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Articles

Electrophoresis of a Colloidal Sphere in a Spherical Cavity with
Arbitrary Zeta Potential Distributions

Huan J. Keh* and Tzu H. Hsieh

Department of Chemical Engineering, National Taiwan UniVersity,
Taipei 10617, Taiwan, Republic of China

ReceiVed February 11, 2007. In Final Form: May 7, 2007

An analytical study is presented for the quasi-steady electrophoretic motion of a dielectric sphere situated at the
center of a spherical cavity when the surface potentials are arbitrarily nonuniform. The applied electric field is constant,
and the electric double layers adjacent to the solid surfaces are assumed to be much thinner than the particle radius
and the gap width between the surfaces. The presence of the cavity wall causes three basic effects on the particle
velocity: (1) the local electric field on the particle surface is enhanced or reduced by the wall; (2) the wall increases
the viscous retardation of the moving particle; and (3) a circulating electroosmotic flow of the suspending fluid exists
because of the interaction between the electric field and the charged wall. The Laplace and Stokes equations are solved
analytically for the electric potential and velocity fields, respectively, in the fluid phase, and explicit formulas for the
electrophoretic and angular velocities of the particle are obtained. To apply these formulas, one has to calculate only
the monopole, dipole, and quadrupole moments of theú-potential distributions at the particle and cavity surfaces. It
is found that the contribution from the electroosmotic flow developing from the interaction of the imposed electric
field with the thin double layer adjacent to the cavity wall and the contribution from the wall-corrected electrophoretic
driving force to the particle velocities can be superimposed as a result of the linearity of the problem.

1. Introduction
Electrophoresis refers to the motion of a charged particle in

an electrolyte solution subject to an applied electric field. Most
colloidal particles bear charges on their surfaces as a consequence
of the dissociation of functional groups or crystal lattice defects
when immersed in an ionic solution. The counterions in the
solution are attracted by the surface charge of the particle so that
their concentration becomes higher in the vicinity of the particle
surface than the bulk value. However, the co-ions are repelled
from the particle surface. Hence, a region of mobile ions that is
not electrically neutral forms, surrounding the particle. The
combination of this region and the fixed charge on the particle
surface is well known as an electric double layer. When an external
electric field is imposed, the interaction between the particle’s
surface charge and this field drives the particle to migrate at an
electrophoretic velocity in one direction, whereas the counterions
in the double layer move in the opposite direction, inducing an
ambient fluid flow field different from that caused by the
sedimentation of the particle. Electrophoresis has long been used
as an effective technique for the separation and identification of
biologically active compounds in the biochemical and clinical
fields.

A simple expression for the electrophoretic velocity of a
dielectric particle of arbitrary shape is the Smoluchowski
equation,1-3

whereúp is theú potential on the particle surface,η is the fluid
viscosity,ε is the fluid permittivity, andE∞ is the constant applied

electric field. This equation is valid on the basis of several
assumptions: (i) the local radii of curvature of the particle are
much larger than the thickness of the electric double layer; (ii)
the fluid surrounding the particle is unbounded; and (iii) theú
potential is uniform on the length scale of the particle. The first
restriction also implies that the double layer remains ap-
proximately in equilibrium despite the migrations of the particle
and diffuse ions. Even though many colloidal particles undergoing
electrophoresis fulfill this condition, electrophoresis of particles
with thick or distorted double layers is encountered in certain
cases so that relevant corrections to the Smoluchowski prediction
in eq 1 are necessary and have been obtained.4-8

In many electrophoresis applications to particle analysis or
separation, particles migrate in the vicinity of solid boundaries.
For instance, electrophoresis in porous media is applied because
the unwanted mix-up caused by natural convection due to Joule
heating and nonuniform heat transfer can be avoided. Microporous
gels or membranes could even be used to achieve high electric
fields and permit separations based on both the size and the
charge of the particles.9 In capillary electrophoresis, gels in the
capillary column can minimize particle diffusion, prevent particle
adsorption to the capillary walls, and eliminate electroosmosis
while serving as the anticonvective medium.10 Deep electro-
phoresis penetration and deposition of inert colloidal particles
over the interstitial surfaces of porous composites has been
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suggested in the aerospace industry to protect the composites
from burning or deterioration.11 Another example is the elec-
trophoresis of small particles through a Coulter counter designed
not only to count and size the particles but also to determine their
ú potentials.12Therefore, the boundary effects on electrophoresis
are of great importance and have been studied extensively in the
past for various cases of uniformly charged colloidal spheres
and boundaries.13-24

