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Abstract

A theoretical study is presented for the two-dimensional creeping flow caused by a long circular cylindrical particle

translating and rotating in a viscous fluid near a large plane wall parallel to its axis. The fluid is allowed to slip at the

surface of the particle. The Stokes equations for the fluid velocity field are solved in the quasi-steady limit using

cylindrical bipolar coordinates. Semi-analytical solutions for the drag force and torque acting on the particle by the

fluid are obtained for various values of the slip coefficient associated with the particle surface and of the relative

separation distance between the particle and the wall. The results indicate that the translation and rotation of the

confined cylinder are not coupled with each other. For the motion of a no-slip cylinder near a plane wall, our

hydrodynamic drag force and torque results reduce to the closed-form solutions available in the literature. The

boundary-corrected drag force and torque acting on the particle decrease with an increase in the slip coefficient for an

otherwise specified condition. The plane wall exerts the greatest drag on the particle when its migration occurs normal

to it, and the least in the case of motion parallel to it. The enhancement in the hydrodynamic drag force and torque on a

translating and rotating particle caused by a nearby plane wall is much more significant for a cylinder than for a sphere.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The area of the movement of solid particles or fluid drops in a continuous medium at low Reynolds numbers is of

much fundamental and practical interest in the fields of chemical, biochemical, and environmental engineering and

science. The theoretical treatment of this subject has grown out of the classic work of Stokes (1851) for a translating

rigid sphere in an unbounded viscous fluid. Oberbeck (1876) extended this result to the translation of an ellipsoid. More

recently, analytical solutions of the creeping-flow problem have been obtained for rigid particles whose shapes

correspond to a coordinate surface of one of the special orthogonal coordinate systems in which the Stokes equations

are simply separable (Payne and Pell, 1960) and for long slender bodies (Batchelor, 1970). Explicit expressions for the

resistance force and torque experienced by a rigid, slightly deformed sphere undergoing low-Reynolds-number

translational and rotational motions in an unbounded fluid were also derived to the first order in the small parameter

characterizing the deformation (Brenner, 1964).
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Hadamard (1911) and Rybczynski (1911) extended independently the result of Stokes to the translation of a fluid

sphere. Assuming continuous velocity and continuous tangential stress across the interface of fluid phases, they found

that the force exerted on a spherical drop of radius a by the surrounding fluid of viscosity Z is

F0 ¼ �6pZa
3Z� þ 2

3Z� þ 3
U. (1)

Here U is the migration velocity of the drop and Z� is the internal-to-external viscosity ratio. Since the fluid properties

are arbitrary, Eq. (1) degenerates to the case of translation of a solid sphere (Stokes’ law) when Z� ! 1 and to the case

of motion of a gas bubble with spherical shape in the limit Z� ! 0.

In most practical applications, particles or drops are not isolated. So, it is important to determine if the presence of

neighboring particles and/or boundaries significantly affects the movement of particles. Problems of the hydrodynamic

interactions between two or more particles and between particles and boundaries for arbitrary values of Zn have been

treated extensively in the past. Summaries for the current state of knowledge in this area and some informative

references can be found in Keh and Tseng (1992) and Chang and Keh (2006).

In the general formulation of the Stokes problem, it is usually assumed that no slippage arises at the solid–fluid

interfaces. Actually, this is an idealization of the transport processes involved. The phenomena that the adjacent fluid

can slip frictionally over a solid surface occur for cases such as the low-density gas flow surrounding an aerosol particle

(Kennard, 1938; Hutchins et al., 1995), the aqueous liquid flow near a hydrophobic surface (Tretheway and Meinhart,

2002; Gogte et al., 2005), and the Newtonian fluid flow over a porous surface (Beavers and Joseph, 1967; Saffman,

1971; Nir, 1976), which have been confirmed, both experimentally and theoretically. Presumably, any such slipping

would be proportional to the local tangential stress next to the solid surface (Happel and Brenner, 1983), known as the

Navier slip (see Eq. (11b)), at least as long as the velocity gradient is small. The constant of proportionality, b�1, is
called a ‘‘slip coefficient.’’

