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Abstract

The electrophoretic motion of a long dielectric circular cylinder with a general angular distribution of its surface potential under a transversely
imposed electric field in the vicinity of a large plane wall parallel to its axis is analyzed. The thickness of the electric double layers adjacent to
the solid surfaces is assumed to be much smaller than the particle radius and the gap width between the surfaces, but the applied electric field can
be either perpendicular or parallel to the plane wall. The presence of the confining wall causes three basic effects on the particle velocity: (1) the
local electric field on the particle surface is enhanced or reduced by the wall; (2) the wall increases viscous retardation of the moving particle;
(3) an electroosmotic flow of the suspending fluid may exist due to the interaction between the charged wall and the tangentially imposed electric
field. Through the use of cylindrical bipolar coordinates, the Laplace and Stokes equations are solved analytically for the two-dimensional electric
potential and velocity fields, respectively, in the fluid phase, and explicit formulas for the quasisteady electrophoretic and angular velocities of the
cylindrical particle are obtained. To apply these formulas, one has only to calculate the multipole moments of the zeta potential distribution at the
particle surface. It is found that the existence of a plane wall near a nonuniformly charged particle can cause its translation or rotation which does
not occur in an unbounded fluid with the same applied electric field.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A charged particle suspended in an electrolyte solution is
surrounded by a diffuse cloud of ions carrying a total charge
equal and opposite in sign to that of the particle. This distrib-
ution of fixed charge and diffuse ions is known as an electric
double layer. When an electric field is imposed on the particle,
a force is exerted on both parts of the double layer. The parti-
cle is attracted toward the electrode of its opposite sign, while
the ions in the diffuse layer migrate in the other direction. This
particle motion is termed electrophoresis and has long been ap-
plied to the particle characterization or separation in a variety
of colloidal and biological systems.

The electrophoretic velocity U of an isolated particle is re-
lated to the applied electric field E∞ by the Smoluchowski
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equation [1–3],

(1)U = εζp

η
E∞.

Here, η and ε represent the viscosity and permittivity, respec-
tively, of the solution surrounding the particle, and ζp is the
zeta potential associated with the particle surface. This for-
mula is valid on the basis of several assumptions: (i) the lo-
cal radii of curvature of the particle are much larger than the
thickness of its electric double layer; (ii) the ambient fluid is
unbounded; (iii) the zeta potential is uniform on the length
scale of the particle. The first restriction also implies that the
double layer remains approximately in equilibrium despite the
migration of the particle and diffuse ions. Even though many
colloidal particles undergoing electrophoresis fulfill this condi-
tion, electrophoresis of particles with thick or distorted double
layers does occur in certain cases so that relevant corrections to
the Smoluchowski prediction in Eq. (1) are necessary and have
been obtained [4–8].
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In practical applications of electrophoresis, colloidal parti-
cles are not isolated and will move in the presence of neigh-
boring boundaries [9–11]. Therefore, the boundary effects on
electrophoresis are of great importance and have been studied
extensively in the past for various cases of uniformly charged
colloidal spheres and boundaries in the limit of thin electric
double layers. Using a method of reflections, Keh and Anderson
[12] analyzed the electrophoretic motions of a dielectric sphere
normal to a large conducting plane, parallel to a large dielectric
plane, along the axis of a long circular tube, and along the cen-
tral plane between two large parallel plates. Through an exact
representation in spherical bipolar coordinates or a lubrication
theory, semianalytical solutions for the electrophoretic veloc-
ity of a colloidal sphere in the vicinity of an infinite plane wall
have also been obtained in two principal cases: the migration
perpendicular to a conducting plane [13–15] and the move-
ment parallel to an insulating wall [16,17]. Subsequently, the
boundary effects on electrophoresis of a charged sphere were
investigated for geometries like migration along the axis of a
circular orifice or disk [18], movement in a circular cylindrical
pore at an axial [19] or eccentric [20,21] position, and motion
in between two parallel plane walls [22–24]. The boundary ef-
fects on electrophoresis have also been theoretically examined
for the cases of spherical particles with thick or distorted double
layers [24–28] and of nonspherical particles [29–31].

On the other hand, many colloidal particles have hetero-
geneous surface structures or chemistry and are nonuniformly
charged. For instance, elementary clay particles are flat disks
with edges having a different charge density or zeta potential
from the faces. Distributions of surface charge or potential for
particles can also result from aggregation of different species
of colloids. Even if a particle is homogeneously charged on its
surface, an applied electric field could cause rearrangement of
these charges if they are mobile [32]. A distribution of zeta po-
tential on particle surfaces has been found to lead to colloidal
instability, even the average zeta potential should be sufficiently
high to keep the suspension stable [33,34]. The electrophoretic
motion of a dielectric sphere with nonuniform zeta potential
and thin electric double layer was first analyzed thoroughly by
Anderson [35], although it had also been discussed to some ex-
tent earlier [36]. It was found that, in terms of the multipole
moments of the zeta potential, the electrophoretic mobility de-
pends not only on the monopole moment (area-averaged zeta
potential) but also on the quadrupole moment, and the dipole
moment contributes to particle rotation which tends to align the
particle with the electric field. This analysis was later extended
to the cases of a nonuniformly charged spherical particle with
a double layer of finite thickness [37–40] and a nonuniformly
charged nonspherical particle [41–45]. Recently, that particles
can have random charge nonuniformity has also been demon-
strated experimentally [46,47].

The electrophoretic motion of nonuniformly charged parti-
cles in the proximity of confining walls could also be encoun-
tered in some real situations. For example, the translation and
rotation of each of an array of nonuniformly charged bichro-
mal spheres in its own elastomer-made and solvent-filled cavity
controlled by imposing a voltage of either positive or negative
polarity have been applied to a technology of electric paper
displays [48,49]. Also, an electrophoretic positioning process
has been employed in electronic applications for assembling
very small individual devices, such as an InGaAs light-emitting
diode or a nanowire, which is nonuniformly charged and must
have all electric contacts available on one surface, onto the con-
tact electrodes of a silicon circuit by biasing the contacts to con-
trol the placement of these devices with the precision required
[50,51]. Recently, the electrophoresis of a dielectric spherical
particle in a concentric spherical cavity with nonuniform zeta
potential distributions at the solid surfaces has been investigated
and analytical expressions for the translational and angular ve-
locities of the particle in terms of the monopole, dipole, and
quadrupole moments of the zeta potentials were obtained [52].