However, many colloidal particles have heterogeneous surface
structure or chemistry and are nonuniformly charged. For
example, elementary clay particles are flat disks with edges having
a different charge density orú potential from the faces.
Distributions of surface charge or potential for particles can also
result from the aggregation of different species of colloids. Even
if a particle is homogeneously charged on its surface, an applied
electric field could cause the rearrangement of these charges if
they are mobile.25 A ú-potential distribution on particle surfaces
has been found to lead to colloidal instability; even the average
ú potential should be sufficiently high to keep the suspension
stable.26,27The electrophoretic motion of a dielectric sphere with
a nonuniformú potential and a thin electric double layer was
first analyzed thoroughly by Anderson,28 although it had also
been discussed to some extent earlier.29 It was found that, in
terms of the multipole moments of theú potential, the
electrophoretic mobility depends not only on the monopole
moment (area-averagedú potential) but also on the quadrupole
moment, and the dipole moment contributes to particle rotation,
which tends to align the particle with the electric field. This
analysis was later extended to cases of a nonuniformly charged
spherical particle with a double layer of finite thickness30-33and
a nonuniformly charged nonspherical particle.34-37Recently, that
particles can have random charge nonuniformity has also been
demonstrated experimentally.38,39

The electrophoretic motion of nonuniformly charged particles
in the vicinity of confining walls could also be encountered in
some real situations. In addition to the possible examples
mentioned above, an electrophoretic positioning process has been
employed in electronic applications for assembling very small
individual devices, such as an InGaAs light-emitting diode or a
nanowire, which must have all electric contacts available on one

surface, onto the contact electrodes of a silicon circuit by biasing
the contacts to control the placement of these devices with the
required precision.40,41 However, the boundary effects on the
electrophoresis of a charged particle with a nonuniformú potential
have not yet been investigated.

In this article, we examine the electrophoretic motion of a
dielectric sphere situated at the center of a spherical cavity with
very thin electric double layers when the surface potentials are
arbitrarily nonuniform. The motivation to study this problem
arises from the technology of electric paper displays (known as
Gyricon displays) where the translation and rotation of each
member of an array of hemispherically bichromal, nonuniformly
charged balls (about 100µm in diameter) in its own elastomer-
made and solvent-filled spherical cavity (which is only 10-40%
larger than the ball) with either a monopole or a dipole on its
wall between two thin, transparent plastic sheets are controlled
by applying a voltage of either positive or negative polarity across
the sheets.42,43Although the geometry of the concentric spherical
cavity is an idealized abstraction of some other real systems, the
result of boundary effects on the electrophoretic velocity of a
uniformly charged sphere obtained in this geometry18 has been
shown to be in good agreement with that for a circular cylindrical
pore.19 The geometric symmetry in this model system allows an
exact analytical solution to be obtained (as given by eqs 23-28
and illustrated in Figure 2a,b).

2. Analysis

We consider the quasi-steady electrophoretic motion of a
nonconducting spherical particle of radiusa andú potentialúp

in a concentric spherical cavity (or pore) of radiusbandú potential
úw filled with an electrolyte solution, as illustrated in Figure 1.
Both úp andúw can be nonuniform and are taken as arbitrary
functions of the position over the particle and cavity surfaces.
The applied electric field (or the electric field in the absence of
the particle) is constant and equalsE∞ez, whereez is the unit
vector in the positivez (axial) direction. The rectangular co-
ordinates (x,y,z) and spherical coordinates (r,θ,φ) are established
with their origin at the particle and cavity center. The thickness
of the electric double layers adjacent to the particle and cavity
surfaces is assumed to be very small relative to the particle radius
and the spacing between the solid surfaces. Gravitational effects
are ignored. Our objective is to determine the electrophoretic
velocity of the particle in the presence of the cavity.

Before determining the electrophoretic velocity of the confined
particle with nonuniformúp, the electric potential and velocity
fields in the fluid phase must be solved.

2.1. Electric Potential Distribution. The fluid outside the
thin double layers is electrically neutral and of constant
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Figure 1. Geometric sketch of the electrophoresis of a colloidal
sphere in a concentric spherical cavity.
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conductivity, hence the electric potential distributionψ(r, θ) is
governed by the Laplace equation,

Because the particle is assumed to be perfectly insulating, the
boundary condition forψ at the surface of the particle is

At the surface of the cavity, the electric potential distribution
gives rise to the applied electric field when the particle does not
exist. Thus, a reasonable choice of the boundary condition there
is

Here, we have setψ ) 0 on the planez ) 0 for convenience
without the loss of generality. The solution of eq 2 subject to
these boundary conditions is

whereλ ) a/b.