Basset (1961) derived the following expressions for the force and torque exerted by the fluid on a translating and

rotating rigid sphere with a slip-flow boundary condition at its surface

F0 ¼ �6pZa
baþ 2Z
baþ 3Z

U, (2a)

T0 ¼ �8pZa3
ba

baþ 3Z
X. (2b)

Here U and X are the translational and angular velocities, respectively, of the particle. In the particular case of b-N,

there is no slip at the particle surface and Eq. (2a) degenerates to Stokes law. When b ¼ 0, there is a perfect slip at the

particle surface and Eq. (2a) is identical to Eq. (1) taking Z� ! 0. Recently, the slip-surface creeping motions caused by

a general axisymmetric particle translating along its axis of revolution (Keh and Huang, 2004) and by a slightly

deformed sphere translating and rotating in arbitrary directions (Senchenko and Keh, 2006) have been theoretically

examined.

The slip coefficient in Eq. (2) has been determined experimentally for various gas–solid systems and found to agree

with the general kinetic theory of gases. It can be calculated from

Z
b
¼ Cml, (3)

where l is the mean free path of a gas molecule, and Cm is a dimensionless constant related to the momentum

accommodation coefficient at the solid surface (Kennard, 1938). Although Cm surely depends upon the nature of the

surface and adjacent fluid, an examination of the experimental data and theoretical predictions suggests that it will be in

the range 1.0–1.5 (Davis, 1972; Talbot et al., 1980; Sharipov and Kalempa, 2003). The quantity Z/b is a length, which

can be envisioned by noting that the fluid motion is the same as if the solid surface is displaced inward by a distance Z/b
with the velocity gradient extending uniformly right up to no-slip velocity at the surface. The reciprocal of the factor

(ba+2Z)/(ba+3Z) in Eq. (2a) is equivalent to the so-called Cunningham correction factor for the slip effect.

The boundary effects on the motion of solid particles with finite values of ba/Z are different, both physically and

mathematically, from those of fluid droplets of finite viscosities. Through an exact representation in spherical bipolar

coordinates, Reed and Morrison (1974) and Chen and Keh (1995) examined the creeping motion of a rigid sphere

normal to an infinite plane wall, where the fluid may slip at the solid surfaces. Later, the quasi-steady translation of a

slip spherical particle in a spherical cavity was also theoretically studied (Keh and Chang, 1998; Lu and Lee, 2001). An

analytical expression for the wall-corrected drag force exerted by the fluid on the particle located at the center of the

cavity was derived in closed form. Recently, the slow translational and rotational motions of a slip sphere parallel
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(Chen and Keh, 2003) or perpendicular (Chang and Keh, 2006) to two parallel plane walls at an arbitrary position

between them have been examined using the boundary collocation method. Numerical results for the hydrodynamic

drag force and torque exerted on the particle were obtained as functions of ba/Z and the respective relative distances

from the particle center to the two plane walls. However, the boundary effects on the creeping motion of a nonspherical

slip particle have not been investigated yet.

The objective of this paper is to obtain solutions for the slow motion of a long circular cylindrical particle with a slip

surface in an arbitrary transverse direction (the rotation of the particle about its axis is allowed) near a large plane wall

parallel to its axis and to compare the results with those available for the corresponding motion of a sphere. The

creeping flow equations applicable to the system are solved by using cylindrical bipolar coordinates and the wall-

corrected drag force and torque acting on the particle are obtained for various cases. For the special case of movement

of a particle with a zero slip coefficient, our results reduce to the available explicit expressions in the literature for the

corresponding motion of a no-slip cylinder.
2. Analysis

We consider the two-dimensional creeping motion of a long circular cylindrical particle of radius a in an

incompressible Newtonian fluid near a large plane wall located at a distance d from the axis of the cylinder at the quasi-

steady state. The fluid may slip at the surface of the particle but does not slip at the plane wall. The cylinder has a

translational velocity Uxex+Uyey and is rotating with an angular velocity Oez, where ex, ey, and ez are the unit vectors in

rectangular coordinates (x, y, z). The plane wall is stationary and the fluid is at rest far away from the particle.

