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Abstract-An exact analytical study is presented for the thermophoretic motion of two spheres in 
a uniform prescribed temperature gradient along their line of centers. The particles may differ in 
radius, in thermal conductivity and in surface properties, but the Knudsen numbers are assumed to 
be small so that the fluid flow is described by a continuum model with a thermal creep and 
a hydrodynamic slip at the particle surfaces. The appropriate energy and momentum equations are 
solved in the quasisteady situation using spherical bipolar coordinates and the thermophoretic 
velocities of the particles are calculated for various cases. The interaction between particles can be 
significant when the surface-to-surface spacing approaches zero. The influence of the interaction, in 
general, is stronger on the smaller particle than on the larger one. For the thermophoresis of two 
identical spheres, both migrate faster than the velocity they would possess if isolated. The ther- 
mophoretic motion of a sphere in the direction normal to a plane wall is also studied for the case that 
the gas-solid surfaces may have different properties. In general, the particle-particle and par- 
ticle-wall interaction effects in thermophoresis are much weaker than for sedimentation. 

1. INTRODUCTION 

When a particle is suspended in a gaseous medium possessing a temperature gradient, it will 
move in the direction of decreasing temperature. This motion is known as thermophoresis 
and has been the subject of considerable study for many years (Waldmann and Schmitt, 
1966; Derjaguin et al., 1976; Friedlander, 1977). The physical explanation of this phenom- 
enon is based on kinetic-theory arguments and depends upon the fact that the particle 
receives a greater number of molecular impacts on its hotter side than on its colder one, thus 
leading to a net rate of change of momentum in the direction opposite to the temperature 
gradient. Theoretical analyses yield the following expression for the thermophoretic velo- 
city of an isolated particle in a constant temperature gradient VT,: 

U(O) = _ K!! 1 
---VT,, 

P Tm (0) 
(1) 

where vl is the fluid viscosity, p is the fluid density, and T,(O) is the bulk gas absolute 
temperature at the particle center in the absence of the particle (or the mean gas temper- 
ature in the vicinity of the particle). The thermophoretic coefficient K depends upon the 
magnitude of the Knudsen number, l/a, where a is the radius of the particle and 1 is the mean 
free path of the gas molecules. 

In the limit of small Knudsen numbers where the particle is large compared with the 
mean free path, the fluid flow may be described by a continuum model and the ther- 
mophoretic force arises from an induced “thermal creep” along the particle surface due to 
the existence of a tangential temperature gradient at the particle-fluid interface. Utilizing 
gas kinetic theory, Maxwell (1879) predicted that a tangential temperature gradient V, Tat 
a gas-solid surface would cause a thin layer of gas adjacent to the surface to move, with the 
relative velocity at the outer edge of the layer being 
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where T is the local gas temperature. The thermal slip coefficient C, was found to be $ by 
Maxwell on the assumption that the distribution function in the bulk of the gas held all the 
way to the solid wall. The thermal creep velocity v, is directed toward the high temperature 
side. 

By using the Maxwellian creep velocity equation (2), which gives the coupling between 
temperature and velocity fields, as a slip velocity boundary condition and solving the 
equation of continuum fluid motion (at low Reynolds number) incorporating the heat 
conduction in the gas and particle, Epstein (1929) derived the following equation for the 
thermophoretic coefficient: 

k 
K = 2C,-----_,, 

2k + k 

where k and k^ are the thermal conductivities of the gas and the particle, respectively. The 
thermophoretic velocity predicted by equation (3), which is independent of particle size, is in 
fair agreement with experimental data when the ratio c/k is not too high, less than about 10, 
as for oil droplets. But it gives much too small thermophoretic velocities (by a factor 30 and 
more) for particles with large thermal conductivity, for instance, NaCl (sodium chloride) 
particles with i/k z 100. Indeed, in the limit k^ -+ cc, equation (3) yields U(O) = 0, whereas 
Schadt and Cadle (1961) distinctly observed and measured a thermophoresis with NaCl 
particles. 

Equation (3) for the thermophoretic velocity of an aerosol particle was improved by 
Brock (1962) using the low Knudsen number effects of temperature jump at the gas-solid 
surface as well as frictional (isothermal) gas slippage (in addition to the thermal creep 
velocity) along the particle surface. The resulting expression for the thermophoretic coefhc- 
ient of a suspended aerosol sphere is 

where the dimensionless coefficients C, and C, (numerical factors of order unity) account 
for the temperature jump and hydrodynamic slip, respectively, at the particle surface and 
must be determined experimentally for each gas-solid system. Both Epstein and Brock 
assumed the value of C, in equations (3) and (4) to be equal to the Maxwell value (C, = 2). 
Note that equation (4) is applicable to the range of finite Knudsen number and reduces to 
equation (3) when l/a = 0. For large particles and k^-+ x , equation (4) yields 
K = 2C,C,(l/a), whereas Epstein formula (3) gives no particle migration. Satisfactory 
agreement of the prediction by equation (4) with experiments (Schadt and Cadle, 1961) has 
been obtained. The best kinetic-theory values for complete thermal and momentum accom- 
modations appear to be C, = 1.17, C, = 2.18 and C, = 1.14 (Talbot et al, 1980). 