The boundary condition at the cavity wall may alternatively
be taken that the local electric potential gradient is equal in
magnitude to the prescribed electric field. In this case, the Dirichlet
approach given by eq 4 becomes the following Neumann
approach:18,44

Note that although the normal component of the electric potential
gradient at the cavity wall given by this boundary condition is
consistent with the applied electric field its tangential (angular)
component is not specified. The solution of eq 2 subject to eq
3 and boundary condition 6 is given by

In fact, eq 5 predicts that the electric potential at the particle
surface (r ) a) is decreased by the presence of the cavity by a
factor of (1+ λ3/2)-1, whereas eq 7 suggests that this potential
is increased by a factor of(1- λ3)-1. In the limit λ f 0, as
expected, eqs 5 and 7 become identical and reduce to the potential
distribution for a nonconducting sphere in an unbounded medium.

2.2. Fluid Velocity Distribution. Having obtained the solution
for the electric potential distribution, we can now proceed to find
the fluid velocity field. Because the Reynolds number is small,
the fluid motion outside the thin electric double layers is governed
by the Stokes equations,

The general solution of the above equations is given by45,46

wherepn(r ), Φn(r ), andøn(r ) are solid spherical harmonics of
ordern and r is the position vector.

Because the electric field acting on the diffuse ions within the
thin double layer at each solid surface produces a relative
tangential fluid velocity at the outer edge of the double layer as
given by the Helmholtz47expression for the electroosmotic flow,
the boundary conditions for the fluid velocity require that

Here, U and Ω are the translational and angular velocities,

(43) Crowley, J. M.; Sheridon, N. K.; Romano, L.J. Electrost.2002, 55, 247.

(44) Jackson, J. D.Classical Electrodynamics, 2nd ed.; John Wiley & Sons:
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(45) Lamb, H.Hydrodynamics; Dover: New York, 1945.
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Figure 2. Plots of dimensionless electrophoretic mobility parameters
Rp, Rw, γp, andγw as calculated from eqs 25-28 versus separation
parameterλ. The solid curves represent the case using the Dirichlet
boundary condition in eq 4, and the dashed curves denote the case
using the Neumann boundary condition in eq 6.

∇2ψ ) 0 (2)

∂ψ
∂r

) 0 atr ) a (3)

ψ ) -E∞r cosθ at r ) b (4)

ψ ) -
2E∞

2 + λ3(r + a3

2r2)cosθ (5)

∂ψ
∂r

) -E∞ cosθ at r ) b (6)

ψ ) -
E∞

1 - λ3(r + a3

2r2)cosθ (7)

η∇2v - ∇p ) 0 (8)

∇‚v ) 0 (9)

v ) ∑
n)-∞

∞ [∇ × (røn) + ∇Φn +
n + 3

2η(n + 1)(2n + 3)
r2∇pn -

n

η(n + 1)(2n + 3)
rpn] (10)

p ) ∑
n)-∞

∞

pn (11)

v ) vs
p ) U + aΩ × n +

εúp

η
(I - nn)‚∇ψ at r ) a (12)

v ) vs
w )

εúw

η
(I - nn)‚∇ψ at r ) b (13)
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respectively, of the electrophoretic sphere to be determined,n
is the unit normal vector on the particle surface pointing toward
the fluid phase,I is the unit dyadic, and the expression forψ has
already been given by eq 5 or 7.

As it can be shown,46 to get the solutions of eqs 8 and 9 in
the form of eqs 10 and 11 with boundary conditions given by
eqs 12 and 13 for a spherical particle in a concentric spherical
cavity, the solid spherical harmonic functions can be calculated
from the relationships

Here, Xn
p,w(θ, φ), Yn

p,w(θ, φ), and Zn
p,w(θ, φ) are the surface

spherical harmonics, the superscripts or subscripts p and w
represent the surfaces of the particle and cavity, respectively,
vs

p,w represents the fluid velocity distributions on the corre-
sponding surfaces given by eqs 12 and 13,ap ) a, andaw ) b.
From the second part of eqs 14-16, the relations between the
solid spherical harmonics (pn, Φn, øn) and the surface spherical
harmonics (Xn

p,w, Yn
p,w, Zn

p,w) can be obtained, and they are given
by eqs A1-A9 in Appendix A.