In addition to rectangular coordinates, it is convenient to introduce cylindrical bipolar coordinates (x, c, z), as

illustrated in Fig. 1. The relationship between these two coordinate systems in any plane z ¼ constant is

x ¼
c sinh c

cosh c� cos x
, (4a)

y ¼
c sin x

cosh c� cos x
, (4b)

where �NocoN, 0pxp2p, and c is a characteristic length in the bipolar coordinate system which is positive.
ξe

x

0ψψ =

0=ξ

0=ψ

πξ =

2/3πξ = 2/πξ =

y

∞=
=

ψ
cx

ψe

Fig. 1. Geometric sketch for the two-dimensional motion of a long circular cylinder near a large plane wall.
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The curves c ¼ constant correspond to a family of nonintersecting, coaxial circles (or cylinders) whose centers all lie

along the x-axis. The special case c ¼ 0 generates a circle of infinite radius and corresponds to the entire y-axis (or the

plane x ¼ 0). c ¼ c040 represents the circle (or the cylinder) of radius a ¼ c cschc0, with its center at the point

(x ¼ d ¼ c cothc0, y ¼ 0). The ratio of the radius of the cylinder to the distance of the axis of the cylinder from the

plane is related to c0 by

l ¼ a=d ¼ sechc0. (5)

The creeping motion and continuity equations governing the fluid flow are

Zr2v� rp ¼ 0, (6a)

r � v ¼ 0, (6b)

where v is the fluid velocity distribution and p is the dynamic pressure. Taking the curl of both sides of Eq. (6a) and

introducing Eq. (6b) and the stream function C result in a fourth-order linear partial differential equation,

r4C ¼ r2ðr2CÞ ¼ 0. (7)

In Eqs. (6) and (7), the operators are

r ¼ ex
q
qx
þ ey

q
qy
¼

1

c
ðcosh c� cos xÞ ex

q
qx
þ ec

q
qc

� �
, (8a)

r2 ¼
q2

qx2
þ

q2

qy2
¼

1

c2
ðcosh c� cos xÞ2

q2

qx2
þ

q2

qc2

� �
, (8b)

where ex and ec are unit vectors in bipolar coordinates. Note that

ex ¼
1

cosh c� cos x
½� sinh c sin x ex � ðcosh c cos x� 1Þec�, (9a)

ey ¼
1

cosh c� cos x
½ðcosh c cos x� 1Þex � sinh c sin x ec�. (9b)

The stream function is related to the velocity components in bipolar coordinates by

vx ¼
1

c
ðcosh c� cos xÞ

qC
qc

, (10a)

vc ¼ �
1

c
ðcosh c� cos xÞ

qC
qx

. (10b)

The boundary conditions appropriate to the present problem require that

c ¼ 0 : v ¼ 0, (11a)

c ¼ c0 : v ¼ Uxex þUyey þ aOex �
1

b
tcxex. (11b)

In Eq. (11b), tcx is the viscous stress in bipolar coordinates for the fluid and 1/b is the frictional slip coefficient about

the surface of the particle.

A general solution of the biharmonic Eq. (7) in bipolar coordinates, suitable for satisfying boundary conditions on

the cylindrical particle and plane wall, has been given by Jeffery (1922) and Wakiya (1975),

C ¼ cðcosh c� cos xÞ�1 Acðcosh c� cos xÞ þ ðBþ CcÞ sinh c�Dc sin x½

þ
X1
n¼1

½an coshðnþ 1Þc
�

þ bn sinhðnþ 1Þcþ cn coshðn� 1Þcþ dn sinhðn� 1Þc� cos nx

þ ½a0n coshðnþ 1Þcþ b0n sinhðnþ 1Þcþc0n coshðn� 1Þcþ d 0n sinhðn� 1Þc� sin nx
��
. ð12Þ

Applying the boundary conditions given in Eqs. (11) and (12) and using Eqs. (9) and (10), one can obtain

the following relations for the unknown coefficients A, B, C, D, an, bn, cn, dn, a0n, b0n, c0n, and d 0n (in which d1 and
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d 01 are trivial):

A ¼
aO cosh c0

a
�

Uy

sinh2 c0

�
Cðaþ C�m þ 2ac0= cosh 2c0Þ

a tanh c0

, (13a)

a1 ¼ �
A

2
tanh c0 �

Cc0 þUy

sinh 2c0

, (13b)

a2K2 ¼ 4Aa sinh c0 þ 4ð2a1a� CC�mÞ cosh c0, (13c)

anþ1Knþ1 � 2anðHn þ Kn cosh c0Þ þ an�1Kn�1 ¼ 0 ðnX2Þ, (13d)