The objective of this paper is to determine the electrophoretic
velocity of a long dielectric circular cylinder with an a nonuni-
form zeta potential distribution in the angular direction near a
large plane wall parallel to its axis in transversely applied elec-
tric fields. The electric double layers are assumed to be thin
compared with the radius of the cylindrical particle and with
the surface-to-surface spacing between the particle and the wall.
A cylindrical bipolar coordinate system is used to solve the qua-
sisteady problem. In the next section, the electrophoresis of a
circular cylinder caused by an imposed electric field in the di-
rection perpendicular to its axis and to a conducting plane wall
is examined. The analytical solution for the wall-corrected elec-
trophoretic velocity of the particle is obtained in Eqs. (20a) and
(20b). The analysis of a complementary problem to that treated
in Section 2, the electrophoretic motion of a circular cylinder
driven by an applied electric field in the direction perpendicular
to its axis and parallel to a dielectric plane wall, is presented in
Section 3. The general expressions for the electrophoretic ve-
locity of the particle in this case are given in Eqs. (28a)–(28c).

2. Electrophoresis in an applied electric field
perpendicular to a conducting plane wall

In this section we consider the quasisteady electrophoretic
motion of a long circular cylindrical particle of radius a caused
by a uniform electric field E∞ = E∞ex imposed normal to its
axis and to a large conducting plane wall located at a distance d

from the axis, as illustrated in Fig. 1a, where ex together with ey

and ez are the principal unit vectors in the Cartesian coordinate
system (x, y, z) with a right-handed screw. The zeta potential ζp
on the surface of the particle at r = a can be a general function
of the azimuth angle θ , where (r, θ, z) are circular cylindrical
coordinates. The thickness of the electric double layers sur-
rounding the particle and adjacent to the plane wall is assumed
to be much smaller than the radius of the cylinder and the spac-
ing between the solid surfaces. Gravitational and end effects are
neglected. Our purpose is to determine the electrophoretic ve-
locity of the nonuniformly charged cylindrical particle in the
presence of the plane wall.

For convenience in satisfying the boundary conditions at
the solid surfaces, an orthogonal curvilinear coordinate system
(ξ,ψ, z) known as cylindrical bipolar coordinates and shown in
Fig. 2 is utilized to solve the problem. This coordinate system
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(a)

(b)

Fig. 1. Geometric sketch for the transverse electrophoresis of a circular cylinder
in the proximity of a plane wall: (a) electric field applied perpendicular to the
wall; (b) electric field imposed parallel to the wall.

Fig. 2. The two-dimensional bipolar coordinates (ξ,ψ) and rectangular coordi-
nates (x, y).

is related to rectangular coordinates in any plane z = constant
by the relation [53,54]

(2a)x = c sinhψ

coshψ − cos ξ
,

(2b)y = c sin ξ

coshψ − cos ξ
,

where −∞ < ψ < ∞, 0 � ξ � 2π , and c is a characteristic
length in the bipolar coordinate system which is positive.

The curves ψ = constant correspond to a family of noninter-
secting, coaxial circles (or cylinders) whose centers all lie along
the x axis. The special case ψ = 0 generates a circle of infinite
radius and corresponds to the entire y axis (or the plane x = 0).
ψ = ψ0 > 0 represents the circle (or the cylinder) of radius
a = c cschψ0, with its center at the point (x = d = c cothψ0,
y = 0). The ratio of the radius of the cylinder to the distance of
the axis of the cylinder from the plane is related to ψ0 by

(3)λ = a/d = sechψ0.

Before determining the electrophoretic velocity of the cylin-
drical particle near the plane wall, the electric potential and
velocity fields in the fluid phase must be solved.

2.1. Electric potential distribution

The fluid outside the thin double layers is electrically neu-
tral and of constant conductivity; hence the electric potential
distribution Φ(ξ,ψ) is governed by the Laplace equation,

(4)∇2Φ = 0.

Here, the operator ∇2 in bipolar coordinates has the form

(5)∇2 = 1

c2
(coshψ − cos ξ)2

(
∂2

∂ξ2
+ ∂2

∂ψ2

)
.

The potential gradient far away from the cylinder approaches
the applied electric field, and the cylindrical particle is assumed
to be perfectly insulating. Also, the plane boundary is consid-
ered as a perfectly conducting wall and its potential is taken to
be zero for convenience. Thus, the boundary conditions for Φ

are

(6a)ψ = ψ0: eψ · ∇Φ = 0,

(6b)ψ = 0: Φ → −E∞x,

where

(7)∇ = 1

c
(coshψ − cos ξ)

(
eξ

∂

∂ξ
+ eψ

∂

∂ψ

)
,

and eξ and eψ are the principal unit vectors in bipolar coordi-
nates. Note that

(8a)

ex = 1

coshψ − cos ξ

[− sinhψ sin ξeξ

− (coshψ cos ξ − 1)eψ

]
,

(8b)

ey = 1

coshψ − cos ξ

[
(coshψ cos ξ − 1)eξ − sinhψ sin ξeψ

]
.

The solution to Eq. (4) subject to the boundary conditions in
Eqs. (6a) and (6b) is [29]

(9)

Φ = −2cE∞
∞∑

n=1

e−nψ0 sechnψ0 sinhnψ cosnξ

− cE∞
sinhψ

coshψ − cos ξ
,

in which the last term is the electric potential distribution that
would exist in the absence of the cylinder.

2.2. Fluid velocity distribution

With knowledge of the solution for the electric potential dis-
tribution in the fluid phase, we can now proceed to find the fluid
flow field. Because the Reynolds number associated with elec-
trophoretic motions is small, the velocity distribution for the
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fluid outside the thin electric double layers is governed by the
Stokes equations,

(10a)η∇2v − ∇p = 0,

(10b)∇ · v = 0,

where v is the fluid velocity distribution and p is the dynamic
pressure. Taking the curl of both sides of Eq. (10a) and intro-
ducing Eq. (10b) and the stream function Ψ result in a fourth-
order linear partial differential equation,

(11)∇4Ψ = ∇2(∇2Ψ
) = 0.

