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Abstract

The body-force-driven migration in a homogeneous suspension of polyelectrolyte molecules or charged flocs in an electrolyte solution is
analyzed. The model used for the particle is a porous sphere in which the density of the hydrodynamic frictional segments, and therefore also that
of the fixed charges, is constant. The effects of particle interactions are taken into account by employing a unit cell model. The overlap of the
electric double layers of adjacent particles is allowed and the relaxation effect in the double layer surrounding each particle is considered. The
electrokinetic equations which govern the electrostatic potential profile, the ionic concentration (or electrochemical potential energy) distributions,
and the fluid velocity field inside and outside the porous particle in a unit cell are linearized by assuming that the system is only slightly distorted
from equilibrium. Using a regular perturbation method, these linearized equations are solved for a symmetrically charged electrolyte with the
density of the fixed charges as the small perturbation parameter. An analytical expression for the settling velocity of the charged porous sphere is
obtained from a balance among its gravitational, electrostatic, and hydrodynamic forces. A closed-form formula for the sedimentation potential
in a suspension of identical charged porous spheres is also derived by using the requirement of zero net electric current. The dependence of the
sedimentation velocity and potential of the suspension on the particle volume fraction and other properties of the particle–solution system is found
to be quite complicated.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The sedimentation or migration of charged colloidal parti-
cles in electrolyte solutions has received quite an amount of
attention in the past. This problem is more complex than that of
uncharged particles because the electric double layer surround-
ing each charged particle is distorted by the ambient fluid flow
relative to the particle. The deformation of the double layer re-
sulting from the fluid motion is usually referred to as the polar-
ization or relaxation effect and gives rise to an induced electric
field. The sedimentation potential or migration potential, which
is set up in a suspension of settling or translating charged parti-
cles, was first reported by Dorn in 1878, and this effect is often
known by his name [1–5]. The sedimentation potential gradi-
ent not only alters the velocity and pressure distributions in the
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fluid due to its action on the electrolyte ions but also retards the
settling of the particles by an electrophoretic effect.

Without considering the particle–particle interaction effects,
Booth [1] solved a set of electrokinetic equations using a pertur-
bation method to obtain formulas for the sedimentation velocity
and sedimentation potential in a dilute suspension of identi-
cal spherical particles with an arbitrary double-layer thickness
expressed as power series in the small zeta potential of the
particles. A method of thin-double-layer approximation for the
evaluation of the sedimentation potential, which has no restric-
tion regarding the value of the zeta potential of the particles,
has also been developed [2,3,6]. On the other hand, numerical
results relieving the restriction of low zeta potential in Booth’s
analysis were reported by Stigter [7] using a modification of
the theory of electrophoresis of a dielectric sphere developed
by Wiersema et al. [8]. It was found that the Onsager recipro-
cal relation between the sedimentation potential and the elec-
trophoretic mobility derived by de Groot et al. [9] is satisfied

http://www.elsevier.com/locate/jcis
mailto:huan@ntu.edu.tw
http://dx.doi.org/10.1016/j.jcis.2005.09.040


H.J. Keh, W.C. Chen / Journal of Colloid and Interface Science 296 (2006) 710–720 711
within good computational accuracy. Taking the double-layer
distortion from equilibrium as a small perturbation, Ohshima et
al. [10] obtained general expressions and presented numerical
results for the sedimentation velocity and potential in a dilute
suspension of identical charged spheres over a broad range of
zeta potential and double-layer thickness.

Theoretical study of the electrokinetic phenomena of charged
porous particles, or flocs, was first made by Hermans and Fujita
[11,12] who derived formulas for the electrophoretic mobil-
ity of a porous sphere by introducing the Brinkman equation
[13,14] for the internal flow field of the particle and assum-
ing that the double layer remains spherically symmetric in the
presence of the applied electric field. The effect of the distor-
tion of the counterion atmosphere around a nearly free-drained
polyelectrolyte coil under an applied electric field was exam-
ined theoretically by Imai and Iwasa [15], and their numerical
results agree well with the experimental data [16]. Recently,
general expressions were derived for the electrophoretic mo-
bility and sedimentation velocity of a charged composite (soft)
spherical particle which is a rigid colloidal sphere coated with
a layer of porous substances or polymers at its surface [17–22].
These electrophoretic mobility expressions tend to a formula
obtained by Hermans and Fujita [11] for a spherical polyelec-
trolyte when the hard core of the composite particle vanishes
and the electric potentials are low.

In practical applications of sedimentation, relatively con-
centrated suspensions of particles are usually encountered, and
effects of particle interactions will be important. To avoid the
difficulty of the complex geometry appearing in swarms of par-
ticles, unit cell models [23–27] were often employed to predict
the effects of particle interactions on the mean sedimentation
rate in a bounded suspension of identical spheres. These mod-
els involve the concept that an assemblage can be divided into a
number of identical cells, one sphere occupying each cell at its
center. The boundary value problem for multiple spheres is thus
reduced to the consideration of the behavior of a single sphere
and its bounding envelope. The most acceptable of these mod-
els with various boundary conditions at the virtual surface of
the cell are the so-called “free-surface” model of Happel [23]
and “zero-vorticity” model of Kuwabara [24], the predictions
of which for the sedimentation of uncharged spherical particles
have been tested against the experimental data.