Theú potentialsúp andúw are arbitrary functions of (θ, φ) and
can be expressed in terms of the multipole expansions,28,37

Here the monopole, dipole, and quadrupole momentsMp,w, Dp,w,
and Qp,w, respectively, are defined by the following integrals
over the particle and cavity surfacesSp,w

and the higher-order moments (which make no contribution to
the electrophoretic velocity of the particle, as will be discussed
later) are neglected. Various nonuniformú potentialsúp,w can
result from eq 17 with appropriate choices of momentsMp,w (i.e.,
area-averagedú potentials),Dp,w, andQp,w(which are symmetric
and traceless).

With the substitution of the surface velocities given by eqs 12
and 13, in which the electric potential is given by eq 5 or 7 and

theú potentials are expressed by eq 17, into the first part of eqs
14-16, the surface spherical harmonicsXn

p,w, Yn
p,w, andZn

p,w can
be calculated in terms of the components of momentsMp,w, Dp,w,
andQp,w. It is found thatXn

p,w ) 0 for all n, and the nonzero
contributions of harmonic functionsYn

p,w andZn
p,w are given by

eqs A10-A14. For the electrophoresis of a sphere in a concentric
spherical cavity with specifiedú-potential distributions, the fluid
flow field can be obtained as an explicit function of the
components of momentsMp,w, Dp,w, andQp,w using eqs 10, 11,
and A1-A14.

The forceF and torqueT exerted by the fluid on the particle
as a result of the electrokinetic motion can be determined from46

These equations indicate that only low-order solid harmonic
functionsp-2 andø-2 contribute to the hydrodynamic force and
torque on the particle. Note thatp-2 andø-2 are functions of
monopole, dipole, and quadrupole momentsMp,w, Dp,w, andQp,w

of theú-potential distributions but are independent of their higher-
order moments.

2.3. Derivation of the Particle Velocities.At the quasi-steady
state, the net force and net torque acting on the electrophoretic
particle must vanish. Applying these constraints to eqs 21 and
22 and using eqs A2 and A6 (takingn ) 1,Xn

p,w ) 0, andYn
p,wand

Zn
p,w as given by eqs A10 and A13) for harmonic functionsp-2

andø-2, we obtain the translational and angular velocities of the
particle in the cavity as

where

andν ) 2 + λ3 if the Dirichlet boundary condition in eq 4 is
employed, whereasν ) 2(1 - λ3) if the Neumann boundary
condition in eq 6 is used. Note that all four parametersRp, Rw,
γp, andγw given by eqs 25-28 are functions of the ratioλ )
a/b alone. Although the expressions for the particle velocities in
eqs 23 and 24 involve only the monopole, dipole, and quadrupole
moments of theú potentials, they are exact for a particle-in-
cavity system with arbitraryú potential distributions because the
higher-order moments make no contribution to the particle
velocities.

For the electrophoresis of a colloidal sphere in a concentric
spherical cavity with specifiedú-potential distributions, eqs 23
and 24 together with eqs 25-28 can be easily used to determine

n‚vs
p,w ) ∑

n)0

∞

Xn
p,w )

∑
n)-∞

∞ [ nap,w

2η(2n + 3)
(ap,w

r )n

pn +
n
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(ap,w

r )n

Φn] (14)

-ap,w∇‚vs
p,w ) ∑

n)0

∞

Yn
p,w )

∑
n)-∞

∞ [n(n + 1)ap,w

2η(2n + 3)
(ap,w

r )n

pn +
n(n - 1)

ap,w
(ap,w

r )n

Φn] (15)

ap,wn‚(∇ × vs
p,w) ) ∑

n)0

∞

Zn
p,w )

∑
n)-∞

∞ [n(n + 1)(ap,w

r )n

øn] (16)

úp,w ) Mp,w + 3Dp,w‚n + 5
2

Qp,w:nn (17)

Mp,w ) 1

Sp,w ∫Sp,w úp,wdS (18)

Dp,w ) 1

Sp,w ∫Sp,w úp,wn dS (19)

Qp,w ) 1

Sp,w ∫Sp,w úp,w(3nn - I ) dS (20)

F ) -4π∇(r3p-2) (21)

T ) -8πη∇(r3ø-2) (22)

U ) ε

η[Rp(MpI - 1
2
Qp) + Rw(MwI - 1

2
Qw)]‚E∞ (23)

Ω ) 9ε

4ηa
[γpD

p - γwDw] × E∞ (24)

Rp ) 2 - 5λ3 + 3λ5

ν(1 - λ5)
(25)

Rw ) 6 - 10λ2 + 3λ3 - λ5 + 2λ8

3ν(1 - λ5)
(26)

γp ) 2
ν

(27)

