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The electrophoretic motion of an arbitrary finite cluster of
colloidal spheres is considered. The spheres are allowed to differ
in size and in zeta potential at the surface. Also, the spheres can
be either freely suspended in the fluid or linked by infinitesimally
thin rods to form a rigid aggregate. The fluid can contain an
arbitrary combination of general electrolytes. Although the elec-
trical double layers surrounding the particles are assumed smal}
relative to the particles’ radii, the polarization of the mobile ions
in the diffuse layer induced by the applied electric field is taken
into account. A slip velocity of the fluid and normal fluxes of
ions at the outer edge of the double layer are used as the boundary
conditions for the fluid domain outside the thin double layer.
Using a collocation technique along with these boundary con-
ditions, a set of electrokinetic equations governing this problem
is solved in the quasi-steady limit and the particle interaction
effects are computed for various cases. It is found that particles
with the same zeta potential will interact with one another, unlike
the no-interaction results obtained in previous studies assuming
that the double layer is infinitesimally thin. For most situations,
the particle interaction among the spheres is a complicated
function of the properties of the spheres and ions, and it no
longer varies monotonically with the extent of separation for
some cases. Qur numerical results for the interaction between
two identical spheres are also used to evaluate the effect of the
volume fraction of particles on the average electrophoretic ve-
locity in a bounded suspension. For various situations, this av-
erage velocity is reduced as the particle concentration is in-
creased. ® 1993 Academic Press, Inc.

1. INTRODUCTION

A colloidal particle, when placed in an electrolvte solution,
can be driven to move by the application of an electric field
that interacts with the electrical double layer surrounding
the particie. This motion is called electrophoresis and has
been the subject of many investigations. The electrophoretic
velocity U™ of the particle is related to the applied electric
ficld E., by Smoluchowski's equation (1, 2),
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Here, e/ 4w is the permittivity of the solution, g is the flud
viscosity, and { Is the zeta potential on the shear plane at
the particle surface. Equation [1.1] can be applied to an iso-
lated dielectric particle of arbitrary shape and size. However,
its validity is based on two key assumptions, that the local
radii of curvature of the particle are much larger than the
thickness of the double layer at the particle surface and that
the polarization of diffuse ions in the double layer due 1o
the nonuniform electroosmotic flow is negligible. Recently,
important advances have been made in the calculation of
the electrophoretic velocity of colloidal particles, relaxing
these assumptions.

Taking the double-layer distortion from equilibrium as a
perturbation, O’Brien and White (3) obtained a numerical
solution for the electrophoretic velocity of a nonconducting
sphere of radius ¢ over a broad range of { and xa; « ! is the
Debye screening length. On the other hand, Dukhin and
Derjaguin { 2 ) obtained an analytical expression for the elec-
trophoretic mobility of a spherical particle with thin but po-
larized double layer in a solution of symmetrically charged,
binary electrolyte. Later, O’Brien (4 ) generalized this analysis
to the case of electrophoretic motion in a solution composed
of an arbitrary combination of electrolytes. The advantage
of this theory is that a “slip velocity™ and normal ionic fluxes
at the outer edge of the diffuse layer have been derived, so
the only region one needs to take into account is the neutral
fluid phase outside the double layer. The results of these
studies (2-4) have shown that the effect of polarization of
the double layer is to hinder the electrophoretic velocity.
One reason for this consequence is that the back field re-
sulting from the polarization of the diffuse ions is liable to
counterbalance the applied electric field, If {is small and xa
1s large, the interaction between the diffuse ions and the inside
charge at the particle surface is weak and the polarization of
the double layer is slight. In the limit of

