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Arbitrary Zeta Potential Distributions
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Taipei 10617, Taiwan, Republic of China

Receied February 11, 2007. In Final Form: May 7, 2007

An analytical study is presented for the quasi-steady electrophoretic motion of a dielectric sphere situated at the
center of a spherical cavity when the surface potentials are arbitrarily nonuniform. The applied electric field is constant,
and the electric double layers adjacent to the solid surfaces are assumed to be much thinner than the particle radius
and the gap width between the surfaces. The presence of the cavity wall causes three basic effects on the particle
velocity: (1) the local electric field on the particle surface is enhanced or reduced by the wall; (2) the wall increases
the viscous retardation of the moving particle; and (3) a circulating electroosmotic flow of the suspending fluid exists
because of the interaction between the electric field and the charged wall. The Laplace and Stokes equations are solved
analytically for the electric potential and velocity fields, respectively, in the fluid phase, and explicit formulas for the
electrophoretic and angular velocities of the particle are obtained. To apply these formulas, one has to calculate only
the monopole, dipole, and quadrupole moments o tpetential distributions at the particle and cavity surfaces. It
is found that the contribution from the electroosmotic flow developing from the interaction of the imposed electric
field with the thin double layer adjacent to the cavity wall and the contribution from the wall-corrected electrophoretic
driving force to the particle velocities can be superimposed as a result of the linearity of the problem.

1. Introduction electric field. This equation is valid on the basis of several

Electrophoresis refers to the motion of a charged particle in assumptions: (i) the local radii of curvature of the particle are
an electrolyte solution subject to an applied electric field. Most much larger than the thickness of the electric double layer; (ii)
colloidal particles bear charges on their surfaces as a consequencthe fluid surrounding the particle is unbounded; and (iii) the
of the dissociation of functional groups or crystal lattice defects potential is uniform on the length scale of the particle. The first
when immersed in an ionic solution. The counterions in the restriction also implies that the double layer remains ap-
solution are attracted by the surface charge of the particle so thatproximately in equilibrium despite the migrations of the particle
their concentration becomes higher in the vicinity of the particle and diffuse ions. Eventhough many colloidal particles undergoing
surface than the bulk value. However, the co-ions are repelled electrophoresis fulfill this condition, electrophoresis of particles
from the particle surface. Hence, a region of mobile ions that is with thick or distorted double layers is encountered in certain
not electrically neutral forms, surrounding the particle. The cases sothatrelevantcorrections tothe Smoluchowski prediction
combination of this region and the fixed charge on the particle in eq 1 are necessary and have been obtdin®d.
surface is wellknown as an electric double layer. Whenan external  In many electrophoresis applications to particle analysis or
electric field is imposed, the interaction between the particle’s separation, particles migrate in the vicinity of solid boundaries.
surface charge and this field drives the particle to migrate at an For instance, electrophoresis in porous media is applied because
electrophoretic velocity in one direction, whereas the counterions the unwanted mix-up caused by natural convection due to Joule
in the double layer move in the opposite direction, inducing an heating and nonuniform heat transfer can be avoided. Microporous
ambient fluid flow field different from that caused by the gels or membranes could even be used to achieve high electric
sedimentation of the particle. Electrophoresis has long been usedields and permit separations based on both the size and the
as an effective technique for the separation and identification of charge of the particlelln capillary electrophoresis, gels in the
biologically active compounds in the biochemical and clinical capillary column can minimize particle diffusion, prevent particle
fields. adsorption to the capillary walls, and eliminate electroosmosis

A simple expression for the electrophoretic velocity of a while serving as the anticonvective medid#rDeep electro-
dielectric particle of arbitrary shape is the Smoluchowski phoresis penetration and deposition of inert colloidal particles