γw ) 2
3ν

λ(2 + λ3) (28)
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the particle velocities after the calculation of the multipole
moments of theú-potential distributions according to eqs 18-
20. The translational velocity of the particle depends only on the
monopoleandquadrupolemomentsof theú-potential distributions
at the particle and cavity surfaces (the existence of the quadrupole
moments results in an anisotropic electrophoretic mobility of the
particle), whereas the rotational velocity is affected only by the
dipole moments. The effect of finite values of parametersRw and
γw is due to the electroosmotic flow that arises from the interaction
between the imposed electric field and the thin double layer
adjacent to the cavity wall. Equations 23 and 24 indicate that the
contributions from the wall-corrected electrophoretic driving force
(involving parametersRp andγp) and the electroosmotic flow to
the particle velocities can be superimposed, which is due to the
linearity of the problem. Note that the dependence ofRp andRw

on λ is different in order, and so is that for parametersγp and
γw.

It can be found that all four parametersRp, Rw, γp, andγw

given by eqs 25-28 are always positive as long as 0< λ < 1.
In the limit of λ f 0, eqs 25-28 reduce toRp ) Rw ) γp ) 1
andγw ) 0, in which the electrophoretic and angular velocities
for an unconfined dielectric sphere with nonuniformúp obtained
by Anderson28

are reproduced (with the effect of the electroosmotic flow arising
from the interaction of the prescribed electric field with the
charged cavity at infinity given byRw ) 1 excluded). Whenúp

is uniform over the particle surface, eqs 29 and 30 reduce to eq
1 andΩ0 ) 0. In the limit of λ f 1, eqs 25-28 becomeRp )
Rw ) 0 andγp ) γw ) 2/3 if the boundary condition in eq 4 is
adopted for the electric potential at the cavity wall, andRp ) Rw

) 1/2 andγp ) γw f ∞ if the boundary condition in eq 6 is used.
Note that eqs 25 and 26 forRp andRw with ν ) 2(1 - λ3) are
identical to the corresponding equations derived by Zydney18for
a uniformly charged spherical particle undergoing electrophoretic
motion in a uniformly charged concentric spherical cavity using
the boundary condition in eq 6. For a given finite value ofλ, the
values of parametersRp, Rw, γp, andγw predicted using eq 4 are
always smaller than their corresponding results obtained using
eq 6.

In terms of the electrophoretic and angular velocities for an
isolated dielectric sphere given by eqs 29 and 30, it is convenient
to express the bounded result of eqs 23 and 24 as the normalized
velocity components in rectangular coordinates,

where

and subscripti represents thex, y, or zcomponent for which the
unbounded velocityUi0 or Ωi0 is nonzero. Parameterski and li
correspond to the strength of the electroosmotic flow that develops
from the interaction between the imposed electric field and the
thin double layer adjacent to the cavity wall relative to the
electrophoretic driving force when the cavity wall is at infinity.
These two parameters can be either positive or negative (meaning
that the contributions to the particle velocities from the cavity-
induced electroosmotic flow can be in either the same or in the
opposite direction to those from the electrophoretic driving force),
depending on the combination of theú-potential distributions at
the particle and cavity surfaces. Equations 31 and 32 show that
the i component of the normalized electrophoretic velocity of
the spherical particle depends only on parametersRp, Rw, and
ki and thei component of the normalized angular velocity depends
only onγp, γw, andli. Note that for a specified componenti in
a bounded system it is possible thatUi (or Ωi) is finite whileU0i

(or Ω0i) vanishes.

U0 ) ε

η(MpI - 1
2

Qp)‚E∞ (29)

Ω0 ) 9ε

4ηa
Dp × E∞ (30)

Ui

U0i
) Rp + Rwki (31)

Ωi

Ω0i
) γp + γwl i (32)

ki )
[(MwI - 1

2
Qw)‚E∞] i

[(MpI - 1
2
Qp)‚E∞] i

(33)

l i ) -
[Dw × E∞] i

[Dp × E∞] i

(34)

Figure 3. Plots of normalized translational velocityUi/U0i of the
electrophoretic particle versus separation parameterλ: (a) the case
using the Dirichlet boundary condition in eq 4 and (b) the case using
the Neumann boundary condition in eq 6.
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3. Results and Discussion