B ¼ �A; b1 ¼
A

2
; cn ¼ �an ðnX1Þ, (14a2c)

bn ¼ anMn; dn ¼
1þ n

1� n
bn ðnX2Þ, (14d,e)

a01 ¼
ð2c0 � sinh 2c0ÞDþ 2Ux

4sinh2 c0

, (15a)

a02K2 ¼ 4Dðaþ C�mÞsinhc0 þ 8a01acoshc0, (15b)

a0nþ1Knþ1 � 2a0nðHn þ Kn coshc0Þ þ a0n�1Kn�1 ¼ 0 ðnX2Þ, (15c)

b01 ¼
1

2
D; c0n ¼ �a0n ðnX1Þ, (16a,b)

b0n ¼ a0nMn; d 0n ¼
1þ n

1� n
b0n ðnX2Þ, (16c,d)

where

a ¼ sinh2 c0 þ C�m cosh 2c0, (17)

Kn ¼
4nðsinh 2nc0 � n sinh 2c0ÞC

�
m

ð1� nÞ sinhðnþ 1Þc0 þ ð1þ nÞ sinhðn� 1Þc0

ðnX1Þ, (18a)

Hn ¼
4ðsinh2 nc0 � n2 sinh2 c0Þ sinh c0

ð1� nÞ sinhðnþ 1Þc0 þ ð1þ nÞ sinhðn� 1Þc0

ðnX2Þ, (18b)

Mn ¼
ð1� nÞ½coshðn� 1Þc0 � coshðnþ 1Þc0�

ð1� nÞ sinhðnþ 1Þc0 þ ð1þ nÞ sinhðn� 1Þc0

ðnX2Þ, (18c)

and C�m ¼ Z=ba [ ¼ Cml/a from Eq. (3) for an aerosol cylinder]. Because the coefficients an (and also bn, cn, dn, a0n, b0n, c0n,

and d 0n) should approach zero as n-N for the stream function to remain bounded, the coefficients A, C, and an can be

determined by simultaneously solving Eqs. (13a)–(13c) and the first N equations of the recurrence relation (13d)

provided that N is sufficiently large that aN+2 is negligible. Then, with the knowledge of A and an, the coefficients B, bn,

cn, and dn can be calculated using Eq. (14). Similarly, the coefficients D and a0n are to be determined by simultaneously

solving Eqs. (15a) and (15b) and the first N equations of the recurrence relation (15c), and then the coefficients b0n, c0n,

and d 0n can be calculated using Eq. (16).

The drag force and torque per unit length exerted by the fluid on the cylinder can be determined from

F ¼ �

Z 2p

0

ðec �PÞc¼c0

a sinh c0 dx
cosh c0 � cos x

, (19a)

T ¼

Z 2p

0

½ec � ðec �PÞ�c¼c0

a2 sinh c0 dx
cosh c0 � cos x

, (19b)
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respectively. In Eq. (19), P is the total stress tensor,

P ¼ �pIþ Z rvþ ðrvÞT
� �

, (20)

where I is the unit dyadic. Substituting Eq. (12) into Eq. (19) and using Eqs. (8a), (10), and (20) yield

F ¼ Fxex þ Fyey ¼ 4pZðDex þ CeyÞ, (21a)

T ¼ Tez ¼ �4pZaðA sinh c0 þ C cosh c0Þez, (21b)

where the coefficients A, C, and D have been obtained using Eqs. (13) and (15).

In the limiting case of C�m ¼ 0 or ba/Z-N, there is no slip at the particle surface and Eqs. (13) and (15) result in

A ¼
Uy

c0

þ
aO

sinh c0

� �
coth c0; C ¼ �

Uy

c0

; D ¼ �
Ux

c0 � tanh c0

. (22)

Substituting Eq. (22) into Eq. (21), one obtains

F ¼ �4pZ
Ux

c0 � tanh c0

ex þ
Uy

c0

ey

� �
, (23a)

T ¼ �4pZa2O coth c0ez, (23b)

where the expressions for the hydrodynamic force and torque previously obtained (Keh et al., 1991) is reproduced.