equationt3 over the interstitial surfaces of porous composites has been
. GCp (2) Morrison, F. A.J. Colloid Interface Sci197Q 34, 210.
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suggested in the aerospace industry to protect the composites
from burning or deterioratioft Another example is the elec-
trophoresis of small particles through a Coulter counter designed
not only to count and size the particles but also to determine their
¢ potentialst2 Therefore, the boundary effects on electrophoresis
are of greatimportance and have been studied extensively in the
past for various cases of uniformly charged colloidal spheres
and boundarie¥¥~24
However, many colloidal particles have heterogeneous surfacefigure 1. Geometric sketch of the electrophoresis of a colloidal
structure or chemistry and are nonuniformly charged. For sphere in a concentric spherical cavity.
example, elementary clay particles are flat disks with edges having
a different charge density of potential from the faces.  surface, ontothe contact electrodes of a silicon circuit by biasing
Distributions of surface charge or potential for particles can also the contacts to control the placement of these devices with the
result from the aggregation of different species of colloids. Even required precisioi®4! However, the boundary effects on the
if a particle is homogeneously charged on its surface, an appliedelectrophoresis of a charged particle with a nonunifopatential
electric field could cause the rearrangement of these charges ithave not yet been investigated.
they are mobil&> A ¢-potential distribution on particle surfaces In this article, we examine the electrophoretic motion of a
has been found to lead to colloidal instability; even the average dielectric sphere situated at the center of a spherical cavity with
¢ potential should be sufficiently high to keep the suspension very thin electric double layers when the surface potentials are
stable?62"The electrophoretic motion of a dielectric sphere with  arbitrarily nonuniform. The motivation to study this problem
a nonuniform¢ potential and a thin electric double layer was arises from the technology of electric paper displays (known as
first analyzed thoroughly by Andersdhalthough it had also  Gyricon displays) where the translation and rotation of each
been discussed to some extent eafidt.was found that, in member of an array of hemispherically bichromal, nonuniformly
terms of the multipole moments of thé& potential, the charged balls (about 1Q0m in diameter) in its own elastomer-
electrophoretic mobility depends not only on the monopole made and solvent-filled spherical cavity (which is only-4D%
moment (area-averagédootential) but also on the quadrupole larger than the ball) with either a monopole or a dipole on its
moment, and the dipole moment contributes to particle rotation, wall between two thin, transparent plastic sheets are controlled
which tends to align the particle with the electric field. This by applying a voltage of either positive or negative polarity across
analysis was later extended to cases of a nonuniformly chargedthe sheet$?43Although the geometry of the concentric spherical
spherical particle with a double layer of finite thickn&sg3and cavity is an idealized abstraction of some other real systems, the
anonuniformly charged nonspherical partitde3” Recently, that result of boundary effects on the electrophoretic velocity of a
particles can have random charge nonuniformity has also beenuniformly charged sphere obtained in this geométhas been
demonstrated experimentaf§3° shown to be in good agreement with that for a circular cylindrical
The electrophoretic motion of nonuniformly charged particles pore!® The geometric symmetry in this model system allows an
in the vicinity of confining walls could also be encountered in exact analytical solution to be obtained (as given by eqs283
some real situations. In addition to the possible examples and illustrated in Figure 2a,b).
mentioned above, an electrophoretic positioning process has been
employed in electronic applications for assembling very small
individual devices, such as an InGaAs light-emitting diode or a
nanowire, which must have all electric contacts available on one

2. Analysis

We consider the quasi-steady electrophoretic motion of a
nonconducting spherical particle of radiagnd¢ potentialgp
in a concentric spherical cavity (or pore) of radiend¢ potential
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(13) Morrison, F. A.; Stukel, J. 3. Colloid Interface Sci197Q 33, 88.
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(16) Keh, H. J.; Lien, L. CJ. Fluid Mech.1991, 224, 305.
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(26) Miklavic, S. J.; Chan, D. Y. C.; White, L. R.; Healy, T. \0/.Phys. Chem.

1994 98, 9022.
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(28) Anderson, J. LJ. Colloid Interface Sci1985 105, 45.

(29) Teubner, MJ. Phys. Chem1982 76, 5564.

(30) Yoon, B. JJ. Colloid Interface Sci1991, 142, 575.

(31) Solomentsev, Y. E.; Pawar, Y.; Anderson, JJLColloid Interface Sci.

1993 158 1.

(32) Velegol, D.; Feick, J. D.; Collins, L. Rl. Colloid Interface Sci2000

230, 114.

(33) Kim, J. Y.; Yoon, B. JJ. Colloid Interface Sci2003 262 101.