Equation (4) is valid only for a spherical particle suspended in gaseous media that extend 
to infinity in all directions. However, in practical applications of thermophoresis, aerosol 
particles usually are not isolated and might interact with nearby particles and/or bound- 
aries. Through an exact representation in spherical bipolar coordinates, Reed and Morrison 
(1975) studied the thermophoretic motion of two identical aerosol spheres (with equal sizes, 
conductivities, coefficients C, and C,) along their line of centers using the Maxwell value for 
C,. They also examined the thermophoresis of a sphere normal to an infinite plane wall with 
the same coefficients C, and C,; the value of C, was taken to be L$ for the particle and zero 
for the wall. In their calculations, they failed to obtain any numerical result when the gap 
thickness between the surfaces is less than 9% of the particle radius. In the present work, 
our objective is to obtain an exact solution to the quasisteady problems of the thermophor- 
esis of two arbitrary spherical particles along their line of centers and of the thermophoresis 
of an arbitrary spherical particle normal to a large plane wall. In the former problem, the 
particles may differ in radius, in thermal conductivity, and in coefficients C,, C, and C,; in 
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the latter problem, the plane wall may have different values in C,, C, and C, from the 
particle. The energy and momentum equations applicable to the system are solved by using 
bipolar coordinates and the fluid streamlines for various cases are presented. Our numerical 
results for the particle-particle and particle-wall interaction parameters, which are conver- 
gent even when the surface-to-surface distance is as small as 0.02% of the particle radius, 
agree well with those obtained by Reed and Morrison in the situations considered by them. 

2. ANALYSIS FOR THE THERMOPHORESIS OF TWO SPHERES 

We consider the thermophoretic motion of two spherical particles along their line of 
centers in an infinite gaseous medium, which is assumed to be Newtonian and incompress- 
ible. A linear temperature field T,(x) with a uniform thermal gradient E, e, (equal to VT, ) 
is prescribed in the fluid far away from the pair of aerosol spheres; e, is the axial unit vector 
in the cylindrical polar coordinate system (p, 4, z). The particles may differ in radius and in 
physical properties. Gravitational effects are ignored. Our purpose here is to determine the 
correction to equation (4) for one particle due to the presence of the other in the temperature 
and flow fields. 

For conveniently satisfying the boundary conditions at particle surfaces, an orthogonal 
curvilinear coordinate system (II/, 4;, #), known as spherical bipolar coordinates (shown in 
Fig. l), is utilized to solve this problem. This coordinate system is related to cylindrical polar 
coordinates by the following relation in any meridian plane 4 = constant (Morse and 
Feshbach, 1953; Happel and Brenner, 1983): 

csin$ 
‘=cosh<-cos$ 

and 
c sinh 5 

‘=coshc-costi’ VW 

where c is a characteristic length in the bipolar coordinate system which is positive. The 
coordinate surfaces 5 = constant correspond to a family of nonintersecting spheres whose 

Fig. 1. Geometrical sketch for spherical bipolar coordinates. 
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centers lie along the z-axis. The value 5 = 0 is a sphere of infinite radius and equivalent to 
the entire plane z = 0. Two spheres external to each other are chosen to be 5 = 5r (with 
t1 > 0) and 5 = c2 (with c2 < 0), and the sphere radii a, and a2 as well as the distances of 
their centers from the origin 4, and dz are given by 

ai = c cosech 1 (i ( (6) 

and 
di = ccoth(<il, (7) 

for i = 1 or 2. The center-to-center distance between the particles, ri2, equals (d, + d,). 
To determine the thermophoretic velocities of the two aerosol spheres, it is necessary to 

ascertain the temperature and velocity distributions. 

2.1. Temperature distribution 

In our problem of thermophoresis of two spheres, the transport of momentum and energy 
is inherently unsteady. However, the problem can be considered quasisteady if the Peclet 
and Reynolds numbers are small (the effects of convection are neglected). The energy 
equation governing the temperature distribution T(x) for the fluid phase of constant 
thermal conductivity k is Laplace’s equation: 

V=T=O. (84 

For the two particles one has 

V2Ti=0, i= 1 or2, (8b) 

where T,(x) is the temperature field inside particle i. The boundary conditions at the particle 
surfaces require that the normal heat fluxes be continuous and a temperature jump which is 
proportional to the normal temperature gradient (Kennard, 1938) occur. Also, the fluid 
temperature must approach the linear prescribed field far from the particles and the 
temperature inside each particle is finite everywhere. Thus, one has 

ar aTi 
kg=kiz. (94 

T_ T, = _ AC ,/cosht - cosrC/aT - 
L 

ltil “ c at’ PW 

151 + co: Ti is finite, (9c) 

(p2 + 22)1’2 -+ co : T+ T, = T,, + E,z (94 

for i = 1 or 2; kl and k2 are the thermal conductivities of the particles, which are assumed to 
be independent of temperature. In formula (9b), I is the mean free path of the surrounding 
fluid and C,i is the dimensionless temperature jump coefficient of particle i. The undisturbed 
temperature at the plane z = 0 has been set equal to To. 

A general solution to the Laplace equation (8a) suitable for satisfying these boundary 
conditions is (Morse and Feshbach, 1953) 

T = cE, (cash r - p)i’* 
$0 [ 

A,cosh(n + &)t + B,sinh(n i- ))~]P.(P) 

+ T, + E, z, (104 

where P, is the Legendre polynomial of order n and for brevity we have put p = cos II/. 
Boundary condition (9d) is immediately satisfied by a solution of this form. The solution to 
equation (8b), satisfying the boundary condition (SC), can be expressed as 

Ti = cE,(cosh< - p)l’= f Ci,expC- (n + ~)15lIp~(~) + To + Emz UW n=O 
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for i = 1 or 2. The coefficients A,, B,, C,, and C,, in equation (10) are to be determined 
using equations (9a) and (9b). 