In the other limiting case of C�m !1 or ba/Z ¼ 0, there is a perfect slip at the particle surface and Eqs. (13) and (15)

lead to

A ¼
2Uy coth c0

2c0 þ tanh 2c0

; C ¼ �
2Uy

2c0 þ tanh 2c0

; D ¼ �
2Ux

2c0 � tanh 2c0

. (24)

Substituting Eq. (24) into Eq. (21), one obtains

F ¼ �4pZ
2Ux

2c0 � tanh 2c0

ex þ
2Uy

2c0 þ tanh 2c0

ey

� �
, (25a)

T ¼ 0. (25b)

As expected, a particle with a perfect slip surface bears no hydrodynamic torque.

For the translational streaming motion of an infinitely long circular cylinder perpendicular to its axis in an

unbounded fluid, i.e. the case l ¼ 0 or c0-N, there exists no solution of Eq. (7) (known as the Stokes paradox) and

both the force components Fx and Fy vanish, regardless of the slip parameter C�m. On the other hand, for the rotational

motion of an infinitely long circular cylinder about its axis in an unbounded fluid, Eq. (21b) reduces to closed form as

T0 ¼ T0ez ¼ �4pZa2O
1

1þ 2C�m
ez. (26)

Again, Eq. (26) leads to T0 ¼ 0 for a perfect slip particle (with C�m !1).
3. Results and discussion

We consider the two-dimensional quasi-steady creeping flow produced by an infinitely long, slip-surface cylinder

(at c ¼ c0) of radius a translating with velocity Uxex+Uyey and rotating with angular velocity Oez near an infinite

plane wall (at x ¼ 0). Through the numerical solution of Eqs. (13) and (15) using a personal computer, the coefficients

A, C, and D together with an and a0n of the stream function expressed by Eq. (12) have been determined for various

values of the parameters C�m and l. For all the cases, N equal to about 250 was sufficiently large that the (N+1)th terms

of the series of coefficients an and a0n are negligible and increases in N do not alter the calculated values of all the

coefficients appreciably. With the knowledge of the coefficients A, C, and D, the hydrodynamic force and torque acting

on the cylinder per unit length can be calculated using Eq. (21). The results indicate that the translation and rotation of

the cylinder for this creeping motion are not coupled with each other; namely, the force and torque components Fx, Fy,

and T depend only on Ux, Uy, and O, respectively. This behavior is different from that for the creeping translational and

rotational motions of a slip-surface sphere in the vicinity of a plane wall (Chen and Keh, 2003).
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Table 2

The dimensionless drag force—Fy/4pZUy experienced by a slip circular cylinder translating transversally and parallel to a plane wall at

various values of l and C�m

l �Fy4pZUy

C�m ¼ 0 C�m ¼ 0:01 C�m ¼ 0:1 C�m ¼ 1 C�m !1

0.001 0.13156 0.13139 0.13014 0.12604 0.12344

0.01 0.18874 0.18839 0.18582 0.17757 0.17247

0.1 0.33409 0.33299 0.32501 0.30058 0.28627

0.2 0.43622 0.43432 0.42070 0.38065 0.35812

0.3 0.53367 0.53076 0.51021 0.45248 0.42136

0.4 0.63824 0.63393 0.60410 0.52492 0.48428

0.5 0.75933 0.75290 0.70977 0.60377 0.55193

0.6 0.91024 0.90030 0.83661 0.69417 0.63035

0.7 1.11658 1.10002 1.00107 0.80860 0.73071

0.8 1.44270 1.41052 1.24063 0.97476 0.88158

0.9 2.14066 2.04913 1.68521 1.30676 1.19985

0.95 3.09563 2.85659 2.20376 1.75587 1.64596

0.975 4.42528 3.85317 2.86249 2.39310 2.28454

0.99 7.04154 5.48658 4.13000 3.67308 3.56723

0.995 9.97914 7.04912 5.56780 5.12707 5.02266

0.999 22.35136 13.11485 11.71123 11.29345 11.19057

Table 1

The dimensionless drag force �Fx/4pZUx experienced by a slip circular cylinder translating transversally and normal to a plane wall at