(34) Fair, M. C.; Anderson, J. LJ. Colloid Interface Sci1989 127, 388.
(35) Long, D.; Ajdari, A.Phys. Re. Lett. 1998 81, 1529.

(36) Feick, J. D.; Velegol, DLangmuir200Q 16, 10315.

(37) Kim, J. Y.; Yoon, B. JJ. Colloid Interface Sci2002 251, 318.

(38) Feick, J. D.; Velegol, DLangmuir2002 18, 3454.
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Cw filled with an electrolyte solution, as illustrated in Figure 1.
Both {, and {w can be nonuniform and are taken as arbitrary
functions of the position over the particle and cavity surfaces.
The applied electric field (or the electric field in the absence of
the particle) is constant and equdse,, wheree, is the unit
vector in the positivez (axial) direction. The rectangular co-
ordinatesy, y, 2) and spherical coordinates @, ¢) are established
with their origin at the particle and cavity center. The thickness
of the electric double layers adjacent to the particle and cavity
surfaces is assumed to be very small relative to the particle radius
and the spacing between the solid surfaces. Gravitational effects
are ignored. Our objective is to determine the electrophoretic
velocity of the particle in the presence of the cavity.

Before determining the electrophoretic velocity of the confined
particle with nonunifornt, the electric potential and velocity
fields in the fluid phase must be solved.

2.1. Electric Potential Distribution. The fluid outside the
thin double layers is electrically neutral and of constant

(40) Edman, C. F.; Swint, R. B.; Gurtner, C.; Formosa, R. E.; Roh, S. D.; Lee,
K. E.; Swanson, P.D.; Ackley, D. E.; Coleman, J. J.; Heller, NEEE Photonics
Technol. Lett200Q 12, 1198.

(41) Smith, P. A.; Nordquist, C. D.; Jackson, T. N.; Mayer, T. S.; Martin, B.
R.; Mbindyo, J.; Mallouk, T. EAppl. Phys. Lett200Q 77, 1399.

(42) Crawford, G. PIEEE Spectrun200Q 37, 40.
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The boundary condition at the cavity wall may alternatively
be taken that the local electric potential gradient is equal in
magnitude to the prescribed electric field. In this case, the Dirichlet
approach given by eq 4 becomes the following Neumann

approachs44

W _ —E,cosfatr=>b (6)

ar

Note that although the normal component of the electric potential
gradient at the cavity wall given by this boundary condition is

consistent with the applied electric field its tangential (angular)
component is not specified. The solution of eq 2 subject to eq

3 and boundary condition 6 is given by
E, 3

T (R ™)

(r + 2)c050
2r

In fact, eq 5 predicts that the electric potential at the particle
surface = a) is decreased by the presence of the cavity by a
factor of (1+ 1%/2)71, whereas eq 7 suggests that this potential
is increased by a factor of(%+ A3~ In the limit A — 0, as
expected, eqs 5 and 7 become identical and reduce to the potential
distribution for a nonconducting sphere in an unbounded medium.

2.2. Fluid Velocity Distribution. Having obtained the solution
for the electric potential distribution, we can now proceed to find
the fluid velocity field. Because the Reynolds number is small,
the fluid motion outside the thin electric double layersis governed

by the Stokes equations,
nVv—Vp=0
Vev=0

(8)
9)

The general solution of the above equations is givet¥#y

A
Figure 2. Plots of dimensionless electrophoretic mobility parameters
Op, O, ¥p, andyy, as calculated from eqs 228 versus separation .
parametef. The solid curves represent the case using the Dirichlet n+3 2
boundary condition in eq 4, and the dashed curves denote the cas&/ = z V x (ryy) + Vo, + rvp, —
using the Neumann boundary condition in eq 6. n==o 2y(n+1)(2n +3)

n
conductivity, hence the electric potential distributip(r, 6) is ———Ipy| (10)
governed by the Laplace equation, n(n+1)(2n+3)
(11)