Lexp(ﬁ) S,

ka ZkBT [1.2]
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where z, is the valence of the counterions with the highest
charge, ¢ is the charge of a proton, and AT is the thermal
energy, the electrophoretic velocity of the particle can be
accurately predicted by the Smoluchowski equation [1.1].
In practical applications of electrophoresis, multiple par-
ticle systems are more important than the single particle sit-
uation; the later condition represents only the limiting case
at low dispersed phase hold-up. In dispersions, particle in-
teractions can be of primary importance. Recently, much
progress has been made in the theoretical analysis of the
particle interactions in electrophoresis of insulating spheres
with extremely thin double layers, i.e., xa = <. Chen and
Keh (5) utilized a method of reflections to solve analytically
the problem of electrophoresis of two arbitrarily oriented
spheres with arbitrary ratios of radii and of zeta potentials.
Another approach to examining this two-sphere motion is
to use spherical bipolar coordinates. By this means, the elec-
trophoretic mobilities of two nonrotating spheres with iden-
tical radii were first computed by Reed and Morrison {(6),
and later this work was extended to the situations of two
arbitrary freely suspended spheres (7, 8). The third routine
employed to solve this problem was the boundary collocation
technique, which could be used to calculate the electropho-
retic velocities for a collection of two or more arbitrary
spheres (9, 10). One of the common conclusions from these
investigations for the case xka — oo is that there is no particle
interaction as long as all spheres have the same zeta potential.
In view of the fact that the polarization of the double
layers surrounding the particles may significantly influence
the behavior of particle interactions in electrophoresis, Chen
and Keh (1 1) studied the axisymmetric electrophoretic mo-
tion of'a string of spheres of arbitrary radii and zeta potentials
with thin double layers along their line of centers using a
boundary collocation technigue. The most important dis-
covery was that the particles with the same zeta potential
will interact with one another, unlike the no-interaction re-
sults obtained in previous investigations (5-10) assuming
that the double layers are infinitesimally thin. The present
work is an extension of that of Chen and Keh (11) to the
situation of the electrophoretic motion of multiple spheres
in an arbitrary configuration. Again, the spheres may differ
in radius and in zeta potential and the polarization of diffuse
ions in the double layers, which are small in thickness but
still have finite values in xa, is allowed. Also, the fluid solution
can contain more than one kind of general ¢lectrolyte. By
using the boundary collocation method, a set of electrokinetic
equations is solved semianalyticaily in the quasi-steady state.
The particle velocities are obtained with good convergence
for various cases. The solution method for the electrophoresis
of freely suspended spheres is also employed to examine the
electrophoretic motion of a three-dimensional rigid cluster
composed of N arbitrary spheres connected by thin rods of
arbitrary lengths through their centers. The interaction effects
between two spheres are also used to find the mean electro-
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phoretic velocity in a bounded dispersion of colloidal par-
ticles. In the limiting case of k@ = oo, our results are in
excellent agreement with those obtained in a previous anal-
ysis of this series (10).

2. ELECTROPHORESIS OF A CHARGED PARTICLE

We consider the electrophoretic motion of a dielectric
particle in an unbounded quiescent fluid which contains M
ionic species. The bulk densities of all ions nj; (m =1, 2,
..., M)Yin the electrolyte solution beyond the electrical dou-
ble layer are constant. The thickness of the double layer is
assumed to be much smaller than the particle dimension.
The inside charge is uniformly fixed to the particle; that is,
no conductance or charge polarization occurs inside the par-
ticle when the external ficld is applied. In spite of the as-
sumption of a thin double layer, the electric field induced
polarization of ionic distributions in the double layer will
still be considered. Our purpose in this section is to introduce
how the polarization of the diffuse layer influences the elec-
trophoretic mobility of the particle.

