Adaptation to Measurement Noises. It is
enviable that measured output will accompany some
noises. For small noises, the data used for identification
can be taken as the average values of the measurements
from several constant cycles. Therefore, the results from
the proposed identification method would not be too
sensitive to weak noises. For strong noises, the mea-
sured signals need to be pretreated by a filter to reduce
the effect of measurement noises. During the relay
feedback experiment, the input to the process consists
of only periodic pulses. As a result, the output signals
from the process will also be periodic within the same
frequency range. Without distortions of the major output
signal content during filtering, the wavelet transform
is one of the most efficient methods recommended for
this purpose. Wavelets are a family of basis functions,
well localized in both time and frequency domains.
Because of their local character, the representation of
a signal in the wavelet domain is sparse and allows
signal compression and denoising. The procedures of the
signal denoising are (1) decomposition of the signal into
different frequency bands, (2) thresholding (elimination
of small coefficients), and (3) reconstruction of the
signal.

The wavelets used in the following simulation work
are the discrete Meyer wavelets. After the measure-
ments are denoised, the identification procedures can
then be applied.

4. Illustrative Examples for Identification and
Control

In the following section, the identification together
with the controller design will be demonstrated. Once
the model of the block-oriented nonlinear process is

θ* ) arg min
θ

{∑
i

[N̂(h+,i;θ) - v+,i]
2 +

∑
i

[N̂(h-,i;θ) - v-,i]
2} (20)

K )
∫t

t+Pry(t) dt

∫t

t+Pr v̂(t) dt
)

∫t

t+Pry(t) dt

v+,1T+ + v-,1T-
)

∫t

t+Pry(t) dt

T+ + v-,1T-

(21)

Gp(jnωr) )
∫t

t+Pry(t) e-jnωrt dt

∫t

t+Prv̂(t) e-jnωrt dt
)

∫t

t+Pry(t) e-jnωrt dt

∫t

t+T+e-jnωrt dt + v-,1∫t+T+

t+Pre-jnωrt dt

for n ) 1, 2, 3, ... (22)
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obtained, a control system can be designed accordingly.
The control strategies are shown in parts a and b of
Figure 5 for the Wiener and Hammerstein processes,
respectively. In Figure 5a,b, an inverse of the identified
static nonlinear function is imbedded into the control
loop to make the system equivalent to a linear loop, as
shown in Figure 5c,d. Then, the linear PID controller
can be designed, and control performances such as those
of linear systems can be achieved. Because the system
is equivalent to a linear one, various tuning rules can
be applied to the design for the PID controller. For
example, to implement the autotuning procedures of
Åström and Hägglund,6 only the static nonlinear block
will be determined, and when the controller is replaced
with a relay in the system of parts a or b of Figure 5,
the PID controller settings can be easily obtained. On
the other hand, if the transfer function for the linear
subsystem is also identified, methods of the model-based
controller design can be used.

Two example processes are used to demonstrate the
proposed identification procedures and control. Example
1 is a Wiener-type process, and example 2 is a Ham-
merstein-type process.

4.1. Example 1: Wiener Process. Consider a Wiener-
type process with the following structure:

To show the effect of measurement noise, the output
of the process is added with a random number that is
of uniform distribution with zero mean and a standard
deviation, σ, of 0.025. The value of the noise-to-signal
variance ratio is about 0.05, while the relay amplitude
is set to 0.5. Because of the presence of measurement
noise, the data used for identification are taken as the
average values of the measurement from two or three
cycles. Figure 6a (from t ) 0 to 30) shows the output
response from a symmetric relay (h+,1 ) |h-,1| ) h1 )
1) feedback experiment. As a result, the time periods

Figure 5. Control system for nonlinear processes: (a) Wiener process; (b) Hammerstein process. Equivalent control systems; (c) Wiener
process; (d) Hammerstein process.