V=0

(@)

p=> b

n=-—oco

Because the particle is assumed to be perfectly insulating, the
wherep(r), @n(r), andyn(r) are solid spherical harmonics of

boundary condition forpy at the surface of the particle is

3

a—1/)—0atr=a

o

ordern andr is the position vector.
Because the electric field acting on the diffuse ions within the

thin double layer at each solid surface produces a relative

At the surface of the cavity, the electric potential distribution tangential fluid velocity at the outer edge of the double layer as
gives rise to the applied electric field when the particle does not given by the Helmholt# expression for the electroosmotic flow,
exist. Thus, a reasonable choice of the boundary condition therethe boundary conditions for the fluid velocity require that

is
€
y=—E,rcosfatr=>b (4) v=v§=U+a§2xn+%(l—nn)~V¢atr=a(12)
€
= %(I —nn)-Vy atr =b (13)

Here, we have sgp = 0 on the plane = 0 for convenience N
V=V, =
S

without the loss of generality. The solution of eq 2 subject to

these boundary conditions is
Here, U and Q are the translational and angular velocities,

e [ 4 &) osp 5
= — r —_—
Y 24+ /13 2 cos ( ) (44) Jackson, J. DClassical Electrodynami¢gnd ed.; John Wiley & Sons:
New York, 1976; Chapter 1.
(45) Lamb, H.HydrodynamicsDover: New York, 1945.

(46) Happel, J.; Brenner, How Reynolds Number Hydrodynamibartinus

Nijhoff: Dordrecht, The Netherlands, 1983.

wherel = @,
(47) Helmholtz, H.Ann. 1879 7, 337.

(43) Crowley, J. M.; Sheridon, N. K.; Romano, L.Electrost2002 55, 247.
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respectively, of the electrophoretic sphere to be determimed,
is the unit normal vector on the particle surface pointing toward
the fluid phasel is the unit dyadic, and the expressionfohas
already been given by eq 5 or 7.

As it can be shown® to get the solutions of eqs 8 and 9 in
the form of egs 10 and 11 with boundary conditions given by
egs 12 and 13 for a spherical particle in a concentric spherical
cavity, the solid spherical harmonic functions can be calculated
from the relationships

00

NVt =\ X" =
o n w W n w n
2 I—ap' ap—’) i(ap—’) | (14)
= |2n(2n+ 3\ 1 A\ T
v Y W=
« n(n + 1) Wi w n -1 w n
T e al) +—n(n )(ap—’ ®,| (15)
n=—oco 277(2” + 3) r ap,W
(VX Y = 5 2=
S n(n + 1) @) Xn| (16)
= r

Here, X209, ¢), Y™, ¢), and Z2"(0, ¢) are the surface
spherical harmonics, the superscripts or subscripts p and w
represent the surfaces of the particle and cavity, respectively,
V2" represents the fluid velocity distributions on the corre-
sponding surfaces given by eqs 12 andd.3= a, anday, = b.
From the second part of eqs-146, the relations between the
solid spherical harmonic®{, ®,, xn) and the surface spherical
harmonics X?", Yo", Zb'") can be obtained, and they are given
by eqs AL-A9 in Appendix A.

The( potentials,, andgy are arbitrary functions o, ¢) and
can be expressed in terms of the multipole expansi®frs,

Gpw = M""+ 3DP"-n + g Q™".nn 17)

Here the monopole, dipole, and quadrupole momkgiity DP:W,

and QP respectively, are defined by the following integrals
over the particle and cavity surfac&s"

MPY = $v RS (18)
DPW = $ o Gpun S (19)
QP = $ o Epu3nn — 1) dS (20)

and the higher-order moments (which make no contribution to
the electrophoretic velocity of the particle, as will be discussed
later) are neglected. Various nonunifodrpotentialsC, w can
result from eq 17 with appropriate choices of moméms' (i.e.,
area-averagegipotentials) PP, andQP" (which are symmetric
and traceless).

With the substitution of the surface velocities given by eqs 12
and 13, in which the electric potential is given by eq 5 or 7 and

Langmuir, Vol. 23, No. 15, 200931

the¢ potentials are expressed by eq 17, into the first part of egs
14—186, the surface spherical harmonk", Yo", andZh" can
be calculated in terms of the components of momistitg, DP-V,
and QPV. It is found thatx2" = 0 for all n, and the nonzero
contributions of harmonic functiong” andZ>" are given by
eqs A10-Al4. Forthe electrophoresis of a sphere in a concentric
spherical cavity with specifiegtpotential distributions, the fluid
flow field can be obtained as an explicit function of the
components of momenidP", DPW, andQPW using eqs 10, 11,
and Al-Al4.