Utilizing the expansion, which can be derived using the generating function of the 
Legendre polynomials, 

cash 5 
(cash 5 - ~)l’~ 

and the recurrence relations 

sinh2 5 
- (coshr - /A)~” = JinEOexpC- (n + +)I511 

x[cosht - (2n + l)sinh)<[]P.(p) (11) 

of the Legendre polynomials, one can apply the boundary 
conditions (9a) and (9b) at the particle-fluid interfaces to the general solution (10) to yield 
the following four algebraic recursion formulas: 

- $n + l)[A .+rsinh(n + $)[i + B,+rcosh(n + :)tiI 

1 [A,cosh(n + i)ri + B,sinh(n + i)ci] 

+ g(2n + l)coshti[A,sinh(n + $)ti + &cosh(n + $)<,I 

- +jCkexPC- (n + t)ltill 
I 

-~nCA.-lsinh(n-:)ei+B,-lcosh(n-:)ri] 

= J?y[(2n + l)sinhltij - coshli]exp[ -(n + ))ll;il], 

-(n + l)CAl+, sinh(n + t)ti + B,+rcosh(n + i)ti] 

-&F(n+ 1)Ci,,+,,exPC-(~+3)15ill 
I 

+ sinh&[A,cosh(n + i)ci + B,sinh(n + i)<i] 

+ (2n + 1) cash ti [A, sinh(n + $) 5i + B, cash (n + 4) <i] 

- kT 
[ 

sinhti -&(2n + l)cOSht;i Ci,exp[-(n ++)15il] 
I I 

- n[A,_l sinh(n - f)ti + B,-rcosh(n - f)<i] 

W-4 

= 2JZ(kT - l)[coshti - (2n + l)sinhlrij]exp[ - (II + ))ltil] (12b) 

for i = 1 or 2. In (12), k: = ki/k is the ratio of thermal conductivity between the particle and 
the surrounding fluid. The four formulas represent a group of infinite coupled equations for 
the unknown coefficients A,,, B,, C1, and C2”. Because these coefficients should individually 
approach zero as n + co for the temperature field (10) to remain bounded, they can be 
determined by solving the first m sets of the four recursion equations, provided that m is 
sufficiently large that all A,+ 1, B,, 1, Cltm+ 1J and CZ(,,,+ r) are negligible. 

2.2. Fluid velocity distribution 

With knowledge of the solution for the temperature field, we can now proceed to find the 
fluid velocity distribution. Due to the low Reynolds numbers encountered in thermo- 
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phoretic motions, the fluid flow is governed by the quasisteady fourth-order differential 
equation for viscous axisymmetric flows: 

E4Y = 0, (13) 

where Y is the Stokes stream function. The Stokes operator EZ assumes the following form 
in spherical bipolar coordinates: 

E2 E . (14) 

The stream function ‘-I’ is related to the velocity field v by 

and 
(cosht - p)’ Z’P 

‘J, = - c2(l _ P2)1/2 ay (15b) 

Owing to the thermal creep velocity given by equation (2) and the frictional slip velocity 
along the particle surfaces as well as the fluid at rest far from the particles, the boundary 
conditions for the fluid velocity are 

v=u__ilcmil 
’ 

-((I - e<e,)e,:t + C,i)lLVsT, 
15il ‘I P Ti (164 

(p2 + z2)1’2 + oz : v-to (1W 
for i = 1 or 2. Here, Ti = To + cE, coth I, which is the prescribed temperature at the 
position of the center of particle i; t( = 9 [Vv + (VV)~]) is the viscous stress tensor for the 
fluid; e6 is the unit vector in c-direction; I is the unit dyadic; Cmi and Csj(i = 1 or 2) are the 
hydrodynamic slip and thermal slip coefficients, respectively, about the surface of particle i; 
U1 ( = U1 e,) and U,( = U, e,) are the instantaneous thermophoretic velocities of the two 
aerosol particles to be determined. The tangential temperature gradient, V, T, can be 
obtained from equation (10a). The validity of the expression for the thermal creep velocity in 
equation (16a) is based on the assumption that the fluid is only slightly nonuniform in the 
undisturbed temperature on the length scale of the particle radii. 

Because the particles are freely suspended in the surrounding fluid, the net force exerted 
by the fluid on the surface of each particle must vanish: 

F= 
ss 

neTIdS = 0, 
particle 
surface 

(17) 

where n is the unit normal vector at the particle surface pointing into the surrounding fluid 
and II is the total stress tensor. For the axisymmetric motion considered in this work, one 
can evaluate U 1 and U2 by merely satisfying constraint (17) after solving equations (13) and 

(16). 
A general solution of equation (13) satisfying the boundary condition (16b) is (Stimson 

and Jeffery, 1926; Happel and Brenner, 1983) 

‘I’ = c2(cosh< - ~u)-~‘~ f [ a,cosh(n - %)t + b,sinh(n - &)t 

+ c,cosh(n + :)ir + d,sinh(n + $)~]G,;‘{‘(P). (18) 

Here, G,;‘j’(p) is the Gegenbauer polynomial of order n + 1 and degree - $, which is 
related to the Legendre polynomials by 