various values of l and C�m

l �Fx/4pZUx

C�m ¼ 0 C�m ¼ 0:01 C�m ¼ 0:1 C�m ¼ 1 C�m !1

0.001 0.15149 0.15127 0.14961 0.14421 0.14083

0.01 0.23265 0.23212 0.22822 0.21591 0.20841

0.1 0.50044 0.49801 0.48053 0.42945 0.40109

0.2 0.76183 0.75630 0.71746 0.61203 0.55787

0.3 1.08710 1.07618 1.00173 0.81577 0.72760

0.4 1.53779 1.51691 1.37995 1.07020 0.93572

0.5 2.21763 2.17690 1.92346 1.41592 1.21642

0.6 3.34882 3.26400 2.77394 1.93219 1.63718

0.7 5.51130 5.31008 4.27054 2.81195 2.36605

0.8 10.73570 10.11742 7.47247 4.68661 3.96872

0.9 31.99446 28.39274 18.06223 11.29337 9.91559

0.95 92.70814 74.49890 42.11408 28.31604 25.95631

0.975 265.29155 184.18642 99.19621 74.08797 70.30084

0.99 1055.87595 569.28369 326.42637 276.97007 270.30334

0.995 2993.24207 1314.39280 845.25628 767.22778 757.28960

0.999 33525.92266 10231.19869 8627.03667 8425.40680 8401.59593
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The numerical solutions for the dimensionless hydrodynamic force and torque components �Fx/4pZUx, �Fy/4pZUy,

and T/T0 [where T0 is defined by Eq. (26)] are presented in Tables 1–3 for various values of the parameters C�m and l
and plotted versus C�m in Figs. 2–4 for different values of l. All of the results obtained converge satisfactorily to at least

the significant digits shown in these tables. As expected, each of the force components is a monotonically increasing

function of l, and will become infinite in the limit l ¼ 1 for any given value of C�m. Although the normalized torque

T/T0 for the case of no slip (C�m ¼ 0) increases with an increase in l, it is not a monotonic function of l for the case of

finite values of C�m (T/T0 increases with an increase in l from unity at l ¼ 0, reaches a maximum at a value of l greater
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Table 3

The normalized hydrodynamic torque T/T0 experienced by a slip circular cylinder rotating about its axis parallel to a plane wall at

various values of l and C�m

l T/T0

C�m ¼ 0 C�m ¼ 0:01 C�m ¼ 0:1 C�m ¼ 1 C�m ¼ 10

0.1 1.00504 1.00494 1.00419 1.00167 1.00024

0.2 1.02062 1.02020 1.01710 1.00675 1.00096

0.3 1.04828 1.04727 1.03977 1.01544 1.00217

0.4 1.09109 1.08906 1.07426 1.02809 1.00390

0.5 1.15470 1.15095 1.12416 1.04527 1.00618

0.6 1.25000 1.24318 1.19593 1.06777 1.00903

0.7 1.40028 1.38733 1.30191 1.09674 1.01251

0.8 1.66667 1.63857 1.46900 1.13370 1.01659

0.9 2.29416 2.20527 1.77044 1.17998 1.02119

0.95 3.20256 2.95276 2.03906 1.20601 1.02350

0.975 4.50035 3.85669 2.23262 1.21875 1.02456

0.99 7.08881 5.12512 2.37129 1.22557 1.02510

0.995 10.01252 5.94136 2.41764 1.22748 1.02526

0.999 22.36627 6.90824 2.44965 1.22873 1.02533

0.9999 70.71245 7.12835 2.45473 1.21832 0.98001

0.99999 223.60736 7.14260 2.40974 0.86148 0.54613

0.01 0.1 1 10 100
0.1

1
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100

λ  = 0.001

0.01
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x

x

U
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πη4

−

*
mC

Fig. 2. Plots of the dimensionless drag force �Fx/4pZUx for the transverse translation of a circular cylinder normal to a plane wall

versus the slip parameter C�m with l as a parameter.
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than about 0.999, and then decreases with a further increase in l). In the limit C�m!1, the normalized torque

T/T0-1 (with T-0 and T0-0) unless the value of l is very close to unity. For any given value of l, these force and

torque components decrease with an increase in the slip parameter C�m (or with a decrease in the coefficient b).
A comparison between the results of �Fx/4pZUx and �Fy/4pZUy indicates that, as expected, the plane wall exerts the

most influence (or greatest drag) on the particle when its migration occurs normal to it, and the least in the case of

motion parallel to it. The difference can be quite significant when the spacing between the particle and the confining
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parameter C�m with l as a parameter.
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boundary is small. Therefore, the direction of transverse migration of a cylinder in the vicinity of a plane wall parallel to

its axis is different from that of the applied force, except when the force is oriented parallel or perpendicular to the plane

wall.