The forceF and torqueT exerted by the fluid on the particle
as a result of the electrokinetic motion can be determinedrom

F=—47V(r’p_,) (21)

T =—8mV(r’y_,) (22)
These equations indicate that only low-order solid harmonic
functionsp-, andy -, contribute to the hydrodynamic force and
torque on the particle. Note that, andy_, are functions of
monopole, dipole, and quadrupole momevies', DPW, andQP:W

of theZ-potential distributions but are independent of their higher-
order moments.

2.3. Derivation of the Particle Velocities At the quasi-steady
state, the net force and net torque acting on the electrophoretic
particle must vanish. Applying these constraints to eqs 21 and
22 and using egs A2 and A6 (taking= 1, X?"' = 0, andY2"and
Z"" as given by egs A10 and A13) for harmonic functigns
andy_», we obtain the translational and angular velocities of the
particle in the cavity as

_ € o Lqp w1 W) )
U 77[otp(|v| -0 ) + aW(M -2 @3
_ %€ ., oW
where
2-523+31°
@, == (25)
v(1— 2%
12 3_ 45 8
_6-101%+31 5/1 + 2 (26)
(1 — 19)
2
_ 2 3
Y= 52+ ) (28)

andv = 2 + A3 if the Dirichlet boundary condition in eq 4 is
employed, whereag = 2(1 — 49) if the Neumann boundary
condition in eq 6 is used. Note that all four parametgy;sou,
¥p, @andyy, given by eqs 2528 are functions of the ratid =
3y alone. Although the expressions for the particle velocities in
egs 23 and 24 involve only the monopole, dipole, and quadrupole
moments of the& potentials, they are exact for a particle-in-
cavity system with arbitrar§ potential distributions because the
higher-order moments make no contribution to the particle
velocities.

For the electrophoresis of a colloidal sphere in a concentric
spherical cavity with specified-potential distributions, eqs 23
and 24 together with eqs 228 can be easily used to determine
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the particle velocities after the calculation of the multipole
moments of the&-potential distributions according to eqs-18
20. The translational velocity of the particle depends only on the
monopole and quadrupole moments ofgkmotential distributions

Keh and Hsieh

[D" x E,],
[DP x E,J;

(34)

atthe particle and cavity surfaces (the existence of the quadrupoleand subscripitrepresents thg, y, or zcomponent for which the

moments results in an anisotropic electrophoretic mobility of the
particle), whereas the rotational velocity is affected only by the
dipole moments. The effect of finite values of parametgrand
ywis dueto the electroosmotic flow that arises from the interaction
between the imposed electric field and the thin double layer
adjacent to the cavity wall. Equations 23 and 24 indicate that the
contributions from the wall-corrected electrophoretic driving force
(involving parametere, andyp) and the electroosmotic flow to
the particle velocities can be superimposed, which is due to the
linearity of the problem. Note that the dependencegdindouy
on 4 is different in order, and so is that for parametggsand
Yw-

It can be found that all four parametets, o, yp, andyw
given by egs 2528 are always positive as long as<O4 < 1.
In the limit of A — 0, eqs 25-28 reduce ta, = o = yp =1
andy,, = 0, in which the electrophoretic and angular velocities
for an unconfined dielectric sphere with nonunifofpobtained
by Andersor®

_ €[amr — 1 Ap).
U, 77(M 1 -5Q ) = (29)
9€ p
Q=73 < E. (30)

are reproduced (with the effect of the electroosmotic flow arising
from the interaction of the prescribed electric field with the
charged cavity at infinity given bg,, = 1 excluded). Whed,
is uniform over the particle surface, egs 29 and 30 reduce to eq
1 and€q = 0. In the limit of A — 1, eqs 25-28 becomey, =
aw = 0 andyp, = yw = %5 if the boundary condition in eq 4 is
adopted for the electric potential at the cavity wall, ape-= oy
=1/, andy, = yw — « if the boundary condition in eq 6 is used.
Note that egs 25 and 26 fof, anda, with v = 2(1 — 13) are
identical to the corresponding equations derived by Zyétfey
auniformly charged spherical particle undergoing electrophoretic
motion in a uniformly charged concentric spherical cavity using
the boundary condition in eq 6. For a given finite valué gthe
values of parameters,, ow, ¥p, andy,, predicted using eq 4 are
always smaller than their corresponding results obtained using
eq 6.