G,-,‘i2bL) = p,-l(P) - Pn+l(P) 
2n + 1 (19) 
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The coefficients a,, b,, c, and d, are to be determined from the boundary conditions given 
by equation (16a) using equation (11) and the recurrence relations of the Legendre poly- 
nomials. The procedure is straightforward but tedious and the results, which consist of four 
algebraic recursion formulas, are 

a,cosh(n - $)<i + b,sinh(n - 3)ti + c,cosh(n + $)ri + d,sinh(n + $)<i 

= exPC-(~--+)l5iII 
2n - 1 (204 

C,iI n 
72n+3{(n + i)2Ca,+lcosh(n + i)ti + b,+tsinh(n + $)t;il 

+ (n + S)2[c,+1 cosh(n + $)ti + d,+, sinh(n + $)ti]} 

cmi 1 - -coshci{(n - 4)2[a,cosh(n - f)& + b,sinh(n - +)&I 
C 

+ (n + j)‘[c,cosh(n + :)li + d,sinh(n + $)Ci]} 

-&((n - )C 3 a,sinh(n - 3)4i + b,cosh(n - +)ti] 
I 

+ (n + $)[c,sinh(n + $)<i + d,,cosh(n + 4)til) 

+ C,iZ n + 1 
72n_1 {(n - 3)2Ca,-r cosh(n - $)ci + b,-1 sinh(n - $)ti] 

+(n++)2[c,-1cosh(n+f)5i+d,-~sinh(n+i)5iI} 

{expC - (n - $)ltill - exPC - (n + 3)ltill> 

exPC - (n + ~)li”ill 
2n + 3 

“+I cosh(n + $)li + B,+Isinh(n + $)ti] 

- n(n + l)coshti[A,cosh(n + ))Ci + &sinh(n + +)ti] 

rcosh(n - t)~i + B,_, sinh(n - i)ri] 

- *Gi%n(n + l){exPI: -(n -3)ltill - exPC - (n + t)ltiIl} (20’3 
I 

for i = 1 or 2. Because the unknown coefficients a,,, b,, c, and d, become small with large n, 
simultaneous solution of these four recursion equations for the first m sets yields 4m 
coefficients, thereby determining the Stokes stream function for the fluid according to 
equation (18). 

By integration of the stress vector on the particle surface using the first part of equation 
(17), the drag force opposing the thermophoretic motion of the particle at 5 = {r is (Stimson 
and Jeffery, 1926) 

F1 = - 2,/57ctpz f (a, + b, + c, + d,), 
II=1 

(214 

and for the particle at r = t2, 

F2 = - 2~1wp f (a, - b, + c, - d,). 
n=1 

@lb) 
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2.3. Particle velocities 

Since the net force acting on each particle vanishes to fulfill the requirement of (17), we 
have 

F1 =0 (224 
and 

F2 = 0. (22b) 

To determine the instantaneous thermophoretic velocities U1 and U2 of the particles, the 
above two equations incorporated with equation (21) must be solved. The result can be 
expressed as 

and 
(23a) 

U2 = MZ1 U\“) + Mz2 U\“), (23b) 

where U\‘) and UC,“) are the particle velocities that would exist in the absence of the other 
and are computed from equations (1) and (4). The numerical results for the dimensionless 
mobility parameters M 1 1, M 1 z, MZ1 and Mz2 as a function of k:, kt, C,l l/a,, &l/az, 
Cm1 llaI, C,zl/az, a2/al and (a1 + a2)/r12 have been determined and are presented in the 
following section. Note that M 1 1 = Mz2 = 1 and MI2 = MZ1 = 0 when the two particles 
are separated by an infinite distance (i.e. r12 -+ co). 

3. RESULTS FOR THE THERMOPHORESIS OF TWO SPHERES 

The coefficients of the temperature distribution (10) and the stream function (18) in the 
present quasisteady problem have been calculated for various values of k:, kq, C,, l/al, 
Glla2, Cmll/al, G,zUa2, ada, and h + az)lrlz using a DEC VAX 6520 digital com- 
puter. For the difficult case of Lc2/al = 10 and (a1 + a2)/r12 = 0.9999, m equal to 3000 was 
sufficiently large that the (m + 1)th terms of these coefficients are negligible and increases in 
m do not alter the calculated values appreciably. 

3.1. Streamlines 

A sketch of the streamline pattern for the fluid surrounding an isolated aerosol sphere 
undergoing thermophoresis was exhibited by Keh and Yu (1994). The velocity field caused 
by thermophoresis was found to be a potential dipole, decaying with distance r from the 
center of the particle as r - ‘. This velocity field decays much faster than that for a Stokeslet 
(motion driven by a body force) which decays as r- ‘. 