The stream function is related to the velocity components in
bipolar coordinates by the formulas

(12a)vξ = 1

c
(coshψ − cos ξ)

∂Ψ

∂ψ
,

(12b)vψ = −1

c
(coshψ − cos ξ)

∂Ψ

∂ξ
.

At the surface of the cylinder, the electric field acting on
the diffuse ions within the double layer produces a relative tan-
gential fluid velocity at the outer boundary of the double layer
as given by the Helmholtz expression for the electroosmotic
flow [55]. At a distance far away from the particle and on the
conducting plane wall, the fluid is motionless. Therefore, the
boundary conditions for the velocity field are

(13a)ψ = ψ0: v = Uxex + Uyey + aΩeξ + εζp

η
∇Φ,

(13b)ψ = 0: v → 0,

where Uxex + Uyey and Ωez are the translational and angular
velocities, respectively, of the electrophoretic cylinder to be de-
termined and the expression for Φ is given by Eq. (9). Note that
Uy and Ω appear in Eq. (13a) since the zeta potential ζp can be
a general function of the angular position on the particle sur-
face. Because the cylinder is freely suspended in the fluid, the
net force and net torque exerted by the fluid on the cylinder per
unit length must vanish.

Since the governing equation and boundary conditions are
linear, the total flow can be decomposed into two parts. First,
we consider the fluid velocity field v1 about a circular cylinder
(with its surface at ψ = ψ0) translating with a velocity Uxex +
Uyey and rotating with an angular velocity Ωez near a plane
wall (at x = 0), but with no electrokinetic slip velocity at the
particle surface. The stream function for this creeping flow was
obtained and the drag force F1 and torque T1 exerted by the
fluid on the cylinder per unit length is [29]

(14a)F1 = −4πη

(
Ux

ψ0 − tanhψ0
ex + Uy

ψ0
ey

)
,

(14b)T1 = −4πηa2Ω cothψ0ez.

The above equations indicate that the translation and rotation
for the two-dimensional creeping motion of a circular cylinder
near a plane wall are not coupled with each other.

Next, we consider the fluid flow caused by the electrokinetic
tangential velocity at the surface (outer edge of the electric dou-
ble layer) of a stationary circular cylinder near a plane wall,
namely, the flow subject to the boundary conditions given by
Eqs. (13a) and (13b) with Ux = Uy = Ω = 0. Superposing
this velocity field v2 with v1 will yield the total velocity field
produced by the electrophoretic motion of a cylinder under an
applied electric field normal to its axis and to a plane wall. By
obtaining the hydrodynamic force F2 and torque T2 exerted on
the stationary cylinder, adding them respectively to the force
F1 and torque T1 given by Eqs. (14a) and (14b), and equating
the sums to zero, the translational and angular velocities of the
electrophoretic cylinder with wall corrections will result.

The zeta potential ζp is a general function of the azimuth
angle θ on the cylinder surface r = a and can be expressed in
terms of the multipole expansions,

(15)ζp = M + D · er + Q : erer .

Here er and eθ are the basic unit vectors in polar coordinates
(r, θ ), and the monopole, dipole, and quadrupole moments M ,
D, and Q, respectively, are defined by the following integrals
over the particle surface,

(16a)M = 1

2π

2π∫
0

ζp dθ,

(16b)D = 1

π

2π∫
0

ζper dθ,

(16c)Q = 1

π

2π∫
0

ζp(erer − eθ eθ )dθ,

and the higher-order moments are neglected. Various distribu-
tions of nonuniform zeta potential ζp can result from appropri-
ate choices of the moments M (i.e., area-averaged zeta poten-
tial), D, and Q (which is symmetric and traceless).

A general solution to the biharmonic equation (11) in bipolar
coordinates, suitable for satisfying boundary conditions on the
cylindrical particle and plane wall, has been given by [53,56]

(17)

Ψ = εE∞c

η
(coshψ − cos ξ)−1

[
Aψ(coshψ − cos ξ)

+ (B + Cψ) sinhψ − Dψ sin ξ

+
∞∑

n=1

{[
an cosh(n + 1)ψ + bn sinh(n + 1)ψ

+ cn cosh(n − 1)ψ + dn sinh(n − 1)ψ
]

cosnξ

+ [
a′
n cosh(n + 1)ψ + b′

n sinh(n + 1)ψ

+ c′
n cosh(n − 1)ψ + d ′

n sinh(n − 1)ψ
]

sinnξ
}]

.

The coefficients A, B , C, D, an, bn, cn, dn, a′
n, b′

n, c′
n, and

d ′
n (in which d1 and d ′

1 are trivial) should be determined by
the boundary conditions given by Eqs. (13a) and (13b) with
Ux = Uy = Ω = 0 using Eqs. (9), (12a), (12b), and (15). After
considerable algebraic manipulation, analytical results of these
coefficients are obtained and given in Appendix A.



T.H. Hsieh, H.J. Keh / Journal of Colloid and Interface Science 315 (2007) 343–354 347
The drag force and torque exerted on the stationary cylinder
per unit length by the fluid due to the electrokinetic motion are

(18a)F2 = 4πεE∞(Dex + Cey),

(18b)T2 = −4πεE∞a(A sinhψ0 + C coshψ0)ez,

where the coefficients A, C, and D are given by Eqs. (A.1),
(A.3), and (A.4).

2.3. Derivation of the particle velocities

Since the net hydrodynamic force and torque acting on the
electrophoretic cylinder must vanish, we have

(19a)F1 + F2 = 0,

(19b)T1 + T2 = 0.