Using the Kuwabara cell model and assuming that the over-
lap of the electric double layers of adjacent particles is negligi-
ble on the virtual surface of the cell, Levine et al. [25] derived
analytical expressions for the sedimentation velocity and sedi-
mentation potential in a homogeneous suspension of identical
charged impermeable spheres with a small surface potential as
functions of the fractional volume concentration of the parti-
cles. The Kuwabara model with nonoverlapping double layers
has also been used to demonstrate the Onsager relation between
the sedimentation potential and the electrophoretic mobility
of charged impermeable spheres in concentrated suspensions
[28,29]. On the other hand, the body-force-driven migration
phenomena in homogeneous suspensions of identical charged
impermeable spheres with a small surface potential and an ar-
bitrary double-layer thickness were analyzed with employing
both the Happel and the Kuwabara cell models and allowing the
overlap of adjacent double layers [30]. Closed-form formulas
for the sedimentation velocity and potential expressed as power
series in the surface charge density or surface potential of the
particles were obtained, and these results demonstrate that the
effect of the double-layer overlap is quite significant even for
the case of thin double layers.

Recently, Ohshima [31] derived general expressions for the
sedimentation velocity and potential for a concentrated sus-
pension of identical soft spherical particles on the basis of the
Kuwabara cell model for the case of low electrostatic potentials
and nonoverlapping double layers of adjacent particles, neglect-
ing the polarization (relaxation) effect of each double layer. In
this article, the unit cell model is used to study the sedimen-
tation phenomena in a suspension of identical charged porous
spheres. The overlap of adjacent double layers is allowed and
the polarization effect in the diffuse layer surrounding each par-
ticle is included. No assumption is made about the thickness of
the double layer relative to the dimension of the particle. Both
the Happel model and the Kuwabara model are considered. The
basic electrokinetic equations are linearized assuming that the
electrolyte ion concentrations, the electrostatic potential, and
the fluid pressure have only a slight deviation from equilibrium
due to the motion of the particle. Through the use of a regular
perturbation method with the fixed charge density of the particle
as the small perturbation parameter, the ion concentration (or
electrochemical potential), electric potential, and fluid velocity
profiles are determined by solving these linearized electroki-
netic equations subject to the appropriate boundary conditions.
Analytical expressions for the settling velocity of the charged
porous spheres in the solution of a symmetrically charged elec-
trolyte and for the sedimentation potential in the suspension are
obtained in closed forms.

2. Basic electrokinetic equations

We consider the sedimentation (or any other body-force-
driven motion) of a statistically homogeneous distribution of
identical charged porous spherical particles in a bounded liq-
uid solution containing M ionic species at the steady state. The
acceleration of gravity (or the uniformly imposed body force
field) equals gez and the sedimentation (or migration) veloc-
ity of the porous particles is Uez, where ez is the unit vector
in the positive z-direction. As shown in Fig. 1, we employ a
unit cell model in which each particle of radius a is surrounded
by a concentric spherical shell of suspending solution having an
outer radius of b such that the particle/cell volume ratio is equal
to the apparent particle volume fraction ϕ throughout the entire
suspension; viz., ϕ = (a/b)3. The cell as a whole is electrically
neutral. The origin of the spherical coordinate system (r, θ,φ)

is taken at the center of the particle and the axis θ = 0 points to-
ward the positive z-direction. Obviously, the problem for each
cell is axially symmetric about the z-axis.

It is assumed that the magnitude of the particle velocity is
not large and hence that the electric double layer surrounding
the particle is only slightly distorted from the equilibrium state,
where the particle and fluid are at rest. Therefore, the concen-
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Fig. 1. Geometrical sketch for the sedimentation of a charged porous sphere at
the center of a spherical cell.

tration (number density) distribution nm(r, θ) of species m, the
electric potential distribution ψ(r, θ), and the pressure distribu-
tion p(r, θ) can be expressed as

(1a)nm = n
(eq)
m + δnm,

(1b)ψ = ψ(eq) + δψ,

(1c)p = p(eq) + δp,

where n
(eq)
m (r), ψ(eq)(r), and p(eq)(r, θ) are the equilibrium dis-

tributions of the concentration of species m, electric potential,
and pressure, respectively, and δnm(r, θ), δψ(r, θ), and δp(r, θ)

are the corresponding small deviations from the equilibrium
state. The equilibrium concentration of each ionic species is re-
lated to the equilibrium potential by the Boltzmann distribution.

It can be shown that the small perturbed quantities δnm, δψ ,
and δp, together with the fluid velocity field u(r, θ), satisfy the
following set of linearized electrokinetic equations [18,30]:

(2)∇ · u = 0,

(3)

∇2u − h(r)λ2u = 1

η
∇δp − ε

4πη

[∇2ψ(eq)∇δψ

+ ∇2δψ∇ψ(eq)
] − 1

η
h(r)Q∇δψ,

(4)

∇2δμm = zme

kT

[
∇ψ(eq) · ∇δμm − kT

Dm

∇ψ(eq) · u
]
,

m = 1,2, . . . ,M,

(5)

∇2δψ = −4π

ε

M∑
m=1

zmen∞
m

kT
exp

[
−zmeψ(eq)

kT

]

× (δμm − zmeδψ).