The numerical values of dimensionless mobility parameters
Rp, Rw, γp, andγw of a spherical particle undergoing electro-
phoresis in a concentric spherical cavity, as calculated from eqs
25-28, are plotted versus separation parameterλ in Figure 2a,b.
It can be seen that bothRp andRw are monotonically decreasing
functions ofλ from unity atλ ) 0 to zero (if the Dirichlet boundary
condition in eq 4 is adopted for the electric potential at the cavity
wall) or to 1/2 (if the Neumann boundary condition in eq 6 is
used) atλ ) 1. Thus, the net effect of the approach of the cavity
wall to the particle, dominated by the contribution from viscous
retardation, is to reduce both the electrophoretic driving force
and the cavity-induced electroosmotic sweeping force on the
particle. However,γw is a monotonically increasing function of
λ from zero atλ ) 0 to 2/3 (if eq 4 is adopted) or to infinity (if
eq 6 is used) atλ ) 1, whereas interestinglyγp decreases
monotonically with an increase inλ from unity atλ ) 0 to 2/3
at λ ) 1 (if eq 4 is adopted) or increases monotonically withλ
from unity atλ ) 0 to infinity at λ ) 1 (if eq 6 is used). Note

that for any given value ofλ between 0 and 1,Rp is greater than
Rw andγp is greater thanγw, no matter whether eq 4 or 6 is used
for the boundary condition of the electric potential at the cavity
wall.

The normalized velocitiesUi/U0i andΩi/Ω0i calculated from
eqs 31 and 32 as functions ofλ are depicted in Figures 3 and
4, respectively, for various values ofki and li. For a constant
value ofλ, as expected, the value ofUi/U0i increases monotonically
with an increase inki, and the value ofΩi/Ω0i increases
monotonically with an increase inli. As long as the values ofki

and l i are greater than-1, the values ofUi/U0i and Ωi/Ω0i,
respectively, are always positive. When the values ofki and li
are smaller than about-1, however, the values ofUi/U0i and
Ωi/Ω0i may become negative, meaning that the translational and
rotational velocities of the particle may reverse their directions
because of the relatively strong effect of the cavity-induced

Figure 4. Plots of normalized angular velocityΩi/Ω0i of the
electrophoretic particle versus separation parameterλ: (a) the case
using the Dirichlet boundary condition in eq 4 and (b) the case using
the Neumann boundary condition in eq 6.

Figure 5. Geometric sketch of the electrophoresis of a colloidal
sphere with an oddú-potential distribution formed by one hemisphere
of the constant valueú1

p attached to a second hemisphere ofú2
p in

a concentric spherical cavity with an oddú-potential distribution
formed by one hemisphere ofú1

w attached to a second hemisphere
of ú2

w. The z-x plane is chosen to contain both unit vectorep
defining the axis of rotational symmetry of the particle and applied
electric fieldE∞.

Figure 6. Geometric sketch of the electrophoresis of a colloidal
sphere with an evenú-potential distribution formed by two caps of
the constant valueú1

p and a middle ofú2
p in a concentric spherical

cavity with an evenú-potential distribution formed by two caps of
ú1

w and a middle ofú2
w. Thez-x plane is chosen to contain both unit

vectorep defining the axis of rotational symmetry of the particle and
applied electric fieldE∞.
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electroosmotic flow in the opposite direction at the center of the
cavity. For specified values ofki andli, the magnitude ofUi/U0i

in general decreases with an increase inλ (with exceptions when
ki equals about-1), whereas the magnitude ofΩi/Ω0i - 1
increases with an increase inλ. For given finite values ofki and
λ, the magnitude ofUi/U0i predicted from using the Neumann
boundary condition in eq 6 in general is greater than that predicted
from using the Dirichlet boundary condition in eq 4.

As an example, we consider the electrophoresis of a colloidal
sphere with an oddú-potential distribution formed by one
hemisphere of the constant valueú1

p attached to a second
hemisphere ofú2

p in a concentric spherical cavity similarly
composed of two hemispheres of different constantú potentials
ú1

w andú2
w, as shown in Figure 5. Unit vectorsep andew define

the axes of rotational symmetry of the particle and cavity,
respectively, and both are allowed to orient arbitrarily with respect
to the applied electric fieldE∞. Thez-xplane is chosen to contain
bothepandE∞. After calculating the multipole moments according
to eqs 18-20 and substituting their result into eqs 23 and 24,
we obtain

Because the quadrupole moments disappear and the higher-order
moments do not contribute in this case, eq 35 shows that the
electrophoretic velocity of the particle is always collinear with
the applied electric field, irrespective of the orientations ofep

andew. The cavity wall can induce an angular velocity of the
particle with bothx and y components, although the particle
rotates only about they axis in the absence of the cavity.