With the substitution of Eqs. (14a), (14b) and (18a), (18b) into
the above constraints, the translational velocities Ux and Uy as
well as the angular velocity Ω of the cylinder near the conduct-
ing plane wall are determined as

(20a)

Ux = εE∞
η

sinhψ0 tanhψ0 sech 2ψ0

{
2M sinhψ0 − Dx tanhψ0

+ 1

4
Qxx

[
(cosh 4ψ0 + 1)O1 + cosh 2ψ0(R1 − 4O1)

+ 6 sinhψ0 − 2 sinh 3ψ0
]}

,

(20b)

Uy = εE∞
η

tanhψ0 sech 2ψ0

{
−Dy coshψ0

+ 1

4
Qyx

[
6 + 2 cosh 4ψ0 − (sinh 3ψ0 + sinh 5ψ0)P0

]}
,

(20c)

Ω = εE∞
ηa

{−Dy tanh 2ψ0 + 2Qxy

[
(1 − cosh 2ψ0)P0

+ (2 + sech 2ψ0) sinhψ0 − sechψ0 tanhψ0
]}

,

where On, Pn, and Rn are defined by Eqs. (A.21)–(A.24).
In the limit λ → 0, Eqs. (20a)–(20c) reduce to

(21a)U0 = ε

η

(
MI − 1

2
Q

)
· E∞,

(21b)Ω0 = ε

ηa
D × E∞,

which are the translational and angular velocities of a nonuni-
formly charged circular cylinder undergoing two-dimensional
electrophoresis in an unbounded fluid.

For a uniformly charged circular cylinder undergoing elec-
trophoretic motion in a transversely applied electric field nor-
mal to a conducting plane wall, Eqs. (20a)–(20c) become

(22)Ux = 2εζpE∞
η

sinh2 ψ0

cosh 2ψ0
tanhψ0,

and Uy = Ω = 0. Equation (22) corrects an inadvertent er-
ror for the previous result obtained by Keh et al. [29] in their
Eq. (4.10).
2.4. Results and discussion

The analytical solution for the translational and angular ve-
locities of the cylindrical particle undergoing transverse elec-
trophoresis under the applied electric field E∞ = E∞ex per-
pendicular to a conducting plane wall is obtained in Eqs. (20a)–
(20c). For illustrative examples, we consider four cases of the
zeta potential distribution on the surface of the particle.

(23a)Case I: ζp = ζ0 sin θ,

(23b)Case II: ζp = ζ0 cos θ,

(23c)Case III: ζp = ζ0 sin 2θ,

(23d)Case IV: ζp = ζ0 cos 2θ,

where ζ0 is a constant and θ is the azimuth angle clockwise
from the positive x axis in Fig. 2. Note that both the monopole
moment (area-averaged zeta potential) and the quadrupole mo-
ment disappear in Cases I and II, while both the monopole and
the dipole moments vanish in Cases III and IV. After calculat-
ing the multipole moments according to Eqs. (16a)–(16c) and
substituting them into Eqs. (20a)–(20c), we obtain the transla-
tional and angular velocities of the cylindrical particle for each
of the four cases as functions of λ, the ratio of the radius of
the cylinder to the distance of the axis of the cylinder from the
plane wall.

For Case I, the dipole moment D = ζ0ey , and there is no
particle velocity in the direction of the imposed electric field
(Ux = 0) owing to the antisymmetry of the zeta potential distri-
bution on the surface of the cylindrical particle about the x axis
(or the plane y = 0), regardless of the value of the parameter λ.
The results of the lateral velocity Uy and angular velocity Ω of
the particle as functions of λ are plotted in Fig. 3. The existence
of the conducting plane wall depresses the local electric field at
the particle surface on the side next to the wall compared with
that on the far side [29], and thus reduces the magnitude of the
angular velocity of the particle from ε|ζ0|E∞/ηa (in the direc-
tion of −ezζ0/|ζ0|, as predicted by Eq. (21b)) at λ = 0 to zero at

Fig. 3. Plots of the normalized velocities −ηUy/εζ0E∞ and −ηaΩ/εζ0E∞
of a circular cylinder with a zeta potential distribution given by Eq. (23a) in
a transversely applied electric field perpendicular to a conducting plane wall
versus the separation parameter λ.
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Fig. 4. Plots of the normalized velocity −ηUx/εζ0E∞ of a circular cylinder
with a zeta potential distribution given by Eq. (23b) in a transversely applied
electric field perpendicular to a conducting plane wall versus the separation
parameter λ.

λ = 1. Interestingly, there exists an accompanying finite lateral
velocity Uy of the cylinder in the direction of −eyζ0/|ζ0| (pre-
dictable from observing the strength and direction distributions
of the tangential electroosmotic velocity at the particle surface
given in Eq. (13a)) as long as 0 < λ < 1, but this velocity dis-
appears in both limits of λ as expected. It can be shown that
the maximal magnitude of Uy equals ε|ζ0|E∞/2

√
2η, which

occurs at λ = √
2/3.

For Case II defined by Eq. (23b), the dipole moment D =
ζ0ex , and Uy = Ω = 0 due to the symmetry of the zeta poten-
tial distribution on the surface of the cylindrical particle about
the x axis, irrespective of the value of λ. As shown in Fig. 4,
the electrophoretic velocity of the particle, Ux , has a finite
magnitude in the direction of −exζ0/|ζ0| for all finite separa-
tions (0 < λ < 1) and, as expected, vanishes in both limits of
λ. It can be found that the maximal magnitude of Ux equals
(3 + √

33 )3/2ε|ζ0|E∞/4(17 + 3
√

33 )η, which takes place at
λ = 2/(7 + √

33 )1/2.
For Case III, the quadrupole moment Q = ζ0(exey + eyex),

and there is no velocity of the cylinder in the direction of the
applied electric field (Ux = 0) for any value of λ, owing to the
antisymmetry of the zeta potential distribution on the particle
surface about the x axis. The results of the lateral velocity Uy

and angular velocity Ω of the particle as functions of λ are
plotted in Fig. 5. For an isolated cylinder (with λ = 0), the par-
ticle translates with a lateral velocity Uy = −εζ0E∞/η without
rotation, as given by Eqs. (21a)–(21b). The existence of the
conducting plane wall (with a finite value of λ) reduces the
magnitude of this lateral velocity and causes a finite angular
velocity Ω of the cylinder in the direction of ezζ0/|ζ0|, and
both velocities vanish in the limit λ = 1. The maximal mag-
nitude of Ω equals about 0.176ε|ζ0|E∞/ηa, which occurs near
λ = 0.915.