Here, δμm(r, θ) is defined as a linear combination of δnm and
δψ on the basis of the concept of the electrochemical potential
energy [10],

(6)δμm = kT

n
(eq)
m

δnm + zmeδψ;
n∞
m is the concentration of the type m ions in the bulk (elec-

trically neutral) solution where the equilibrium potential is set
equal to zero; η is the viscosity of the fluid (the available ev-
idence [32] suggests that it is reasonable to assume the same
value of η inside and outside the porous particle); λ = (f/η)1/2,
where f is the hydrodynamic friction coefficient inside the
porous particle per unit volume of the fluid (which accounts
for the hindrance to the convective transport of the electrolyte
solution caused by the frictional segments); h(r) is a unit step
function which equals unity if r � a, and zero otherwise; Q is
the fixed charge density inside the porous particle; Dm and zm

are the diffusion coefficient and valence, respectively, of species
m; e is the elementary electric charge; k is Boltzmann’s con-
stant; T is the absolute temperature; and ε = 4πε0εr, where εr
is the relative permittivity of the electrolyte solution and ε0 is
the permittivity of a vacuum. We assume that the values of η,
f , ε, and Dm are constant.

Note that f can be expressed as 6πηaSNS in the free-
draining limit, where NS and aS are the number density and
the Stokes radius, respectively, of the hydrodynamic frictional
segments of the porous particle, and the reciprocal of the para-
meter λ is the shielding length characterizing the extent of flow
penetration inside the porous particle. For some model porous
particles made of steel wool (in glycerin–water solution) [33]
and plastic foam slab (in silicon oil) [34], experimental values
of 1/λ can be as high as 0.4 mm, whereas in the surface re-
gions of human erythrocytes [35], rat lymphocytes [36], and
grafted polymer microcapsules [37] in salt solutions, values of
1/λ were found to be about 3 nm. Note that 1/λ2 is the so-
called “permeability” of the porous medium, which is related
to its pore size and porosity and characterizes the dynamic be-
havior of the viscous fluid in it.

The conditions to be satisfied inside the porous particle are

(7)u, δμm, and δψ are finite.

The boundary conditions at the particle surface S (at r = a)
are

(8a)u|S+ = u|S− ,

(8b)n · σ |S+ = n · σ |S− ,

(8c)δμm|S+ = δμm|S− ,

(8d)∇δμm|S+ = ∇δμm|S− ,

(8e)δψ |S+ = δψ |S− ,

(8f)∇δψ |S+ = ∇δψ |S− ,

where the superscripts + and − to S represent the external and
internal sides, respectively, to the surface of the particle, n is the
unit vector outwardly normal to the particle surface, and σ is the
hydrodynamic stress of the fluid. Equations (8a) and (8b) are the
continuity requirements of the fluid velocity and stress at the
particle surface which are physically realistic and mathemat-
ically consistent boundary conditions for the present problem
[32,38,39]. Since we take the same fluid viscosity inside and
outside the porous particle and use the fluid velocity continu-
ity given by Eq. (8a), Eq. (8b) is equivalent to the continuity of
pressure. Equations (8c) and (8d) state that the concentrations
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and fluxes of the ionic species must be continuous at the particle
surface, while Eqs. (8e) and (8f) indicate that the electrostatic
potential and electric field are also continuous. The continuity
of the electric field results from the assumption that the relative
permittivity of the solution takes the same value both inside
and outside the porous particle. In the present system, the to-
tal fluid stress, which consists of the hydrodynamic stress and
the Maxwell stress, is continuous at the particle surface. The
boundary condition for the continuity of hydrodynamic stress
given by Eq. (8b) comes from the fact of continuous Maxwell
stress that can be deduced from Eqs. (1b) and (8f) [17].

The boundary conditions at the virtual surface of the cell,
in which the overlap of the electric double layers of adjacent
particles is allowed, are

(9a)r = b: ur = −U cos θ,

τrθ = η

[
r

∂

∂r

(
uθ

r

)
+ 1

r

∂ur

∂θ

]
= 0

(9b)(for Happel model),

(∇ · u)φ = 1

r

∂

∂r
(ruθ ) − 1

r

∂ur

∂θ
= 0

(9c)(for Kuwabara model),

(9d)
∂δμm

∂r
= 0,

(9e)
∂δψ

∂r
= 0,

where ur and uθ are the r and θ components, respectively, of
the fluid velocity u. Note that the Happel cell model [23] as-
sumes that the radial velocity and the shear stress of the fluid
on the outer boundary of the cell are zero, while the Kuwabara
cell model [24] assumes that the radial velocity and the vortic-
ity of the fluid are zero there. Equation (9a) takes a reference
frame that the particle is at rest and the velocity of the fluid at
the outer boundary of the cell is the particle velocity in the op-
posite direction. The conditions (9a), (9d), and (9e) imply that
there are no net flows of fluid, ionic species, and electric current
between adjacent cells. They are valid because the suspension
of the particles is bounded by impermeable, inert, and noncon-
ductive walls. Thus, the effect of the backflow of fluid occurring
in a container is included in both cell models.

For the sedimentation of a suspension of uncharged spher-
ical particles, both the Happel and the Kuwabara models give
qualitatively the same flow fields and approximately compara-
ble drag forces on the particle in a cell. However, the Happel
model has a significant advantage in that it does not require an
exchange of mechanical energy between the cell and the envi-
ronment [40].