Linear subsystem

Gp(s) ) 1.5e-s

(4s2 + 2s + 1)(s2 + s + 1)
(23)

Nonlinear static element

y ) (1 - e-0.25v)x|v3| (24)
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and maximum amplitudes of positive and negative
outputs are

It is concluded that a Wiener model could fit the process.
Because a nonlinear model structure was determined,

a sequence of designed relay signals, as shown in Figure
6b, is used to estimate those parameters of the nonlinear
model of the Wiener process. Table 2 summarizes the
applied relay magnitudes and features of the process
outputs in stage Ω1.

The next step is to identify the static nonlinearity.
According to the data of (h+,i/h1, y+,i) and (h-,i/h1, y-,i),
i ) 1, ..., 4, shown in Table 2, and when an optimization
procedure is employed to minimize the objection func-
tion of eq 4, the following polynomial is found to
approximate the nonlinear static function:

Figure 6. Relay feedback experiment for example 1: (a) process output y; (b) relay output ur; (c) reconstructed internal variable v̂.

Table 2. Features of the Responses in Stage Ω1 for Example 1

I II III IV

i + - + - + - + -

hi 1 -1 0.5 -0.5 1.5 -1.5 2 -2
yi 0.884 -1.335 0.098 -0.122 2.278 -4.451 4.145 -10.282
vi

v+,1
( )

hi

h+,1
) 1 -1 0.5 -0.5 1.5 -1.5 2 -2

T+ ) 5.42 T- ) 5.40

|1 -
T+

T-
| ) 0.004 < ε ) 0.05

a+ ) 0.884 a- ) 1.335

|1 -
a+

a-
| ) 0.338 . ε ) 0.05

y ) N̂(v) ) -0.056v5 - 0.171v4 + 1.122v3 -
0.086v2 + 0.010v (25)
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Figure 6c shows the internal signal v̂ reconstructed by
the inverse nonlinear function. Notice that it looks like
the typical response of a linear process in a relay
feedback loop.

On the basis of the reconstructed v̂ in stage Ω2, the
steady-state gain and the frequency responses of the
linear subsystem are computed by eqs 5 and 6. Then, a
linear transfer function model of FOPDT or SOPDT will
be identified. From v̂ in stage Ω2, the following result
can be found:

It is concluded that the SOPDT model could fit the
linear subsystem of the process. Consequently, the
estimated result is

Figure 7 shows the result of the identified static
nonlinearity where the input of the real nonlinear
function is scaled by a factor of 1.818 ()1.5/0.825) to
compare it with the identified result. We can see that
the proposed identification method provides an excellent
nonlinear model. Figure 8 compares the control perfor-
mance of the proposed nonlinear control strategy and
the linear PID controller. The PID parameters are
computed using the IMC tuning rule based on a linear
dynamic subsystem. The nonlinear controller shows
satisfactory responses regardless of the set-point values
because it cancels the nonlinearity, whereas the linear
PID controller shows acceptable performances for only
some set points.

To simulate the presence of stronger noise, a noise of
0.075 standard deviation is added to the output of the
process. The noise-to-signal variance ratio is 9 times
that of the previous case. To reduce the effect of
measurement noise, the output signal is filtered by
wavelets before employing the optimization procedure.
Accordingly, the identified static nonlinearity is also
given in Figure 7, and the result of control is similar to
that shown in Figure 8.

4.2. Example 2: Hammerstein Process. Consider
the following Hammerstein-type process:

Similarly, a noise of 0.025 standard deviation is added
to the output of the process.

On the basis of the result of the symmetric relay
feedback response in stage Ω1, the time periods and
maximum amplitudes of positive and negative outputs
are

Obviously, T+ * T- and a+ * a-. It can thus be inferred
that a Hammerstein model could fit the process.