For Case IV defined by Eq. (23d), the quadrupole moment
Q = ζ0(exex − eyey), and Uy = Ω = 0 for any value of λ due
to the symmetry of the zeta potential distribution on the parti-
Fig. 5. Plots of the normalized velocities −ηUy/εζ0E∞ and ηaΩ/εζ0E∞ of a
circular cylinder with a zeta potential distribution given by Eq. (23c) in a trans-
versely applied electric field perpendicular to a conducting plane wall versus
the separation parameter λ.

Fig. 6. Plots of the normalized velocity −ηUx/εζ0E∞ of a circular cylinder
with a zeta potential distribution given by Eq. (23d) in a transversely applied
electric field perpendicular to a conducting plane wall versus the separation
parameter λ.

cle surface about the x axis. The result of the particle velocity
in the direction of the imposed electric field, Ux , as a function
of λ is plotted in Fig. 6. For the case of an unconfined cylin-
der (with λ = 0), the particle translates with an electrophoretic
velocity Ux = −εζ0E∞/2η, as predicted by Eq. (21a). When
the conducting plane wall exists, as expected, the magnitude of
this electrophoretic velocity decreases with an increase in λ and
vanishes in the limit λ = 1.

3. Electrophoresis in an applied electric field parallel to an
insulating plane wall

We now consider the two-dimensional quasisteady elec-
trophoretic motion of a long circular cylinder of radius a (repre-
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sented by ψ = ψ0) under a uniform electric field E∞ = E∞ey

imposed perpendicular to its axis (with coordinates x = d and
y = 0) and parallel to a large dielectric plane wall (located at
x = 0), as shown in Fig. 1b. The zeta potential distribution on
the surface of the cylindrical particle can be a general function
of the azimuth angle θ . As in the previous section, the assump-
tion of thin electric double layers is employed. Our objective is
to find the wall-corrected electrophoretic velocity of the parti-
cle.

3.1. Electric potential distribution

The electrostatic equation governing the potential distribu-
tion Φ(ξ,ψ) is the Laplace equation (4). Since the potential
gradient far away from the cylinder approaches the applied
electric field and both the cylinder and the wall are perfectly
insulating, the electric potential is subject to the boundary con-
ditions

(24a)x = 0: eψ · ∇Φ = 0,

(24b)ψ = ψ0: eψ · ∇Φ = 0,

(24c)
(
x2 + y2)1/2 → ∞ and x > 0: Φ → −E∞y.

The solution of Eq. (4) satisfying the above boundary condi-
tions is given by [29]

(25)

Φ = −2cE∞
∞∑

n=1

e−nψ0 cschnψ0 coshnψ sinnξ

− cE∞
sin ξ

coshψ − cos ξ
,

where the last term is the undisturbed potential distribution (in
the absence of the particle).

3.2. Fluid velocity distribution

Having obtained the solution for the electric potential distri-
bution in the fluid phase, we can now proceed to find the flow
field. The fluid motion outside the thin electric double layers is
governed by Eq. (11) and subject to the boundary conditions

(26a)x = 0: v = εζw

η
∇Φ,

(26b)ψ = ψ0: v = Uxex + Uyey + aΩeξ + εζp

η
∇Φ,

(26c)

(
x2 + y2)1/2 → ∞ and x > 0:

v → v∞ey = −εζwE∞
η

ey,

where ζw is the zeta potential associated with the plane wall,
which is taken as a constant, Uxex + Uyey and Ωez are the
translational and angular velocities, respectively, of the elec-
trophoretic cylinder to be determined, and the expression for Φ

is given by Eq. (25). Note that Ux exists in Eq. (26b) due to the
nonuniformity of ζp on the particle surface, and Eqs. (26a) and
(26c) allow an electroosmotic flow induced by the interaction
of the applied electric field with the charged plane wall.
Similarly to the case dealt with in the previous section, the
total flow can be decomposed into two parts. First, we consider
the fluid velocity field v1 about a circular cylinder moving near
the plane wall with the translational velocity Uxex + Uyey and
angular velocity Ωez, while the plane wall and the fluid far
away from the cylinder are moving with a velocity equal to
v∞ey , but with no electrokinetic slip velocity at either of the
solid surfaces. For this creeping flow, the drag force F1 and
torque T1 per unit length exerted by the fluid on the cylinder is
still given by Eqs. (14a), (14b) with Uy − v∞ to replace Uy .

Next, we consider the fluid flow caused by the electrokinetic
tangential velocities at the solid surfaces (i.e., outer edges of
the double layers) of a stationary circular cylinder and a nearby
plane wall moving with a velocity equal to −v∞ey , which sat-
isfies the boundary conditions

(27a)x = 0: v2 = εζw

η
∇Φ − v∞ey,

(27b)ψ = ψ0: v2 = εζp

η
∇Φ,

(27c)
(
x2 + y2)1/2 → ∞ and x � 0: v2 → 0.

Here the electric potential distribution Φ is provided by
Eq. (25). Superposing the velocity field v2 with v1 yields
the total fluid velocity field produced by the transverse elec-
trophoretic motion of a circular cylinder subject to an im-
posed electric field parallel to a plane wall and specified by
Eqs. (26a)–(26c). By obtaining the drag force F2 and torque T2

per unit length exerted by the fluid on the stationary cylinder,
individually adding these to the force F1 and torque T1 given
by Eqs. (14a) and (14b) with Uy −v∞ to replace Uy , and equat-
ing the results to zero, the translational and angular velocities
of the cylinder will result.

The stream function Ψ2 associated with v2 can also be ex-
pressed by Eq. (17), and the coefficients A, B , C, . . . , etc.,
should be determined by applying Eqs. (27a)–(27c) to Eq. (17)
and using Eqs. (12a), (12b) and (25). The procedure is straight-
forward but tedious, and the result is given in Appendix B. The
force F2 and torque T2 per unit length exerted on the station-
ary cylinder by the fluid due to the electrokinetic motion can be
easily obtained by the substitution of the coefficients A, C, and
D given by Eqs. (B.1), (B.3), and (B.4) into Eqs. (18a), (18b).