3. Solution of the electrokinetic equations for symmetric
electrolytes

We now consider the sedimentation of a charged porous
sphere in a unit cell filled with the solution of a symmetrically
charged binary electrolyte with a constant bulk concentration
n∞ (M = 2, z+ = −z− = Z, n∞+ = n∞− = n∞, where subscripts
+ and − refer to the cation and anion, respectively). We first
seek the solution of ψ(eq) which appears in Eqs. (3)–(5) and is
governed by the equilibrium Poisson–Boltzmann equation,

(10)∇2ψ(eq) = kT

Ze
κ2 sinh

[
Zeψ(eq)

kT

]
− h(r)

4πQ

ε
,

where κ = (8πZ2e2n∞/εkT )1/2 is the Debye screening para-
meter. The boundary conditions for ψ(eq) are

(11)r = 0: ψ(eq) is finite,

(12)r = a: ψ(eq) and
dψ(eq)

dr
are continuous,

(13)r = b:
dψ(eq)

dr
= 0.

The solution to Eqs. (10)–(13) is

(14)ψ(eq)(r) = ψeq1(r)Q̄ + O(Q̄3),

where

(15a)

ψeq1 = kT

Ze

{
1 −

[
(1 − κa)eκa + α(κa)

α(κb)

× (κb − 1)eκb

]
sinh(κr)

κr

}
if 0 � r � a,

ψeq1 = kT

Ze

α(κa)

α(κb)

1

κr

[
κb cosh(κb − κr) − sinh(κb − κr)

]
(15b)if a � r � b,

the function α(x) is defined by Eq. (A.3a) in Appendix A, and
Q̄ = 4πZeQ/εκ2kT is the nondimensional charge density of
the porous particle. Expression (14) for ψ(eq) as a power series
in Q̄ up to O(Q̄) is the equilibrium solution for the linearized
Eq. (10) that is valid for small values of the electric potential
(the Debye–Huckel approximation). That is, the fixed charge
density Q of the particle must be small enough for the potential
to remain small. Note that ψ(eq) and n

(eq)
± depend on r only due

to spherical symmetry, and the O(Q̄2) term in Eq. (14) for ψ(eq)

disappears only for the case of symmetric electrolytes.
To solve the small quantities u, δp, δμ±, and δψ in terms

of the particle velocity U when the parameter Q̄ is small, these
variables can be written as regular perturbation expansions in
powers of Q̄,

(16a)u = u0 + u1Q̄ + u2Q̄
2 + · · · ,

(16b)δp = p0 + p1Q̄ + p2Q̄
2 + · · · ,

(16c)δμ± = μ1±Q̄ + μ2±Q̄2 + · · · ,
(16d)δψ = ψ1Q̄ + ψ2Q̄

2 + · · · ,
(16e)U = U0 + U1Q̄ + U2Q̄

2 + · · · ,
where the functions ui , pi , μi±, ψi , and Ui are independent
of Q̄. The zeroth-order terms of both δμ± and δψ disappear due
to not imposing a macroscopic electrolyte gradient and electric
field.

Substituting the expansions given by Eq. (16) and ψ(eq)

given by Eq. (14) into the governing equations (2)–(5) and
boundary conditions (7)–(9), and equating like powers of Q̄ on
both sides of the respective equations, we can obtain a set of lin-
ear differential equations and boundary conditions for each set
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of the functions ui , pi , μi±, and ψi with i equal to 0, 1, and 2.
After solving these perturbation equations, the results for the r

and θ components of u (to the order Q̄2), δμ±, and δψ (to the
order Q̄, which will be sufficient for the calculation of the sedi-
mentation velocity and sedimentation potential to the order Q̄2)
can be written as

(17a)

ur = {
U0F0(r) − U1F0(r)Q̄ + [

U0F2(r) + U2F0(r)
]
Q̄2}

× cos θ + O(Q̄3),

(17b)

uθ = − 1

2r

d

dr
r2{U0F0(r) − U1F0(r)Q̄

+ [
U0F2(r) + U2F0(r)

]
Q̄2} sin θ + O(Q̄3),

(18)δμ± = U0F±(r) cos θQ̄ + O(Q̄2),

(19)δψ = U0Fψ(r) cos θQ̄ + O(Q̄2).

Here, the functions Fi(r) (with i equal to 0 and 2), F±(r), and
Fψ(r) for both the Happel and the Kuwabara cell models are
defined by Eqs. (A.1), (A.8), and (A.9) in Appendix A. Since
F±(r) and Fψ(r) are influenced by the fluid flow via F0(r),
the leading order of the effect of the relaxation (or polarization)
of the diffuse ions in the electric double layer surrounding the
particle is included in the solution for δμ± and δψ up to the
order Q̄.

4. Sedimentation velocity

The total force exerted on the charged porous sphere settling
in the electrolyte solution within a unit cell can be expressed
as the sum of the gravitational force (and buoyant force), the
electrostatic force, and the hydrodynamic force acting on the
particle. The gravitational force is given by

(20)Fg = 4

3
πa3(1 − εp)(ρp − ρ)gez,

where εp and ρp are the porosity and true mass density of the
porous particle, respectively, ρ is the mass density of the fluid,
and gez is the gravitational acceleration.

The electric force acting on the porous sphere is defined by

(21)Fe = −
∫

r�a

Q∇ψ dx.

Substituting Eqs. (1b) and (19) into Eq. (21), and using the fact
that the net electric force acting on the particle at the equilib-
rium state is zero, one has

(22)Fe = −ε

3

kT

Ze
(κa)2U0Fψ(a)Q̄2ez.