For another example in contrast to the previous one, we consider
the electrophoresis of a colloidal sphere with an evenú-potential
distribution formed by two caps of the constant valueú1

p

connected by a middle section ofú2
p in a concentric spherical

cavity with a similar evenú-potential distribution formed by two
caps ofú1

w and a middle ofú2
w, as shown in Figure 6. Again, the

orientations of the axes of rotational symmetry of the particle
and cavity, given by unit vectorsep andew, respectively, can be
arbitrary relative to the imposed electric fieldE∞, and thez-x
plane is chosen to contain bothep andE∞. Using eqs 18-20 for
this case, we find that

and the dipole moments of theú potentials at the particle and
cavity surfaces vanish. In this case, the electroosmotic flow that
arises from the interaction between the applied electric field and
the thin double layer adjacent to the cavity wall may contribute
to the translational velocity of the particle in all three rectangular
components, whereas the contribution from the electrophoretic
driving force has onlyz and x components. The particle is
irrotational without the contribution from the dipole moments.
When the values of anglesθp,w ) 0 or π/2, the ú-potential
distributions are uniform, and the result of eqs 23 and 24 with
eqs 37 and 38 reduces to that for a uniformly charged spherical

particle undergoing electrophoretic motion in a uniformly charged
concentric spherical cavity.

4. Concluding Remarks

The quasi-steady electrophoretic motion of a dielectric sphere
in a concentric spherical cavity with arbitraryú-potential
distributions at the particle and cavity surfaces has been
theoretically investigated in this study. The applied electric field
is constant, and the thickness of the electric double layers adjacent
to the solid surfaces is assumed to be much smaller than the
particle radius and the gap width between the surfaces. Both the
Dirichlet-type and the Neumann-type boundary conditions are
considered for the electric potential at the cavity wall. The Laplace
and Stokes equations are solved analytically for the electric
potential and velocity fields, respectively, in the fluid phase, and
the translational and angular velocities of the electrophoretic
particle are obtained in explicit expressions, eqs 23 and 24, with
the relevant parameters (functions of the ratio of the particle-
to-cavity radii only) given by eqs 25-28 and Figure 2a,b. Before
using these equations, one has to evaluate only the monopole,
dipole, and quadrupole moments of theú-potential distributions
at the particle and cavity surfaces defined by eqs 18-20. The
contributions from the electroosmotic flow arising from the
interaction of the applied electric field with the thin double layer
adjacent to the cavity wall and from the wall-corrected elec-
trophoretic driving force to the particle velocities can be
superimposed because of the linearity of the problem. Two
examples of the particle-cavity system with odd and even
ú-potential distributions, respectively, are given so that we may
discuss in detail the boundary effects of the cavity on the
electrophoretic velocities of the particle.

We note that the two types of boundary conditions for the
electric potential at the cavity wall lead to somewhat different
results for the translational and rotational velocities of the
electrophoretic particle. These two boundary conditions have
also been used in the literature to study the electrophoresis of
a suspension of colloidal spheres with thin electric double layers
using the unit cell model.48-51The results of these studies indicate
that the tendency of the dependence of the mean electrophoretic
mobility on the volume fraction of the particles predicted by the
Neumann type is not as correct as that predicted by the Dirichlet
type in comparison with the ensemble-averaged results obtained
by using the concept of statistical mechanics. Therefore, the
boundary condition represented by eq 6 might not be as accurate
as that represented by eq 4, probably because of the fact that the
angular component of the electric potential gradient at the cavity
wall is not specified in eq 6.

Appendix A

Relations among the Solid Spherical Harmonics, Surface
Spherical Harmonics, and Multipole Moments of Zeta
Potential Distributions Obtained from Equations 12-17.The
relations between the nonzero solid spherical harmonics (pn, Φn,
øn) and the surface spherical harmonics (Xn

p,w, Yn
p,w, Zn

p,w)
obtained from eqs 14-16 are

(48) Levine, S.; Neale, G. H.J. Colloid Interface Sci.1974, 47, 520.
(49) Zharkikh, N. I.; Shilov, V. N.Colloid J. USSR(English Translation)

1982, 43, 865.
(50) Kozak, M. W.; Davis, E. J.J. Colloid Interface Sci.1989, 127, 497.
(51) Wei, Y. K.; Keh, H. J.Langmuir2001, 17, 1437.