The distortion of the fluid flow due to interactions between two thermophoretic spheres is 
illustrated in Figs 224. In each case, streamlines in a meridian plane are depicted. As both 
the governing equations and the boundary conditions in the system are linear, the stream- 
line patterns (and also the particle velocities Ui or the mobility parameters Mij) are 
independent of which sphere is in front. Figures 2 and 3 picture the situation when the two 
particles have identical radii and the distance between the surfaces is equal to the sum of 
their radii. The streamlines for a case of two identical spheres (a1 = a2 = a, kf = kz = k*, 
C,, = C,, = C,, C,l = Cm2 = C,, U\“’ = UC,“) = U(O)) are drawn in Fig. 2. Since the con- 
vective effects in the energy and momentum equations have been neglected, the contour 
pattern shows equivalent local recirculations in the vicinity of each sphere and a global 
recirculation pattern with fore-and-aft symmetry far away from the particles. These bal- 
anced recirculations will be distorted if the two spheres differ in thermal conductivity (or in 
surface properties), as shown in Fig. 3. It can be found that the spacing between streamlines 
near the sphere with smaller thermal conductivity is narrower and the local fluid recircula- 
tion is stronger than that for the other sphere. Thus, the sphere with lower thermal 
conductivity shows a larger migration velocity. These results are consistent with the 
prediction of equation (4). 
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Fig. 2. Streamlines for the thermophoretic motion of two identical spheres with k* = 100, 
C,l/a = 0.2, &l/a = 0.1 and 2a/r,, = 0.5. Y/c2 U’? (1) 0.02; (2) 0.05; (3) 0.06; (4) 0.08. 

Fig. 3. Streamlines for the thermophoretic motion of two spheres of identical radii and surface 
properties with k: = 100, k: = 1, C,l/a = 0.2, &l/a = 0.1 and 2a/r,, = 0.5. Y/c’U(f’: (1) 0.02; 

(2) 0.05; (3) 0.08; (4) 0.12. 

The situation of two spheres with identical thermal conductivities and surface properties 
but unequal radii is considered in Fig. 4, which corresponds to a case of az/al = 2 and 
(al + a2)lr12 = 0.5. It is noted that the local recirculation in the vicinity of the larger sphere 
is substantial, whereas it is constrained in the vicinity of the smaller sphere. As the radius 
ratio becomes larger, the fluid flow will be dominated by the larger particle, with the smaller 
one introducing only local perturbations. The flow patterns of thermophoresis are a sharp 
contrast to those of the motion of aerosol spheres driven by a body-force field (Chen and 
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Fig. 4. Streamlines for the thermophoretic motion of two spheres of identical thermal conductivi- 
ties and surface properties with az/al = 2, k* = 100, C,l/a, = 0.2, C,I/a, = 0.1 and (a, + al)/ 

r12 = 0.5. Y/c* U(f): (1) 0.01; (2) 0.04; (3) 0.08; (4) 0.12. 

Keh, 1994), such as gravity, in which no local recirculations in the vicinity of a particle can 
be observed. 

3.2. Thermophoretic velocities 

The numerical solutions of the mobility parameters M 1 1, M 1 2, M2 I and Mz2, defined by 
equation (23), for the case of two aerosol spheres of identical physical properties with 
various values of k*, C,l/al, &l/al, az/al and (al + al)/rll are presented in Tables 1 
and 2. All of the listed results converge to at least five significant figures. As expected, 
these results illustrate that the particles’ interaction decreases rapidly, for all values of 
physical properties and a2/a1, with an increase in the gap between them (i.e., decreasing 
(al + aa)/r12). However, the interaction between particles can be significant when the 
surface-to-surface spacing gets close to zero. 

Numerical results of the mobility parameters for the thermophoresis of two identical 
spheres are given in Table 1. For this symmetric case, the two particles will move at the same 
velocity because Ml2 = Mzl, Ml1 = Mz2 and Vi”’ = UT). It can be seen that the inter- 
action effect makes each particle move faster than its undisturbed velocity U(O). This 
enhancement in particle velocity is similar to the observation when the driving force for the 
migration of aerosol spheres is gravity (Chen and Keh, 1994). However, the particle 
interaction effect in thermophoresis is much weaker than for motion under a body-force 
field. Reed and Morrison (1975) calculated the values of (Ml, + M12) for the thermophor- 
esis of two identical spheres for the range 2a/r12 < 0.957. Our solutions in Table 1 are in 
excellent agreement with their calculations. 

In Table 2, results of mobility parameters for the thermophoresis of two unequal-sized 
spheres with the same physical properties are given for the case k* = 100, C,l/a, = 0.2 and 
&l/a, = 0.1. Also, the normalized migration velocities of the particles and the ratio of the 
particle velocities for this case are plotted versus (al + az)/rlz in Figs 5 and 6, respectively, 
with az/al as a parameter. It can be seen that the effect of particle interaction, in general, is 
greater on the smaller of the two spheres than on the larger one (Ml2 or U,/U(p’ increases 
and Mzl or U,/U$“’ decreases significantly with the increasing al/al for a given value of 
(a 1 + a2)/r 1 2). The larger particle is hardly influenced by the presence of the smaller one for 
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Table 1. The mobility parameters for the thermophoresis of two identical spheres 

439 

k* 2alr,, 

C,l/a = 0.2 Cmlla = 0.1 C,l/a = 0.02 C,l/a = 0.01 

Ml, Ml2 Ml1 +M,, Ml, Mu Ml, + Ml2 

1 

10 

100 

1000 

0.2 0.9999 0.0010 1.0009 1.0000 0.0010 1.0010 
0.4 0.9986 0.0080 1.0067 0.9994 0.0080 1.0074 
0.6 0.9919 0.0280 1.0200 0.9937 0.0280 1.0216 
0.8 0.9602 0.0770 1.0372 0.9592 0.0800 1.0392 
0.9 0.9101 0.1351 1.0452 0.8962 0.1509 1.0471 
0.95 0.8553 0.193s 1.0488 0.8201 0.2306 1.0507 
0.99 0.7505 0.3010 1.0514 0.6756 0.3776 1.0533 
0.999 0.6672 0.3848 1.0520 0.5904 0.4634 1.0539 
0.9999 0.6263 0.4258 1.0521 0.5632 0.4908 1.0539 