The hydrodynamic drag force acting on the porous sphere is
given by

(23)Fh =
∫

r�a

f u(x)dx.

Substitution of Eq. (17) into the above equation results in

Fh = 4π
ηλ2a3{U0F0(a) + U1F0(a)Q̄
3

(24)+ [
U0F2(a) + U2F0(a)

]
Q̄2}ez.

At the steady state, the total force acting on the settling particle
(or the unit cell) is zero. Applying this constraint to the summa-
tion of Eqs. (20), (22), and (24) for a symmetric electrolyte, we
obtain the sedimentation velocity of the charged porous sphere
in the expansion form of Eq. (16e) with the first three coeffi-
cients as

(25a)U0 = −(1 − εp)(ρp − ρ)g

ηλ2[C01 + α(λa)C02] ,
(25b)U1 = 0,

(25c)U2 = −U0

[
F2(a)

F0(a)
−

(
εκ2kT

4πηλ2aze

)
Fψ(a)

F0(a)

]
,

where the coefficients C01 and C02 are given by Eq. (A.4)
for the Happel cell model and by Eq. (A.5) for the Kuwabara
cell model in Appendix A. U0 is the settling velocity of an
uncharged porous sphere in the cell [41]. The definite inte-
grals in the functions F2(a) and Fψ(a) in Eq. (25c) defined
by Eqs. (A.1) and (A.9) can be calculated numerically. Note
that the correction for the effect of the fixed charge density to
the particle velocity starts from the second order Q2, instead
of the first order Q. The reason is that this effect is due to the
interaction between the particle charges and the local induced
sedimentation potential gradient; both are of order Q and thus
the correction is of order Q2.

Substitution of Eq. (25) into Eq. (16e) results in an expres-
sion for the sedimentation velocity as a perturbation expansion
in powers of Q,

(26)U = U0
[
1 − (κa)4HQ̄2 + O(Q̄3)

]
.

Here, the dimensionless coefficient H is a function of the para-
meters κa, λa, and ϕ for a given electrolyte solution,

(27)H = − U2

(κa)4U0
.

The numerical result of H calculated by using Eqs. (25a)
and (25c) will be presented in Section 6. Note that (κa)2Q̄

(= 4πa2ZeQ/εkT ) is independent of κ or n∞ for a constant
fixed charge density Q.

5. Sedimentation potential

The electric fields around the individual charged particles
undergoing sedimentation in a suspension superimpose to re-
sult in a sedimentation potential gradient. For a homogeneous
suspension of identical spherical particles, the sedimentation
potential field is uniform and can be regarded as the average of
the gradient of electric potential over a sufficiently large volume
of the suspension to contain many particles. In order to calculate
this field, the requirement that there exists no net electric cur-
rent in the suspension must be satisfied. For identical charged
porous spheres suspended in a symmetric electrolyte with the
absolute value of valence Z, the sedimentation potential field
obtained from the unit cell model can be expressed as [18]

ESED = 4πb2Z2e2n∞N

∞ U0

{[
D+

(
r

dF+ − F+
)

3kT V Λ dr
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(28)− D−
(

r
dF−
dr

− F−
)]

r=b

Q̄ + O(Q̄3)

}
ez.

Substituting Eq. (25a) for U0 and Eq. (A.8) for F±(r) after the
numerical integration into the above equation, we obtain this
field as

(29)ESED = −(1 − εp)(ρp − ρ)
ϕg

Λ∞ μEez,

where

μE = Q

ηλ2α(κb)[C01 + α(λa)C02]
{

6L1(λa)3(ϕ−1/3 − ϕ−2)

×
[
λa sinh(λa) cosh(κa) − κa cosh(λa) sinh(κa)

(λa)2 − (κa)2

− sinh(λa) sinh(κa)

(λa)(κa)

]

+ 3L1ϕ
−2

(κa)3

[
2A2ϕ

5/3 + (λa)2(1 + 2ϕ5/3)α(λa)
]

× [
3α(κa) − (κa)2 sinh(κa)

]
+ α(κa)

(κa)2

[
(λaκa)2B1ϕ

−8/3 + 10(λa)2A4ϕ
−4/3

− 2(λa)2B1ϕ
−2 − (κa)2B2ϕ

−3]
− α(κa)L2

(κa)5

[
(λa)2(κ4a4 + 15κ2a2 + 30)A4ϕ

−1/3

− (κa)2[(λaκa)2(A4 − B1) + (κ2a2 + 3)B2
]
ϕ−2]

+ α(κa)L3

(κa)4

[
5(λa)2(κ2a2 + 6)A4ϕ

−2/3

(30a)+ (κa)2[2(λa)2B1 − 3B2
]
ϕ−7/3]} + O(Q̄3)

for the Happel model, and

μE = Qϕ2

45ηλ2α(κb)α(λa)

{
30λaL1(ϕ

−1 − ϕ−2)

×
[
λa sinh(λa) cosh(κa) − κa cosh(λa) sinh(κa)

(κa)2 − (λa)2

− sinh(λa) cosh(κa)

(λa)(κa)

]
+ 15L1(2ϕ−1 + ϕ−2)α(λa)

(κa)3

× [
3α(κa) − (κa)2 sinh(κa)

]
+ α(κa)