In terms of the electrophoretic and angular velocities for an
isolated dielectric sphere given by eqs 29 and 30, it is convenient

to express the bounded result of eqs 23 and 24 as the normalized

velocity components in rectangular coordinates,

U,
U_Oi =, T ok (31)
Q_Ci)l - Vp + ywll (32)
where
w 1 w
MYl — ZQ%)-E,,

unbounded velocityip or Qip is nonzero. Parameteksand|;
correspond to the strength of the electroosmotic flow that develops
from the interaction between the imposed electric field and the
thin double layer adjacent to the cavity wall relative to the
electrophoretic driving force when the cavity wall is at infinity.
These two parameters can be either positive or negative (meaning
that the contributions to the particle velocities from the cavity-
induced electroosmotic flow can be in either the same or in the
opposite direction to those from the electrophoretic driving force),
depending on the combination of thegotential distributions at

the particle and cavity surfaces. Equations 31 and 32 show that
thei component of the normalized electrophoretic velocity of
the spherical particle depends only on paramedgrswy, and

ki and thé component of the normalized angular velocity depends
only ony,, yw, andl;. Note that for a specified componarin

a bounded system it is possible that(or €2)) is finite while U

(or Qgj) vanishes.

4

A

1.0

Figure 3. Plots of normalized translational velocityi/Uq of the
electrophoretic particle versus separation paranietéa) the case
using the Dirichlet boundary condition in eq 4 and (b) the case using
the Neumann boundary condition in eq 6.
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Figure 5. Geometric sketch of the electrophoresis of a colloidal
sphere with an odg-potential distribution formed by one hemisphere
of the constant valué! attached to a second hemispherebfn

a concentric spherical cavity with an odepotential distribution
formed by one hemisphere &f attached to a second hemisphere
of £3. The z—x plane is chosen to contain both unit vecer
defining the axis of rotational symmetry of the particle and applied
electric field E.

Figure 4. Plots of normalized angular velocit®i/Qy of the
electrophoretic particle versus separation paranietéa) the case
using the Dirichlet boundary condition in eq 4 and (b) the case using
the Neumann boundary condition in eq 6. Figure 6. Geometric sketch of the electrophoresis of a colloidal
sphere with an evefrpotential distribution formed by two caps of

the constant valu&; and a middle o£} in a concentric spherical
cavity with an evert-potential distribution formed by two caps of

3. Results and Discussion ¢Y and a middle ot}. Thez—x plane is chosen to contain both unit
vectore, defining the axis of rotational symmetry of the particle and

The numerical values of dimensionless mobility parameters applied electric fieldE.
0, Qw, Yp, @andyy of a spherical particle undergoing electro-
phoresis in a concentric spherical cavity, as calculated from egs
25—-28, are plotted versus separation parameieiFigure 2a,b.

It can be seen that botl, anda.,, are monotonically decreasing
functions ofi from unity at = 0 to zero (if the Dirichlet boundary
condition in eq 4 is adopted for the electric potential at the cavity THe normalized velocities/Uo andQi/Qq calculated from
wall) or to */> (if the Neumann boundary condition in eq 6 S o45 31 and 32 as functions bfare depicted in Figures 3 and
used) aft = 1. Thus, the net effect of the approach of the cavity 4 “regpectively, for various values &f andl;. For a constant
wall to the particle, dominated by the contribution from viscous \5e ofl, as expected, the valuefiUy increases monotonically
retardation, is to reduce both the electrophoretic driving force \with an increase ink, and the value ofQ/Qq increases
and the cavity-induced electroosmotic sweeping force on the monotonically with an increase In As long as the values df
particle. Howevery,, is a monotonically increasing function of  and|; are greater than-1, the values olUi/Ug and Qi/Qq;,