0.2 l.0009 0.0010 1.0019 1.0014 0.0010 
0.4 1.0067 0.0077 1.0143 1.0110 0.007s 
0.6 1.0199 0.0234 1.0432 1.0352 0.0213 
0.8 1.0363 0.0468 1.0830 1.0810 0.0329 
0.9 1.0372 0.0656 1.1028 1.1260 0.0239 
0.95 1.0212 0.0906 1.1118 1.1655 0.0057 
0.99 0.9387 0.1798 1.1185 1.1652 0.0266 
0.999 0.8202 0.2997 1.1198 0.9816 0.2157 
0.9999 0.7478 0.3722 1.1200 0.8414 0.3564 

1.0024 
1.0185 
1.0565 
1.1140 
1.1499 
1.1712 
1.1918 
1.1973 
1.1979 

0.2 1.0011 0.0010 1.0021 1.0018 0.0010 1.0028 
0.4 1.0086 0.007s 1.0161 1.0144 0.0070 1.0214 
0.6 1.0270 0.0213 1.0482 1.0485 0.0148 1.0633 
0.8 1.0587 0.032 1 1.0908 1.140s - 0.0232 1.1173 
0.9 1.0818 0.0284 1.1102 1.3093 - 0.1674 1.1419 
0.95 1.0873 0.0308 1.1181 1.5826 - 0.4308 1.1518 
0.99 1.0238 0.0994 1.1232 2.2748 - 1.1177 1.1571 
0.999 0.8893 0.2348 1.1241 2.1496 - 0.9921 1.1575 
0.9999 0.7996 0.3246 1.1242 1.6449 - 0.4874 1.1576 

0.2 1.0011 0.0010 1.0021 1.0019 0.0010 1.0029 
0.4 1.0088 0.007s 1.0163 1.0148 0.0068 1.0216 
0.6 1.0278 0.0210 1.0488 1.050s 0.0116 1.0621 
0.8 1.0615 0.0300 1.091s 1.1569 - 0.0511 1.1059 
0.9 1.0877 0.0228 1.110s 1.3796 - 0.2642 1.1153 
0.95 1.0963 0.0218 1.1181 1.7690 - 0.6582 1.1108 
0.99 1.0357 0.0870 1.1227 2.8542 - 1.7595 1.0947 
0.999 0.8990 0.2245 1.1235 2.8003 - 1.7132 1.0871 
0.9999 0.8067 0.3168 1.1236 2.0914 - 1.0053 1.0861 

the situation of a2/u1 ,< 0.2 or k 5. Although these results illustrate that the effect of 
interactions between the spheres, in general, increases as the separation distance is de- 
creased, they show that the thermophoretic velocity of either sphere is not necessarily 
a monotonic increasing or decreasing function of the separation parameter (a1 + a2)/ri2. 
These complex results are generated from the combined effects of particle interactions on 
local temperature gradient and fluid velocity field. 

It can be seen in Fig. 6 that the smaller sphere migrates considerably faster than the larger 
sphere for various values of (ai + LQ)/~~~. This indicates that (1) a stable distance will be 
developed between the spheres for the situation where the smaller sphere is ahead; (2) for the 
case where the smaller sphere is following, its thermophoretic velocity even at a distance 
with (ai + ~)/r~~ = 0.9999 is still greater than for the big particle and both spheres will 
therefore collide. Note that, for the case of two touching spheres [(a1 + uz)/ri2 = l] 
undergoing thermophoresis, they migrate as a single particle and hence their velocities U1 
and U2 are identical. This understanding explains why there exists a maximum or minimum 
for each curve with uz/a, # 1 in Fig. 6. For conciseness, we do not present here the 
numerical results of thermophoretic velocities for the case of two spheres with different 
physical properties. 
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Table 2. The mobility parameters for the thermophoresis of two spheres with 
the same physical properties (k* = 100, C,l/a, = 0.2 and C,l/a, = 0.1) 

0.1 0.2 
0.4 
0.6 
0.8 
0.9 
0.95 
0.99 
0.999 
0.9999 

0.5 0.2 
0.4 
0.6 
0.8 
0.9 
0.95 
0.99 
0.999 
0.9999 

2 0.2 
0.4 
0.6 
0.8 
0.9 
0.95 
0.99 
0.999 
0.9999 

10 0.2 
0.4 
0.6 
0.8 
0.9 
0.95 
0.99 
0.999 
0.9999 

1.0000 0.0000 
1.0000 0.0000 
0.9998 0.0001 
0.9995 0.0002 
0.999 1 0.0003 
0.9988 0.0006 
0.9982 0.0015 
0.9977 0.003 1 
0.9976 0.0043 

1.0002 0.0003 
1.0013 0.0021 
1.0031 0.0053 
1.0027 0.0070 
1.0003 0.0095 
0.9964 0.0183 
0.9778 0.0564 
0.9465 0.1075 
0.9253 0.1382 

1.0034 0.0024 
1.0274 0.0185 
1.0915 0.0579 
1.2180 0.1004 
1.3121 0.0637 
1.3444 - 0.0157 
1.2032 - 0.0593 
0.8921 0.1664 
0.6950 0.3622 