[
(2A2ϕ − 5A4)ϕ

−2 + 18(λa)2ϕ−8/3

− 5(A1 + A4ϕ)ϕ−3] − α(κa)L2

(κa)5

[
3(λa)2(κ4a4

+ 15κ2a2 + 30)α(λa)ϕ−1 − (κa)2[5(κ2a2 + 3)

× (A1 + A4ϕ) − (κa)2(2A2ϕ − 5A4)

− 15(λaκa)2α(λa)
]
ϕ−2]

+ 15α(κa)L3

(κa)4

[
(λa)2(κ2a2 + 6)α(λa)ϕ−4/3 + (κa)2

(30b)× [
2(λa)2α(λa) − A1 − A4ϕ

]
ϕ−7/3]} + O(Q̄3)

for the Kuwabara model. In the above equations, Ai , Li , and Bi

are defined by Eqs. (A.7), (A.10), and (A.11), and ϕ = (a/b)3
is the apparent volume fraction of the particles in the suspen-
sion. Equation (29) is an Onsager reciprocal relation connecting
the sedimentation potential with the electrophoretic mobility
derived by de Groot et al. [9] on the basis of irreversible ther-
modynamics. Evidently, the electrophoretic mobility μE is in-
dependent of the ionic diffusion coefficients and is a function
of the parameters κa, λa, and ϕ only.

6. Results and discussion

For the limiting case of an infinitely dilute suspension of
porous spheres (ϕ = 0), the quantities U0 and μE in expressions
(25a) and (30) for the sedimentation velocity and potential re-
duce to

(31)U0 = (1 − εp)(ρp − ρ)
2a2g

9η

[
2(λa)A1α(λa)

]−1
,

(32)

μE = Q

ηλ2

{
1 + 1

3

(
λ

κ

)2(
1 + e−2κa − 1 − e−2κa

κa

)

+ 1

3

(
λ2

λ2 − κ2

)(
1 + 1

κa

)

×
[(

λ

κ

)2
κa(1 + e−2κa) − 1 + e−2κa

λa coth(λa) − 1
− 1 + e−2κa

]}
+ O(Q̄2).

These reduced results are the same as the formulas for U0 and
μE obtained previously [11,14,18] for a single porous sphere in
an unbounded electrolyte.

According to Eqs. (25)–(27), the sedimentation velocity of
charged porous spheres in a given electrolyte solution can be
calculated to the order of Q2. The numerical results of the
dimensionless coefficient H for particles in the aqueous so-
lution of HCl at room temperature as a function of the pa-
rameters κa, λa, and ϕ are plotted in Figs. 2–4. The value
εk2T 2/4πηDz2e2 = 0.259 with D+ = D− = D [42] is used
in the calculations, and the results are presented up to ϕ = 0.74,
which corresponds to the maximum attainable volume fraction
for a swarm of identical spheres [43]. The fact that H is al-
ways positive demonstrates that the presence of the particle
charges reduces the sedimentation rate for any volume fraction
of particles in the suspension. This retardation on the settling
of the charged particles reflects the electrophoretic effect on the
particles in the direction opposite to gravity caused by the sed-
imentation potential gradient induced in the suspension.

For fixed values of λa and ϕ, the coefficient H has a max-
imum at some finite value of κa and vanishes in the limits
κa → 0 and κa → ∞. The reason for this behavior is obvious.
The limit κa → 0 means that the presence of the counterions
around each particle is negligible and the perturbation quanti-
ties δnm and δψ disappear, while the limit κa → ∞ indicates
that the total charge density is zero everywhere and the total
electric force on the particle vanishes. Note that the location
of this maximum shifts to greater κa as ϕ increases, keeping
the value of λa unchanged, but is not a sensitive function of
λa, as shown in Fig. 2. For given values of κa and ϕ, the co-
efficient H increases monotonically with decreasing λa. In the
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(a)

(b)

Fig. 2. Plots of the dimensionless coefficient H in Eq. (26) for settling charged
porous spheres in the KCl solution versus the parameter κa: (a) λa = 1;
(b) ϕ = 0.3. The solid and dashed curves represent the calculations for the Hap-
pel and Kuwabara cell models, respectively.

limit λa → ∞, the porous particles behave like impermeable
conductive spheres and thus H = 0 (the sedimentation veloc-
ity of the particle limits to the Stokes velocity). At small val-
ues of λa (say, less than 0.05), the porous particles are nearly
free-drained, and their velocity might be large that the pertur-
bation quantities become comparable in magnitude with the
equilibrium values. Therefore, our perturbation result will not
be adaptable for this case owing to disobeying the assumption
that the system is only slightly distorted from equilibrium. For
specified values of κa and λa in a broad range, H is not a
monotonic function of ϕ and has a maximal value. The loca-
tion of this maximum shifts to greater ϕ as κa increases but is
not a sensitive function of λa.

Figs. 2–4 illustrate that, for any combination of κa, λa, and
ϕ, the Kuwabara model predicts a smaller value for the coeffi-
(a)

(b)

Fig. 3. Plots of the dimensionless coefficient H in Eq. (26) for settling charged
porous spheres in the KCl solution versus the parameter λa: (a) κa = 1;
(b) ϕ = 0.3. The solid and dashed curves represent the calculations for the Hap-
pel and Kuwabara cell models, respectively.

cient H (or a weaker particle concentration dependence for the
sedimentation of the suspension) than the Happel model does.
This occurs because the zero-vorticity model yields a larger en-
ergy dissipation in the cell than that due to particle drag alone,
owing to the additional work done by the stresses at the outer
boundary [40]. In general, the qualitative and quantitative dif-
ferences in H between the two models are not significant.