To estimate the static nonlinear function, an ad-
ditional integrator is inserted in the feedback loop (see
Figure 2b) and a sequence of designed relay signals are
applied to activate the process during stage Ω2. The
measured and computed results of stage Ω2 are given
in Table 3. Then, on the basis of the data of (h+,i, v+,i)
and (h-,i, v-,i) shown in Table 3, the nonlinear static
function of this process was estimated by employing an

Figure 7. Identification result for the static nonlinear function
in example 1.

Π+ ) 3.08 Π- ) 2.70

|1 -
Π+

Π-
| ) 0.141 . ε ) 0.05

Ĝp(s) ) 0.825e-2.30s

3.47s2 + 1.79s + 1
(26)

Figure 8. Control performances of example 1.

Table 3. Features of the Responses in Stage Ω2 for
Example 2

I II III IV

i + - + - + - + -

hi 1 -1 1 -0.5 1 -1.5 1 -2
Ti 14.82 7.07 7.00 15.92 27.55 4.75 45.79 3.65
vi/v+,1 1 -2.095 1 -0.440 1 -5.804 1 -12.812

V VI VII

i + - + - + -

hi 2 -1 1.5 -1 0.5 -1
Ti 8.44 11.71 10.40 9.45 32.18 9.45
vi/v+,1 2.908 -2.095 1.903 -2.095 0.3108 -2.095

Nonlinear static element y ) (1 - e-0.75u)|u| (27)

Linear subsystem Gp(s) ) 1
(s + 1)5

(28)

T+ ) 3.60 T- ) 5.44

|1 -
T+

T-
| ) 0.339 . ε ) 0.05

a+ ) 0.255 a- ) 0.499

|1 -
a+

a-
| ) 0.489 . ε ) 0.05
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optimization procedure to minimize the objection func-
tion of eq 20 and the result is as the following:

where u ∈ (-2, 2).
Now, the outputs of the nonlinear element in stage

Ω1 are known, from stage Ω2, as v+,1 ) 1 and v-,1 )
-2.095, so that the steady-state gain and the frequency
responses of the linear subsystem are computed by eqs
21 and 22. Furthermore, data measured in stage Ω1
show that

Accordingly, the linear subsystem has to be modeled
as SOPDT and the parameters of the model are esti-
mated as follows:

Figure 9 shows the result of the identified static
nonlinearity where the output of the real nonlinear
function is multiplied by 1.852 ()1.0/0.54) to compare
it with the identified result. It can be seen that the
identified nonlinear function does provide an excellent
approximation. Figure 10 compares the control perfor-
mance of the proposed nonlinear control strategy and
the linear PID controller. The nonlinear controller
shows almost the same and satisfactory responses
regardless of set points because the nonlinearity is
removed, whereas the linear PID controller shows a
strong dependence on the set-point values.

5. Conclusions

In this research, a system of procedures for the
identification of Wiener- and Hammerstein-type non-

linear processes have been developed. This method uses
a relay feedback test with a sequence of designed relay
magnitudes and, for the Hammerstein process, with an
integrator inserted in the loop. First, the model struc-
ture is selected according to the response in the first
few cycles, and then the model parameters of the
nonlinear static function and linear dynamic subsystem
are estimated in a sequential order. By way of this
approach, the identification problems of the nonlinear
static function and linear dynamic subsystem are
separated and no iterative procedures should be taken.
On the basis of the nonlinear model identified, a control
system can be designed to realize better control perfor-
mances than those of a locally linearized controller.

The simulation results show that the proposed iden-
tification methods provide satisfactory results, and
extension to the multivariable systems will be the next
focus of study in the future.

Figure 9. Identification result for the static nonlinear function in example 2.

v ) N̂(u) ) -0.028u5 - 0.214u4 + 0.948u3 -
0.393u2 + 0.591u (29)

Π+ ) 1.84 Π- ) 2.47

|1 -
Π+

Π-
| ) 0.253 . ε ) 0.05

Ĝp(s) ) 0.54e-1.45s

4.24s2 + 3.43s + 1
(30)

Figure 10. Control performances of example 2.
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