3.3. Derivation of the particle velocities

Using the constraints that the net force F1 + F2 and net
torque T1 +T2 acting on the electrophoretic cylinder must van-
ish, we obtain the translational and rotational velocities of the
cylinder near an insulating plane wall as

(28a)

Ux = εE∞
η

tanhψ0
[
Dy sechψ0 + 2Qxy

(
P1 sinh2 ψ0 − 1

)]
,
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(28b)

Uy = εE∞
η

{
(M − ζw) coth 2ψ0 − 1

2
Dx cschψ0

+ 1

4
Qyy

[
(cosh 4ψ0 − 5) csch 2ψ0

+ sinh 2ψ0
(
(cosh 2ψ0 − 2)O0 + R0

)]}
,

(28c)

Ω = εE∞
2ηa

cschψ0

{
sech2 ψ0

[
−(M − ζw)

+ 1

2
Dx(coshψ0 + cosh 3ψ0)

]
+ Qyy

[
1 + tanh2 ψ0

+ sinh2 ψ0(2 + (cosh 2ψ0 − 2)O0 + R0)
]}

.

Here, On, Pn, and Rn are defined by Eqs. (B.21)–(B.25). Again,
in the limit λ → 0, Eqs. (28a)–(28c) with ζw = 0 reduces to
Eqs. (21a) and (21b) for the electrophoresis of the circular
cylinder in an unbounded fluid.

For a uniformly charged circular cylinder undergoing elec-
trophoretic motion in a transversely applied electric field paral-
lel to an insulating plane wall, Eqs. (28a)–(28c) become

(29a)Uy = εE∞
η

(ζp − ζw) coth 2ψ0,

(29b)Ω = −εE∞
ηa

(ζp − ζw)
sechψ0

sinh 2ψ0
,

and Ux = 0. Equations (29a) and (29b) are identical to the pre-
vious result obtained by Keh et al. [29].

3.4. Results and discussion

The analytical solution for the translational and angular ve-
locities of the circular cylinder undergoing transverse elec-
trophoresis under the applied electric field E∞ = E∞ey parallel
to a dielectric plane wall is obtained in Eqs. (28a)–(28c). Again,
we consider the four cases of the zeta potential distribution on
the surface of the cylindrical particle defined by Eqs. (23a)–
(23d) as illustrative examples. After calculating the multipole
moments according to Eqs. (16a)–(16c) and substituting them
into Eqs. (28a)–(28c), we obtain the translational and angular
velocities of the particle as functions of the parameter λ defined
by Eq. (3) for each of the four cases. For convenience in the
following discussion, the condition ζw = 0 will be taken for the
plane wall in all cases.

For Case I defined by Eq. (23a), there is no translation in
the direction of the applied electric field (Uy = 0) and no rota-
tion (Ω = 0) of the cylindrical particle due to the antisymmetry
of the zeta potential distribution on the particle surface about
the x axis (or the plane y = 0), irrespective of the value of λ.
The result of the lateral velocity of the particle, Ux , as a func-
tion of λ is plotted in Fig. 7. The existence of the insulating
plane wall enhances the local electric field at the particle sur-
face on the near side to the plane wall in comparison with that
on the far side [29], and thus generates a finite lateral velocity
of the cylinder in the direction of exζ0/|ζ0| (predictable from
observing the strength and direction distributions of the tan-
gential electroosmotic velocity at the particle surface given in
Fig. 7. Plots of the normalized velocity ηUx/εζ0E∞ of a circular cylinder with
a zeta potential distribution given by Eq. (23a) in a transversely applied electric
field parallel to a conducting plane wall versus the separation parameter λ.

Fig. 8. Plots of the normalized velocities −ηUy/εζ0E∞ and ηaΩ/εζ0E∞ of
a circular cylinder with a zeta potential distribution given by Eq. (23b) in a
transversely applied electric field parallel to a conducting plane wall versus the
separation parameter λ.

Eq. (26b)) as long as 0 < λ < 1, but this velocity disappears in
both limits of λ. It can be found that the maximal magnitude of
Ux equals ε|ζ0|E∞/4η, which occurs at λ = 1/

√
2.

For Case II, the lateral velocity Ux = 0 for any value of
λ owing to the symmetry of the zeta potential distribution on
the surface of the cylindrical particle about the x axis. The
results of the translational velocity Uy in the direction of the
imposed electric field and of the angular velocity Ω of the par-
ticle as functions of λ are plotted in Fig. 8. For an isolated
cylinder (with λ = 0), the particle rotates with an angular veloc-
ity Ω = εζ0E∞/ηa without translation, as given by Eqs. (21a)
and (21b). The existence of the dielectric plane wall (with a
finite value of λ) increases this angular velocity and causes a
finite translational velocity Uy of the cylinder in the direction
of −eyζ0/|ζ0|. Both magnitudes of Ω and Uy increase with an
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Fig. 9. Plots of the normalized velocity −ηUx/εζ0E∞ of a circular cylinder
with a zeta potential distribution given by Eq. (23c) in a transversely applied
electric field parallel to a conducting plane wall versus the separation parame-
ter λ.

increase in the parameter λ to infinity in the limit λ = 1 (in
which the local tangential electric field at the contact point be-
comes infinity). This behavior is predictable from observing the
strength and direction distributions of the tangential electroos-
motic velocity at the particle surface given in Eq. (26b).

For Case III defined by Eq. (23c), Uy = Ω = 0 due to the an-
tisymmetry of the zeta potential distribution on the particle sur-
face about the x axis, regardless of the value of λ. The result of
the lateral velocity Ux of the particle as a function of λ is plot-
ted in Fig. 9. For the case of an isolated cylinder (with λ = 0),
the particle translates with a lateral velocity Ux = −εζ0E∞/2η

as predicted by Eq. (21a). The approach of an insulating plane
wall (with an increase in λ) first increases the magnitude of this
lateral velocity of the cylinder (the influence of the enhance-
ment of the local electric field at the particle surface is stronger
than the effect of the viscous retardation caused by the wall) to
a maximum at a finite value of λ, then reduces it (the effect of
the viscous retardation dominates) to zero in the limit λ = 1.
The maximal magnitude of Ux equals about 0.516ε|ζ0|E∞/η,
which takes place near λ = 0.500.