The quasi-steady motion of a slip sphere of radius a with a translational velocity Uy and angular velocity O parallel to

an infinite plane wall at a distance d from the particle center was investigated by Chen and Keh (2003) and its motion

with a translational velocity Ux normal to a plane wall was examined by Chang and Keh (2006) using a boundary
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collocation method. In Figs. 5–7, their numerical solutions for the relevant normalized force and torque components

Fx/F0, Fy/F0, and T/T0 [where F0 and T0 are given by Eq. (2) for the motion of a slip sphere in an unbounded fluid],

respectively, are plotted versus l ( ¼ a/d) for different values of C�m by dashed curves. For comparison, our solutions of
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the corresponding force and torque components for the case of two-dimensional motion of a slip circular cylinder near

an infinite plane wall are also drawn by solid curves in the same figures. Since there exists no creeping-flow solution of

F0 for the transverse translation of a circular cylinder as l ¼ 0, the hydrodynamic forces Fx and Fy acting on the slip

cylinder with l ¼ 0.001 are chosen to be the reference force F0 for its corresponding motions in the proximity of the

plane wall. As expected, Figs. 5–7 indicate that the enhancement in the hydrodynamic drag force and torque on a

translating and rotating particle caused by a confining plane wall is much more significant for a cylinder than for a

sphere for a given combination of the parameters C�m and l.
4. Concluding remarks

In this work, the arbitrary two-dimensional translation and rotation of a long circular cylinder in the proximity of a

large plane wall at the quasi-steady state are studied theoretically, where the ambient fluid may slip at the surface of the

cylinder. A cylindrical bipolar coordinate system has been used to solve the Stokes equations for the fluid flow field. The

results for the hydrodynamic drag force and torque exerted on the cylinder are obtained for various cases of the slip

coefficient and of the separation between the cylinder and the plane wall. It has been found that, for a given relative

position of the wall, the wall-corrected drag force and torque acting on the cylinder by the surrounding fluid are

decreasing functions of the slip parameter C�m.

In Tables 1–3 and Figs. 2–7, we present only the results for resistance problems, defined as those in which the drag force

components Fx and Fy as well as torque T exerted by the surrounding fluid on the particle translating and rotating near

the confining wall are to be determined for specified particle velocities Ux, Uy, and O [¼ �T0ð1þ 2C�mÞ=4pZa2 as given by

Eq. (26)]. In a mobility problem, on the other hand, the external force components Fx and Fy as well as torque T imposed

on the particle are specified [with T ¼ 4pZa2O0=ð1þ 2C�mÞ, where O0 will be the resulting angular velocity of the particle

in the absence of the wall] and the boundary-corrected particle velocities Ux, Uy, and O are to be determined. For the two-

dimensional creeping motion of a long circular cylinder with an arbitrary slip coefficient near a large plane wall considered

in this work, the translation and rotation are not coupled with each other, and thus, the ratios 4pZUx/Fx, 4pZUy/Fy, and

O/O0 for a mobility problem are equal to the ratios (�Fx/4pZUx)
�1, (�Fy/4pZUy)

�1, and (T/T0)
�1, respectively, for its

corresponding resistance problem. Thus, our results can also be applied to physical problems in which the applied force

and torque on the cylinder are the prescribed quantities and the cylinder must move accordingly.

It is worth repeating that the value of the slip coefficient Cm for aerosol systems varies in a small range 1.0–1.5. For

the continuum with slippage analysis to be valid for the rarefied gas flow surrounding a solid particle, the Knudsen
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number (l/a) should be small (say, less than 1). Consequently, the parameter C�m can be any value less than the order

unity for the case of motion of an aerosol particle. On the other hand, our result can also apply to the cases of the

aqueous liquid flow near a hydrophobic surface and of the fluid flow over a porous surface, in which the range of the

slip parameter C�m can be much wider and more experimental data for different situations are still needed. Therefore, in

the previous section, we have chosen to present the numerical values of the hydrodynamic drag force and torque exerted

on the particle for the parameter C�m with values from zero to infinity to provide a complete comparison, which is of

fundamental interest and can be used for various cases in practice.
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