1.0110 0.0060 
1.0880 0.0480 
1.2970 0.1616 
1.7045 0.3660 
1.9915 0.3904 
2.1081 0.0355 
1.8675 - 1.6313 
1.1982 - 1.8677 
0.7774 - 1.0659 

0.0060 1.0067 
0.048 1 1.0535 
0.1626 1.1803 
0.3900 1.4236 
0.5758 1.5848 
0.7224 1.6408 
0.9695 1.5054 
1.1224 1.1588 
1.1495 0.8931 

0.0024 1.0026 
0.0188 1.0208 
0.0615 1.0683 
0.1367 1.1507 
0.1860 1.1888 
0.2216 1.1716 
0.3228 1.0057 
0.4769 0.7616 
0.5795 0.6137 

0.0003 1.0003 
0.0019 1.0024 
0.0036 1 .OQ72 

- 0.0025 1.0165 
- 0.0109 1.0322 
- 0.0114 1.0506 

0.0227 1.0584 
0.0877 1.0110 
0.1284 0.9706 

O.OQOO 1 .oooo 
0.0000 1 .OOOo 

- 0.0001 1.0001 
- 0.0003 1.0003 
- 0.0003 1.0010 

0.0000 1.0026 
0.0015 1.0076 
0.0039 1.0074 
0.0053 I .0046 

4. THERMOPHORESIS OF A SPHERE NORMAL TO A PLANE WALL 

In this section, we consider the thermophoresis of a spherical particle of radius a in the 
direction normal to an infinite plane wall of constant temperature located at a distance 
d from the sphere center. The fluid is allowed to slip, both thermally and frictionally, and the 
temperature jump may occur at the particle surface and the plane wall. The relative 
conductivity and the thermophoretic velocity of the particle are denoted by k* and Ue,, 
respectively. For this case, the mathematical formulation concerning the temperature and 
flow fields is the same as that for the case of axisymmetric thermophoresis of two spheres 
when the radius and thermal conductivity of one sphere (say, sphere 2) are taken to be 
infinite. Thus, equations (5)-(21a) are still applicable to the sphere-plane system if we let 
a=a,, d=dl, U=U1, k*=k:, t2=0 and Vz==O. Now, Csl (C,,,C,,) and 
Cs2(Ct2, C,,) represent the thermal slip coefficients (temperature jump coefficients, hy- 
drodynamic slip coefficients) associated with the particle surface and the plane wall, 
respectively. Because the wall temperature T2 is a constant, equations (8b), (9a), (SC), (lob) 
and (12b) for the case of i = 2 become trivial. Thus, equation (12) provides three recurrence 
formulas for the three sets of unknown constants A,, B, and Ci,. Also, the temperature T2 
in equations (16a) and (20b) should be equal to the constant T2 now. Since the particle is 
freely suspended in the surrounding fluid, the net force exerted by the fluid on the surface of 
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Fig. 5. Normalized thermophoretic velocities of two spheres of identical thermal conductivities and 
surface properties with k* = 100, C,l/a, = 0.2 and Cml/al = 0.1 versus the separation parameter 

(a, + a2)/r12 with a2/a1 as parameter: (a) sphere 1; (b) sphere 2. 

the particle, given by equation (21a), must vanish, and the mobility coefficient U/U”’ is to 
be determined from this constraint. Here, U(O) is the thermophoretic velocity of the particle 
in the absence of the plane wall and can be calculated using equations (1) and (4). 

The flow pattern for the thermophoretic motion of an aerosol sphere normal to a plane 
wall is illustrated in Fig. 7. Here, streamlines in meridian section are drawn for the case that 
the effect of thermal creep is negligible at the surface of the wall (C,, = 0). Due to the 
linearity of the problem, the streamline pattern (and also the particle velocity) is the same 
whether the sphere moves toward or away from the wall. In addition to the local “inner” 
recirculations in the vicinity of the particle, the contour pattern also shows an “outer” 
recirculation region far from the particle. In Fig. 7, a stagnation point other than the origin 
of the coordinate system appears on the plane wall. In addition, there is one more 
stagnation point on the axis of symmetry (p = 0). The dividing streamline with V = 0, 
which separates the two regions of circulating flow, intersects the axis at this point 
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Fig. 6. The ratio of thermophoretic velocities of two spheres of identical thermal conductivities and 
surface properties with k* = 100, C,l/a, = 0.2 and C,l/a, = 0.1 versus the separation parameter 

(a, + a2)/r, 2 with a2/al as a parameter. 
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Fig. 7. Streamlines for the thermophoretic motion of a sphere normal to a plane wall with k* = 106, 
C,,l/a = C,,l/a = 0.2, C,,,,l/a = C,,l/a = 0.1, Cs, = 0 and a/d = 0.8. ‘F/c2 U”“: (1) - 0.1; 

(2) - 0.05; (3) 0; (4) 0.1; (5) 0.3. 

orthogonally. For any specified values of k *, C,l/a and &l/a, the relative distance of the 
dividing streamline from the particle decreases with increasing a/d. In comparison with this 
flow pattern of thermophoresis, the presence of a plane wall causes no dividing streamline in 
the motion of an aerosol sphere under gravity (Chen and Keh, 1994). 