For Case IV, there is no velocity of the circular cylin-
der in the direction perpendicular to the applied electric
field (Ux = 0) for any value of λ, owing to the symme-
try of the zeta potential distribution on the particle surface
about the x axis. The results of the electrophoretic veloci-
ties Uy and Ω of the particle as functions of λ are plotted
in Fig. 10. For an isolated cylinder (with λ = 0), the par-
ticle translates with a velocity Uy = εζ0E∞/2η without ro-
tation, as given by Eqs. (21a) and (21b). The existence of
a nearby insulating plane wall (with a finite value of λ) in-
creases this electrophoretic velocity and causes a finite angu-
lar velocity Ω of the cylinder in the direction of −ezζ0/|ζ0|.
Both magnitudes of Uy and Ω increase with an increase in
the parameter λ to infinity in the limit λ = 1 (where the
local tangential electric field at the contact point is infin-
ity).
Fig. 10. Plots of the normalized velocities ηUy/εζ0E∞ and −ηaΩ/εζ0E∞
of a circular cylinder with a zeta potential distribution given by Eq. (23d) in a
transversely applied electric field parallel to a conducting plane wall versus the
separation parameter λ.

4. Concluding remarks

In this work, the two-dimensional (transverse) electropho-
retic motion of a dielectric circular cylinder with a general
angular zeta potential distribution on its surface in the proxim-
ity of a large plane wall has been analytically investigated at the
quasisteady state. The thickness of the electric double layers ad-
jacent to the solid surfaces is assumed to be much smaller than
the particle radius and the gap width between the solid surfaces.
A cylindrical bipolar coordinate system has been used to solve
the Laplace and Stokes equations for the electric potential and
velocity fields, respectively, in the fluid phase in two fundamen-
tal cases: external electric fields applied normal to a conducting
plane wall and parallel to a dielectric plane wall. The trans-
lational and angular velocities of the cylindrical particle are
obtained in explicit expressions (20a)–(20c) and (28a)–(28c)
for the two cases. Before using these equations, one has only
to evaluate the multipole moments of the zeta potential distribu-
tion at the particle surface defined by Eqs. (15) and (16a)–(16c).
The contributions from the electroosmotic flow produced by the
interaction of the tangentially applied electric field with the thin
electric double layer adjacent to the plane wall and from the
wall-corrected electrophoretic driving force to the particle ve-
locities can be superimposed due to the linearity of the problem.
Several illustrative examples of the cylindrical particle–plane
wall system with odd and even zeta potential distributions, re-
spectively, are given to discuss in detail the boundary effects
on the electrophoretic velocities of the nonuniformly charged
particle.

For the purpose of obtaining analytical solutions for the
transverse electrophoretic motion of a circular cylinder in the
proximity of a plane wall parallel to its axis, the effect of the
ends of the cylinder has been ignored in our analyses. In order to
investigate the electrophoresis of a cylinder having a relatively
large but finite length with or without a confining plane wall, the
use of a slender-body theory [42,57] or numerical calculations
might be needed. However, our results in Eqs. (20a)–(20c) and
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(28a)–(28c) demonstrate that the electrophoretic velocities of
the cylinder are independent of its length (or the size of the par-
ticle). Therefore, it is reasonable to expect that, unless the zeta
potential or surface charge density at the ends of the cylinder
is relatively high, the end effect on its electrophoretic velocities
will not be significant.
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Appendix A. Coefficients in Eq. (17) satisfying boundary
conditions given by Eq. (13) with Ux = Uy = Ω = 0

In Section 2, the coefficients in Eq. (17) for the stream
function determined using the boundary conditions given by
Eq. (13) with Ux = Uy = Ω = 0 and Eqs. (9), (12), and (15)
are obtained as follows:

(A.1)

A = Dy(1 + 2ψ0 cothψ0) sech 2ψ0
coshψ0

ψ0

− Qyx

csch 4ψ0

2ψ0

{
16ψ0 + 5 sinh 2ψ0 + sinh 6ψ0

− 8 cosh2 ψ0
[
2ψ0 + cosh 2ψ0

(
P0 sinhψ0

× (4ψ0 + sinh 2ψ0) − 4ψ0
)]}

,

(A.2)B = −A,

(A.3)

C = sech 2ψ0

ψ0

{
−Dy sinhψ0 + 1

4
Qyx tanhψ0

[
6 + 2 cosh 4ψ0

− P0(sinh 3ψ0 + sinh 5ψ0)
]}

,

(A.4)

D = sinhψ0 sech 2ψ0

ψ0 cothψ0 − 1

{
2M sinhψ0 − Dx tanhψ0

+ 1

4
Qxx

[
(cosh 4ψ0 + 1)O1 + cosh 2ψ0(R1 − 2O1)

+ 6 sinhψ0 − 2 sinh 3ψ0
]}

,

(A.5)a1 = −2ψ0 tanhψ0C + (sinh 2ψ0 − 2 tanhψ0)A

2(cosh 2ψ0 − 1)
,

(A.6)b1 = 1

2
A,

(A.7)c1 = −a1,

(A.8)

an = n sinhψ0 coshnψ0 − coshψ0 sinhnψ0

[n2(cosh 2ψ0 − 1) + 1 − cosh 2nψ0] sinhψ0
Hn

(n � 2),

(A.9)

bn = an

(1 − n)[cosh(n − 1)ψ0 − cosh(n + 1)ψ0]
(1 − n) sinh(n + 1)ψ0 + (1 + n) sinh(n − 1)ψ0

(n � 2),

(A.10)cn = −an (n � 2),

(A.11)dn = 1 + n

1 − n
bn (n � 2),

(A.12)a′
1 = 2ψ0 − sinh 2ψ0

D,

2(cosh 2ψ0 − 1)
(A.13)b′
1 = 1

2
D,

(A.14)c′
1 = −a′

1,

(A.15)

a′
n = n sinhψ0 coshnψ0 − coshψ0 sinhnψ0

[n2(cosh 2ψ0 − 1) + 1 − cosh 2nψ0] sinhψ0
H ′

n

(n � 2),

(A.16)

b′
n = a′

n

(1 − n)[cosh(n − 1)ψ0 − cosh(n + 1)ψ0]
(1 − n) sinh(n + 1)ψ0 + (1 + n) sinh(n − 1)ψ0

(n � 2),

(A.17)c′
n = −a′

n (n � 2),

(A.18)d ′
n = 1 + n

1 − n
b′
n (n � 2).