In Figs. 5–7, the numerical results for the dimensionless sed-
imentation potential or electrophoretic mobility ηλ2μE/Q in a
suspension of identical charged porous spheres calculated from
Eq. (30) are plotted as a function of the parameters κa,λa,
and ϕ. As expected, ηλ2μE/Q is always a positive value. For
a given value of λa, ηλ2μE/Q increases monotonically with a
decrease in κa (or with an increase in the double-layer over-
lap) as ϕ = 0, but may have a maximum at some finite value
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(a)

(b)

Fig. 4. Plots of the dimensionless coefficient H in Eq. (26) for settling charged
porous spheres in the KCl solution versus the parameter ϕ: (a) λa = 1;
(b) κa = 1. The solid and dashed curves represent the calculations for the Hap-
pel and Kuwabara cell models, respectively.

of κa and approaches zero in proportion to (κa)2 in the limit
κa → 0 for any finite value of ϕ; the location of this maximum
again shifts to greater κa as ϕ increases, as shown in Fig. 5.
For any values of λa and ϕ, ηλ2μE/Q equals unity in the limit
κa → ∞. For fixed values of κa and ϕ, ηλ2μE/Q increases
monotonically with an increase in λa, approaches a constant
value (e.g., ηλ2μE/Q = 1 as ϕ = 0) in the limit λa → 0, and is
proportional to (λa)2 in the limit λa → ∞. For specified val-
ues of κa and λa in a broad range, ηλ2μE/Q is a monotonic
decreasing function of ϕ. Figs. 5–7 indicate that, for any combi-
nation of κa, λa, and ϕ, the Kuwabara model predicts a smaller
value for the dimensionless sedimentation potential than the
Happel model does, but the difference in general is negligible.

In a previous analysis for the sedimentation velocity and po-
tential in suspensions of identical charged soft particles through
(a)

(b)

Fig. 5. Plots of the dimensionless sedimentation potential ηλ2μE/Q in a sus-
pension of identical charged porous spheres calculated from Eq. (30) versus the
parameter κa: (a) λa = 10; (b) ϕ = 0.3. The solid and dashed curves represent
the calculations for the Happel and Kuwabara cell models, respectively.

the use of the Kuwabara cell model, it was assumed that the
effects of the overlap of the electric double layers of adjacent
particles and of the relaxation of the diffuse ions in the dou-
ble layers could be neglected [31]. Comparisons of the relevant
results of the dimensionless coefficients H and ηλ2μE/Q ob-
tained in this previous analysis with our calculations relaxing
these assumptions indicate that the errors in the sedimentation
velocity and sedimentation potential in suspensions owing to
neglect of these effects can be quite significant under typical
conditions, even when the double layers are thin relative to the
radius of the particles.

7. Concluding remarks

In this work, the steady-state sedimentation phenomena in a
homogeneous suspension of identical charged porous spheres
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(a)

(b)

Fig. 6. Plots of the dimensionless sedimentation potential ηλ2μE/Q in a sus-
pension of identical charged porous spheres calculated from Eq. (30) versus the
parameter λa: (a) κa = 1; (b) ϕ = 0.3. The solid and dashed curves represent
the calculations for the Happel and Kuwabara cell models, respectively.

in an electrolyte solution with arbitrary values of κa, λa, and
ϕ are analyzed by employing the Happel and Kuwabara cell
models. Solving the linearized electrokinetic equations applica-
ble to the system of a porous sphere in a unit cell by a regular
perturbation method, we have obtained the ion concentration
(or electrochemical potential energy) distributions, the electric
potential profile, and the fluid flow field for the case of low elec-
tric potentials. The requirement that the total force exerted on
the particle is zero leads to an explicit formula, Eq. (26), for
the settling velocity of the particles. The effect of the particle
charges is to reduce the settling velocity and the correction be-
gins at the second order Q2. Numerical results indicate that,
for given values of λa and ϕ, this effect has a maximum at
some finite values of κa and disappears when κa approaches
(a)

(b)

Fig. 7. Plots of the dimensionless sedimentation potential ηλ2μE/Q in a sus-
pension of identical charged porous spheres calculated from Eq. (30) versus the
parameter ϕ: (a) λa = 10; (b) κa = 1. The solid and dashed curves represent
the calculations for the Happel and Kuwabara cell models, respectively.

zero and infinity. For fixed values of κa and ϕ, this effect in-
creases monotonically with a decrease in λa. Another explicit
formula, Eq. (29), for the sedimentation potential is derived to
the order Q by letting the net electric current in the suspension
be zero. The normalized sedimentation potential is found to in-
crease with an increase in λa for specified values of κa and ϕ,
and to decrease with an increase in ϕ for given values of κa and
λa.

Equations (25)–(27), (29), and (30) are obtained on the basis
of the Debye–Huckel approximation for the equilibrium po-
tential distribution around the charged porous sphere in a unit
cell. A similar formula for the sedimentation velocity of an im-
permeable sphere with a low zeta potential in an unbounded
electrolyte solution was shown to give an excellent approxima-
tion for the case of reasonably high zeta potential (with an error
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less than 0.1% for |ζ |e/kT � 2 in a KCl solution) [9]. There-
fore, our results might be used tentatively for the situation of
reasonably high electric potentials.