Numerical results of the mobility coefficient U/U(O) of a sphere undergoing thermophor- 
esis in the direction perpendicular to a plane wall for various values of k*, C,, l/a, Ct2 l/a, 
&I l/a, CmZl/a and a/d are presented in Table 3. As expected, the particle moves with the 
velocity that would exist in the absence of the wall as a/d + 0. Then, the velocity of the 
particle decreases steadily as it approaches the wall (with increasing a/d) going to zero in the 
limit. A comparison between the mobility results for the sedimentation of an aerosol sphere 
normal to a slip wall previously obtained (Chen and Keh, 1994) and the results in Table 3 
shows that the wall effect on the thermophoresis is much weaker. 
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Table 3. The mobility coefficient U/U”’ for the thermophoresis of a sphere in normal motion toward an 
infinite plane wall 

k* ald 

C,,lla = 0.2 Cm,I/a = 0.1 C,,lJa = 0.02 C,,l/a = 0.01 

Case A Case B Case C Case A Case B Case C 

1 0.2 0.9962 0.9962 0.9959 0.9960 0.9960 0.9960 
0.4 0.9714 0.9709 0.9675 0.9688 0.9688 0.9684 
0.6 0.9057 0.9036 0.8867 0.8915 0.8914 0.8894 
0.8 0.7627 0.7568 0.6976 0.7090 0.7089 0.7002 
0.9 0.6257 0.6173 0.5089 0.5266 0.5264 0.5079 
0.95 0.5120 0.5027 0.3517 0.3790 0.3788 0.3496 
0.99 0.3345 0.3262 0.1228 0.1814 0.1813 0.1338 
0.999 0.2084 0.2026 0.0172 0.0831 0.0830 0.0278 
0.9999 0.1480 0.1438 0.0019 0.0501 0.0500 0.0038 

10 0.2 0.9965 0.9970 0.9969 0.9973 0.9975 0.9975 
0.4 0.9702 0.9775 0.9759 0.9780 0.9806 0.9806 
0.6 0.8936 0.9250 0.9183 0.9226 0.9362 0.9360 
0.8 0.7200 0.8078 0.7881 0.7952 0.8452 0.8466 
0.9 0.5584 0.6883 0.6474 0.6702 0.7657 0.7732 
0.95 0.4326 0.5811 0.5031 0.5614 0.6974 0.7133 
0.99 0.2584 0.3956 0.2105 0.3629 0.5297 0.5200 
0.999 0.1535 0.2506 0.0323 0.1975 0.3174 0.1654 
0.9999 0.1079 0.1784 0.0035 0.1233 0.2026 0.0248 

100 0.2 0.9964 0.9972 0.9972 0.9971 0.9979 0.9979 
0.4 0.9674 0.9791 0.9780 0.9728 0.9845 0.9846 
0.6 0.8800 0.9310 0.9274 0.8945 0.9556 0.9565 
0.8 0.6806 0.8242 0.8204 0.7073 0.9400 0.95 15 
0.9 0.4993 0.7136 0.7057 0.5342 1.0076 1.0583 
0.95 0.3646 0.6108 0.5743 0.4036 1.1284 1.2616 
0.99 0.1944 0.4235 0.2574 0.2214 1.2465 1.5403 
0.999 0.1076 0.2703 0.0408 0.1097 0.9073 0.6654 
0.9999 0.0745 0.1927 0.0045 0.0670 0.6024 0.1069 

1000 0.2 0.9963 0.9973 0.9972 0.9968 0.9980 0.9980 
0.4 0.9669 0.9793 0.9783 0.9683 0.9852 0.9853 
0.6 0.8778 0.9317 0.9285 0.8728 0.9610 0.9623 
0.8 0.6744 0.8263 0.8247 0.6392 0.9770 0.9929 
0.9 0.4900 0.7170 0.7138 0.423 1 1.1153 1.1868 
0.95 0.3538 0.6148 0.5845 0.2648 1.3341 1.5280 
0.99 0.1843 0.4274 0.2643 0.0785 1.6176 2.0915 
0.999 0.1004 0.2731 0.0420 0.0151 1.2243 0.9529 
0.9999 0.0693 0.1947 0.0046 0.0057 0.8189 0.1547 

Case A: Cs, = CI,, c,* = C,, , cm, = c,, 
Case B: Cs, = 0, C,, = C,,, C,, = Cm,. 
Case C: Cs, = C,, = Cm, = 0. 

Reed and Morrison (1975) evaluated the values of U/U”’ for the thermophoretic 
migration of a sphere normal to a plane wall for a case of no thermal slip on the wall 
(G2 = 0, G2 = Cl > C,2 = C,,) over the range a/d < 0.887. Our results of Case B in 
Table 3, which are also calculated with CS2 = 0, Ct2 = C1 and C,, = Cml, are consistent 
with theirs. 

5. SUMMARY 

The thermophoretic motion of two spherical particles along their line of centers has been 
analyzed in this work. The temperature and velocity fields are solved using bipolar 
coordinates and the particle velocities are obtained for various values of the physical 
properties, sizes and separation distance of the particles. The results indicate that the 
interaction between particles can be significant when their gap thickness gets close to zero. 
The influence of the interaction is greater on the smaller of the two particles. For the special 
case of two identical spheres, both migrate with the same velocity, which is larger in 
magnitude than that which would exist in the absence of one of the particles. The 
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thermophoretic motion of a spherical particle in the direction perpendicular to a plane wall 
is also studied for various cases. The effect of retardation caused by the plane wall on the 
particle migration increases steadily as the particle approaches the wall and becomes 
infinity when the surfaces are in contact. In general, the effect of particle-particle and 
particle-wall interactions on thermophoresis is much weaker than that on the motion in 
a gravitational field. 
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