In the above equations,

(A.19)

Hn = sinhψ0
[
(Dy − 2Qxy coshψ0)(Fn+1 − Fn−1)

+ 2Qxy sinhψ0Pn

]
,

(A.20)

H ′
n = 1

2

{−[
2(M − Dx coshψ0) + (1 + cosh 2ψ0)Qxx

]
× (Fn+1 + Fn−1) + [

4(M coshψ0 − Dx)

+ (5 coshψ0 − cosh 3ψ0)Qxx

]
Fn

+ Qxx

[
sinhψ0(Rn − 5On) + sinh 3ψ0On

]}
,

(A.21)On =
n∑

k=1

Fkskn +
∞∑

k=n+1

Fksnk,

(A.22)P0 =
∞∑

k=1

(Fk+1 − Fk−1)e
−kψ0 + F1,

(A.23)

Pn =
n∑

k=1

(Fk+1 − Fk−1)ckn +
∞∑

k=n+1

(Fk+1 − Fk−1)cnk + c0kF1

(n � 1),

(A.24)

Rn =
n∑

k=1

(Fk+2 − Fk−2)skn +
∞∑

k=n+1

(Fk+2 − Fk−2)snk

− (F1 + F−1)s1n,

(A.25)Fn = ne−nψ0(tanhψ0 + 1),

(A.26)cnk = 2e−kψ0 coshnψ0,

(A.27)snk = 2e−kψ0 sinhnψ0.

Appendix B. Coefficients in Eq. (17) satisfying boundary
conditions given by Eqs. (27a)–(27c)

In Section 3, the coefficients in Eq. (17) for the stream
function determined using the boundary conditions given by
Eqs. (27a)–(27b) with Eqs. (12a), (12b), (15), and (25) are ob-
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tained as follows:

(B.1)

A = 1

8ψ0

{
csch3ψ0

[
M sechψ0(4ψ0 − sinh 4ψ0)

+ 2Dx(sinh 2ψ0 − 2ψ0 cosh 2ψ0)
]

− 2Qyy

[
2
(
1 + cosh 2ψ0 − csch2ψ0

+ ψ0
(
cothψ0

(
5 + csch2ψ0

) − tanhψ0
))

+ cothψ0(4ψ0 + sinh 2ψ0)

× (
2(cosh 2ψ0 − 2)O0 + R0

)]}
(B.2)B = −A,

(B.3)

C = 1

2ψ0
(2M coth 2ψ0 − Dx cschψ0)

+ Qyy

4ψ0

{
2 tanhψ0 − 2 cothψ0

+ sinh 2ψ0
[
2 + R0 + (cosh 2ψ0 − 2)O0

]}
,

(B.4)

D = 1

2(ψ0 cothψ0 − 1)

× [
Dy sechψ0 + 2Qxy

(
sinh2 ψ0P1 − 1

)]
,

(B.5)a1 = −2ψ0 tanhψ0C + (sinh 2ψ0 − 2 tanhψ0)A

2(cosh 2ψ0 − 1)
,

(B.6)b1 = 1

2
A,

(B.7)c1 = −a1,

(B.8)

an = n sinhψ0 coshnψ0 − coshψ0 sinhnψ0

[n2(cosh 2ψ0 − 1) + 1 − cosh 2nψ0] sinhψ0
Ln

(n � 2),

(B.9)

bn = an

(1 − n)[cosh(n − 1)ψ0 − cosh(n + 1)ψ0]
(1 − n) sinh(n + 1)ψ0 + (1 + n) sinh(n − 1)ψ0

(n � 2),

(B.10)cn = −an (n � 2),

(B.11)dn = 1 + n

1 − n
bn (n � 2),

(B.12)a′
1 = 2ψ0 − sinh 2ψ0

2(cosh 2ψ0 − 1)
D,

(B.13)b′
1 = 1

2
D,

(B.14)c′
1 = −a′

1

(B.15)

a′
n = n sinhψ0 coshnψ0 − coshψ0 sinhnψ0

[n2(cosh 2ψ0 − 1) + 1 − cosh 2nψ0] sinhψ0
L′

n

(n � 2),

(B.16)

b′
n = a′

n

(1 − n)[cosh(n − 1)ψ0 − cosh(n + 1)ψ0]
(1 − n) sinh(n + 1)ψ0 + (1 + n) sinh(n − 1)ψ0

(n � 2),

(B.17)c′
n = −a′

n (n � 2),

(B.18)d ′
n = 1 + n

1 − n
b′
n (n � 2).
In the above equations,

(B.19)

Ln = 1

2

{[
2(−M + coshψ0Dx) + (1 + cosh 2ψ0)Qyy

]
× (Gn+1 + Gn−1) + [

4(M coshψ0 − Dx)

+ (cosh 3ψ0 − 5 coshψ0)Qyy

]
Gn

− Qyy

[
sinhψ0(Rn − 5On) + sinh 3ψ0On

]}
,

(B.20)

L′
n = sinhψ0

[
(Dy − 2Qyx coshψ0)(Gn−1 − Gn+1)

+ 2Qyx sinhψ0Pn

]
,

(B.21)O0 =
∞∑

k=1

Gke
−kψ0,

(B.22)On =
n∑

k=1

Gkckn +
∞∑

k=n+1

Gkcnk (n � 1),

(B.23)

Pn =
n∑

k=1

(Gk−1 − Fk+1)skn +
∞∑

k=n+1

(Gk−1 − Gk+1)snk,

(B.24)

R0 =
∞∑

k=1

(Gk+2 + Gk−2)e
−kψ0 + (G1 − G−1)e

−ψ0 + G2,

(B.25)

Rn =
n∑

k=1

(Gk+2 + Gk−2)ckn +
∞∑

k=n+1

(Gk+2 + Gk−2)cnk

+ (G1 − G−1)c1n + G2c0n (n � 1),

(B.26)Gn = −ne−nψ0(cothψ0 + 1),

where cnk and snk are given by Eqs. (A.26) and (A.27).
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