Z from zero atl = 0 to %3 (if eq 4 is adopted) or to infinity (if ~ respectively, are always positive. When the valuek; aind;

eq 6 is used) afl = 1, whereas interestingly, decreases  are smaller than about1, however, the values dfi/Uy and
monotonically with an increase ihfrom unity atZ = 0 to %/3 Qi/Qo may become negative, meaning that the translational and
at1 = 1 (if eq 4 is adopted) or increases monotonically with  rotational velocities of the particle may reverse their directions
from unity atA = 0 to infinity at A = 1 (if eq 6 is used). Note because of the relatively strong effect of the cavity-induced

that for any given value of between 0 and 1n, is greater than
oy andyy is greater tha,, no matter whether eq 4 or 6 is used
for the boundary condition of the electric potential at the cavity
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electroosmotic flow in the opposite direction at the center of the particle undergoing electrophoretic motion in a uniformly charged
cavity. For specified values & andl;, the magnitude ofJi/Uq concentric spherical cavity.
in general decreases with an increasé(with exceptions when
ki equals about-1), whereas the magnitude €2/Qy — 1
increases with an increaseAnFor given finite values ok and
A, the magnitude obi/Ug; predicted from using the Neumann _ _ ) _ )
boundary condition in eq 6 in generalis greater than that predicted e quasi-steady electrophoretic motion of a dielectric sphere
from using the Dirichlet boundary condition in eq 4. in a concentric spherlcgl cavity W|th arbitrar§-potential

As an example, we consider the electrophoresis of a colloidal distributions at the particle and cavity surfaces has been

sphere with an odd-potential distribution formed by one theoretically investigated in this study. The applied electric field
hemisphere of the constant vald# attached to a second is constant, and the thickness of the electric double layers adjacent

: P : . L to the solid surfaces is assumed to be much smaller than the
hemisphere oft; in a concentric spherical cavity similarly

composed of two hemispheres of different constamtentials particle radius and the gap width between the surfaces. Both the
w P w . p . . Dirichlet-type and the Neumann-type boundary conditions are
&1 andg;, as shown in Figure 5. Unit vectoes ande, define

. . .. considered for the electric potential at the cavity wall. The Laplace
the axes of rotational symmetry of the particle and cavity,

ivel dboth I dto orient arbitrarily with " and Stokes equations are solved analytically for the electric
respectively, andboth aré aflowedto onientarbitrarily with respec potential and velocity fields, respectively, in the fluid phase, and
to the applied electric fiel#... Thez—x plane is chosen to contain

bothe, andE.,. After calculating the multipole moments according the translational and angular velocities of the electrophoretic
t0 eqs 1820 and substituting their result into eqs 23 and 24, particle are obtained in explicit expressions, egs 23 and 24, with

the relevant parameters (functions of the ratio of the particle-

4. Concluding Remarks

we obtain to-cavity radii only) given by eqs 2528 and Figure 2a,b. Before
using these equations, one has to evaluate only the monopole,
U= i[oLp(@’f + &) + o, (&) + SIE., (35) dipole, and quadrupole moments of thpotential distributions
2n at the particle and cavity surfaces defined by eqs2® The
e o W ew contributions from the electroosmotic flow arising from the
Q= rena[)/p(@l — &e, — vul& — &)enl x E., (36) interaction of the applied electric field with the thin double layer

adjacent to the cavity wall and from the wall-corrected elec-
Because the quadrupole moments disappear and the higher-ordetlr()phc_’rBtIC driving force to the_ parpcle velocities can be
moments do not contribute in this case, eq 35 shows that theSUPerimposed because of the linearity of the problem. Two

electrophoretic velocity of the particle is always collinear with €xamples of the particiecavity system with odd and even
the applied electric field, irrespective of the orientationspf ~ S-Potential distributions, respectively, are given so that we may

ande,. The cavity wall can induce an angular velocity of the diScuss in detail the boundary effects of the cavity on the
particle with bothx andy components, although the particle ~€lectrophoretic velocities of the particle.