U ) ε

2η
[Rp(ú1

p + ú2
P) + Rw(ú1

w + ú2
w)]E∞ (35)

Ω ) 9ε

16ηa
[γp(ú1

p - ú2
p)ep - γw(ú1

w - ú2
w)ew] × E∞ (36)

Mp,w ) ú2
p,w cosθp,w + ú1

p,w(1 - cosθp,w) (37)

Qp,w )
1
2
(ú1

p,w - ú2
p,w)(cosθp,w - cos3 θp,w)(3ep,wep,w - I ) (38)
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for n g 1, and

where

The expressions for the nonzero surface spherical harmonics
Xn

p,w, Yn
p,w, and Zn

p,w in terms of the components of multipole
momentsMp,w, Dp,w, andQp,w of theú-potential distributions at
the particle and cavity surfaces in rectangular coordinates (x, y,
z) obtained from eqs 12-17 are

whereâp ) 3/ν, âw ) 1, andν is defined right after eq 28.
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pn )
2η(2n + 3)

naΓn(λ) (ra)n
λn+2{λn[(n + 2)(2n - 1) -

n(2n + 1)λ2 - 2(n - 1)λ2n+1]Xn
p

+ [-2(n - 1) - n(2n + 1)λ2n - 1 +
(n + 2)(2n - 1)λ2n+1]Xn

w

+ λn[2n - 1 - (2n + 1)λ2 + 2λ2n+1)]Yn
p +

[2 - (2n + 1)λ2n - 1 +
(2n - 1)λ2n+1]Yn

w} (A1)

p-n - 1 )
2η(2n - 1)

(n + 1)aΓn(λ)(
r
a)-n - 1

{λ[2(n + 2) +

(n - 1)(2n + 3)λ2n+1 - (n + 1)(2n + 1)λ2n+3]Xn
p

+ λn[-(n + 1)(2n + 1) + (n - 1)(2n + 3)λ2 +
2(n + 2)λ2n+3]Xn

w

+ λ[2 - (2n + 3)λ2n+1 + (2n + 1)λ2n+3]Yn
p +

λn[2n + 1 - (2n + 3)λ2 + 2λ2n+3]Yn
w} (A2)

Φn ) a
nΓn(λ)(

r
a)n

λn{λn[- (n + 2)(2n + 1) +

n(2n + 3)λ2 + 2(n + 1)λ2n+3]Xn
p

+ [2(n + 1) + n(2n + 3)λ2n+1 -
(n + 2)(2n + 1)λ2n+3)]Xn

w

+ λn[-(2n + 1) + (2n + 3)λ2 - 2λ2n+3]Yn
p +

[-2 + (2n + 3)λ2n+1 - (2n + 1)λ2n+3]Yn
w} (A3)

Φ-n - 1 ) a
(n + 1)Γn(λ) (ra)-n - 1

{λ[2n + (n - 1)(2n +

1)λ2n - 1 - (n + 1)(2n - 1)λ2n+1)]Xn
p

+ λn[-(n + 1)(2n - 1) +
(n - 1)(2n + 1)λ2 + 2nλ2n+1]Xn

w

+ λ[2 - (2n + 1)λ2n - 1 + (2n - 1)λ2n+1)]Yn
p +

λn[2n - 1 - (2n + 1)λ2 + 2λ2n+1]Yn
w} (A4)

øn )
- λ2n+1Zn

p + λnZn
w

1 - λ2n+1
(A5)

ø-n - 1 )
Zn

p - λnZn
w

1 - λ2n+1
(A6)

p-1 ) - η
r
(2X0

w + Y0
w) (A7)

Φ-1 ) a2

2rλ2
Y0

w (A8)

Γn(λ) ) 4λ(1 + λ4n+2) - λ2n[(2n + 1)2(1 + λ4) -

2(2n - 1)(2n + 3)λ2] (A9)

Y1
p,w ) âp,w[(-2Mp,w + Qzz

p,w)cosθ +

(Qyz
p,wsinφ + Qxz

p,wcosφ)sin θ] (A10)

Y2
p,w ) -3âp,w[Dz

p,w(3 cos2 θ - 1) +

3(Dy
p,wsinφ + Dx

p,wcosφ)cosθ sin θ] (A11)

Y3
p,w ) -âp,w[3Qzz

p,w(5 cos3θ - 3 cosθ) +

4(Qyz
p,wsinφ + Qxz

p,wcosφ)(5 cos2 θ - 1)sinθ

+ 5(2Qxy
p,w sin 2φ -

(Qyy
p,w - Qxx

p,w) cos 2φ)cosθ sin2 θ] (A12)

Z1
p,w ) 3âp,w(Dx

p,wsinφ - Dy
p,wcosφ)sin θ (A13)

Z2
p,w ) 5âp,w{(Qxz

p,wsinφ - Qyz
p,wcosφ)cosθ sin θ

- [12(Qyy
p,w - Qxx

p,w)sin 2φ +

Qxy
p,wcos 2φ)]sin2 θ} (A14)
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