A limitation in both Booth’s [1] classical theory and our per-
turbation analysis is that they are valid only for the case of a suf-
ficiently small Péclet number. For the case of a relatively large
Péclet number, however, Derjaguin and Dukhin [6,45] obtained
a fundamental result for the sedimentation potential of a dilute
suspension of impermeable charged spheres and found that the
Smoluchowski theory is still valid in spite of the double-layer
polarization.
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Appendix A. Definitions of some functions in Sections 3
and 5

For conciseness the definitions of some functions in Sec-
tions 3 and 5 are listed here. In Eq. (17),

(A.1a)

Fi(r) = Ci1 + Ci2

(
a

r

)3

α(λr)

+ δi2
2

3λ2

[ r∫
0

G(r)dr − 1

r3

r∫
0

r3G(r)dr

+ 3α(λr)

λ3r3

r∫
0

β(λr)G(r)dr

− 3β(λr)

λ3r3

r∫
0

α(λr)G(r)dr

]
for 0 < r < a,

Fi(r) = Ci3 + Ci4

(
a

r

)
+ Ci5

(
a

r

)3

+ Ci6

(
r

a

)2

− δi2
1

15

[
r2

r∫
0

G(r)dr − 5

r∫
0

r2G(r)dr

+ 5

r

r∫
0

r3G(r)dr − 1

r3

r∫
0

r5G(r)dr

]

(A.1b)for a < r < b,

where i = 0 and 2. In the above equations, δij is the Kronecker
delta which equals unity if i = j but vanishes otherwise,

(A.2)G(r) = εκ2

8πηr

[
F+(r) − F−(r)

]dψeq1

dr
,

(A.3a)α(x) = x coshx − sinhx,

(A.3b)β(x) = x sinhx − coshx,

C01 = −6[A2 + (λa)2α(λa)]ϕ−1/3 − 3(λa)2α(λa)ϕ−2

WH
,

(A.4a)
(A.4b)C02 = 6(λa)2(ϕ−1/3 − ϕ−2)

WH
,

(A.4c)C03 = −3(2A2 + A3)ϕ
−1/3 − (λa)2A1ϕ

−2

WH
,

(A.4d)C04 = 2(λa)2A2ϕ
−1/3 + 3(λa)4α(λa)ϕ−2

WH
,

(A.4e)C05 = −(λa)2A4ϕ
−2

WH
,

(A.4f)C06 = (λa)2A4ϕ
−1/3

WH

for the Happel model, and

(A.5a)C01 = −15α(λa)(2ϕ−1 + ϕ−2)

WK
,

(A.5b)C02 = 30(ϕ−1 − ϕ−2)

WK
,

(A.5c)C03 = −5(A4ϕ
−1 + A1ϕ

−2)

WK
,

(A.5d)C04 = 15(λa)2α(λa)ϕ−2

WK
,

(A.5e)C05 = 2A2ϕ
−1 − 5A4ϕ

−2

WK
,

(A.5f)C06 = 3α(λa)(λa)2ϕ−1

WK

for the Kuwabara model, where

(A.6a)

WH = (λa)2A1ϕ
−2 − 3(λa)4α(λa)ϕ−5/3

+ 3(2A2 + A3)ϕ
−1/3 − 2(λa)2A2,

(A.6b)

WK = 5A1ϕ
−2 − 18(λa)2α(λa)ϕ−5/3

+ 10A4ϕ
−1 − 2A2,

(A.7a)A1 = 3α(λa) + 2(λa)3 cosh(λa),

(A.7b)A2 = 15α(λa) + (λa)3 cosh(λa) − 6(λa)2 sinh(λa),

(A.7c)A3 = (λa)2[(λa)2 + 12
]
α(λa) − 4(λa)4 sinh(λa),

(A.7d)A4 = 6α(λa) + (λa)3 cosh(λa) − 3(λa)2 sinh(λa).

The expressions for the coefficients C2j are lengthy; the full
versions are available in W.C. Chen’s M.S. thesis [44] or on
request from the corresponding author. In Eqs. (18), (19), and
(A.2),

F±(r) = ± 1

3D±

[
2r

b3

b∫
0

r3F0(r)
dψeq1

dr
dr

(A.8)

+ r

b∫
r

F0(r)
dψeq1

dr
dr + 1

r2

r∫
0

r3F0(r)
dψeq1

dr
dr

]
,

Fψ(r) = 1

2κr2

{
(κ2b2 + 2κb + 2)e−κb

(κb)2 sinh(κb) − 2α(κb)
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× α(κr)

b∫
0

α(κr)
[
F+(r) − F−(r)

]
dr

+ α(κr)

b∫
r

(κr + 1)e−κr
[
F+(r) − F−(r)

]
dr

+ (κr + 1)e−κr

r∫
0

α(κr)
[
F+(r) − F−(r)

]
dr

}
.

(A.9)

In Eq. (30),

(A.10a)L1 = α(κb)(κa − 1)eκa − α(κa)(κb − 1)eκb,

(A.10b)L2 = κb cosh(κa − κb) + sinh(κa − κb),

(A.10c)L3 = ϕ1/3 cosh(κa − κb) + κa sinh(κa − κb),

(A.11a)B1 = 2A2ϕ
5/3 + 3(λa)2α(λa),

(A.11b)B2 = (λa)2A1 + 3(2A2 + A3)ϕ
5/3.
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