rotates only about thg axis in the absence of the cavity. We_ note thé_lt the two types of boundary conditions _for the
For another example in contrast to the previous one, we considere!ectric potential at the cavity wall lead to somewhat different
the electrophoresis of a colloidal sphere with an ey4potential results for the translational and rotational velocities of the

electrophoretic particle. These two boundary conditions have
also been used in the literature to study the electrophoresis of
a suspension of colloidal spheres with thin electric double layers
using the unit cellmodeéf 51 The results of these studies indicate
that the tendency of the dependence of the mean electrophoretic
mobility on the volume fraction of the particles predicted by the
Neumann type is not as correct as that predicted by the Dirichlet
type in comparison with the ensemble-averaged results obtained
by using the concept of statistical mechanics. Therefore, the
boundary condition represented by eq 6 might not be as accurate
as that represented by eq 4, probably because of the fact that the

distribution formed by two caps of the constant valgfe
connected by a middle section & in a concentric spherical
cavity with a similar eveid-potential distribution formed by two
caps ofg;’ and a middle of}, as shown in Figure 6. Again, the
orientations of the axes of rotational symmetry of the particle
and cavity, given by unit vectoe, ande,, respectively, can be
arbitrary relative to the imposed electric fieltl,, and thez-x
plane is chosen to contain baghandE... Using eqs 18-20 for
this case, we find that

PW _ pw pW1 _
M™ = &7 costy,, + &7 (1 — cost, ) (37) angular component of the electric potential gradient at the cavity
wall is not specified in eq 6.
QM=
Lopw_ op
é(cl - CZ W)(COSOp,W - C0§ Gp,w)(3ep,wep,w - l) (38) Appendix A
and the dipole moments of thipotentials at the particle and Relations among the Solid Spherical Harmonics, Surface

cavity surfaces vanish. In this case, the electroosmotic flow that Spherical Harmonics, and Multipole Moments of Zeta
arises from the interaction between the applied electric field and Potential Distributions Obtained from Equations 12—17.The
the thin double layer adjacent to the cavity wall may contribute relations between the nonzero solid spherical harmopicex,
to the translational velocity of the particle in all three rectangular yn) and the surface spherical harmonicsdf, Yo", zh™)
components, whereas the contribution from the electrophoretic obtained from eqs 1416 are

driving force has onlyz and x components. The particle is
irrotational without the contribution from the dipole moments. (48) Levine, S.: Neale, G. Hl. Colloid Interface Scil974 47, 520.
When the values of ang|%pvw = 0 or 7/,, the Z-potential lgélég‘)rthsagls(ikh, N. I.; Shilov, V. N.Colloid J. USSREnNglish Translation)
distributions are uniform, and the result of eqs 23 and 24 with ™ 55y ;a1 M. . Davis, E. 1. Colloid Interface Sci1989 127, 497.
egs 37 and 38 reduces to that for a uniformly charged spherical (51) Wei, Y. K.; Keh, H. JLangmuir2001, 17, 1437.
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forn=> 1, and

Langmuir, Vol. 23, No. 15, 200935

Py =— L@ + Y3 (A7)
Yy (A8)

where

[,(A) =421+ A" — A2[(2n + 11 + 2% —
2(2n — 1)(2n + 3)47 (A9)

The expressions for the nonzero surface spherical harmonics
XPW YW and 20" in terms of the components of multipole
momentdMPW, DPW, andQPW of the -potential distributions at
the particle and cavity surfaces in rectangular coordinates (

2) obtained from eqs 1217 are

Yo' = gPY(—2MP + QFy")coso +
(Q),"sing + Q%" cosg)sin 6] (A10)

Yo" = —38""[DP*"(3 cog 6 — 1) +
3(D"'sin¢ + D" cosg)cosd sin ] (Al1)

Yo' = —pPY3Q0Y(5 cosh — 3 cosh) +
4(@Q0ysing + QY cosg)(5 cos 0 — 1)sing

+ 5(2Q5," sin 2p —
(@) — Qi) cos 2p)cos sin’ 0] (A12)

Zg,w — 3ﬁPvW(DE’WSin ¢ — D;‘W COS¢)Sin 0 (A13)

25" = 56" (Qy"sing — Q" cosg)cosh sin 6
— [5(Q — Qsin 2 +
Pi'cos 2p)|sirf 6} (A14)
wherepP = 3/,, B¥ = 1, andv is defined right after eq 28.
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