2.1. Electrokinetic Equations

To calculate the electrophoretic velocity of a particle, in
general, it is necessary to determine the electrical potential,
ionic concentration, and fluid velocity distributions in the
electrolyte solution. Conservation of all ionic species, which
do not react with one another, at a steady state requires that

V-l,=0 m=12...,M, [2.1]
where J,, is the density flux of the mith type of ion. If the
solution is dilute, this flux is given by

m

nmm_ [2.2]

Jor = ¥ — Vitm,

with the electrochemical potential energy of the mth species
of ion u,, defined as (12)

im = po + kzTIn n,, + ez,,P. {2.3]
Here, v is the fluid velocity; P is the electrical potential; »,,,
D,,., and z,,, are the number density, diffusion coefficient, and
valence of type-m ions, respectively; and uJ, is a constant,
Since the Reynolds numbers of electrophoretic motions are
very small, the inertial effect on the fluid momentum balance
can be ignored. Thus, the fluid flow is governed by the mod-
ified Stokes equations

M
Wi —Vp= 3 ez,n,Vo,

m=1

[2.4]
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V.-v=40, [2.5]
where p is the fluid pressure.

If the intensity of the external electric field is not high, the
deviation in the jonic number densities and the electrical
potential from equilibrium is so slight that the perturbation
theory can be utilized to linearize the governing equations.
It has been found that the electrochemical potential energy
fields and the fluid velocity satisfy the set of electrokinetic
equations (3, 4),

b

v

0P + VG, Vit = —— Vnpe - v,
D,

m=12 ..., M [26]

M
WU X V)= 3 Vil X i

m=1

[2.7]

Here, nY, is the equilibrium number density of the mrth spe-
cies of ion, which is related to the equilibrium electrical po-
tential ®° by the Boltzmann distribution

ZneP ) [2.8]

0 — o .
Hpy = HE exp( T
Beyond the double layer {the “inner” region) surrounding
the particle, or in the “outer” region, no ionic density gra-
dients V%, occur and Eqs. [2.6] and [2.7] reduce to

Vi, =0, m=1,2,...

.M, [2.9]

VHIX¥)=0 [2.10]

Because matched expansions of yu,, and v in both inner and
outer regions can be constructed for the case of a thin double
layer, the usual strategy is to solve Egs. [2.5], [2.9], and
[2.10] for u,, and v and the solution obtained for the inner
region supplies boundary conditions for the outer region,

2.2, Boundary Conditions at the Outer Edge of a Thin
Double Layer

Because the thickness of the double layer is much smaller
than the particle dimension, this inner region can be regarded
as a thin flat layer on the scale of Debye length «~'. This
implies that the fluid flow within the diffuse layer is primarily
tangential to the solid surface from using the equation of
continuity [2.5]}. By the match of solutions between the inner
and outer regions, it can be found that, at the outer boundary
of the double layer, an apparent slip velocity parallel to the
particle surface and normal gradients of the electrochemical
potential energys occur (4, 11},

I M

¥ = — — E Vs.umf yn(n?n“n;?

L

Ydy,, [2.11]

201

M

NV, =— 2 BumVipk,
k=1

m=1,2,.... M, [2.12]

with

= Zme®’
ﬁmk = fska; [eXp(_ kBT ) l]dyn
N ksT J“” 3 zed® o
D ng exp( e
'Yy
< ["[” [ ( zed )— 1]dy dvhdys. [2.13]
) T

Here, y, (or y) is the perpendicular distance from the par-
ticle surface, n is the unit vector normal to the solid surface
pointing toward the fluid phase, 8, is the Kronecker delta,

= (I — nn)-V is the gradient tangential to the particle
surface (I is the unit dyadic), and V2 = ¥, - V, is the surface
Laplacian operator.

If the fluid solution contains only one type of symmetric
electrolyte (M = 2) with the absolute value of valence Z,
the equilibrium electrical potential $°, which is obtained by
solving the one-dimensional Poisson-Boltzmann equation,
has the well-known expression

¥° =

2k T { I + tanh {exp(—«y) [2.14]

Ze 1 — tanh {exp{—xy) |’

where { = Ze{/4ks T and { is the zeta potential at the particle
surface. Thus, all values of 8, defined by Eq. [2.13] can be
calculated analytically, with the result

"= ! [4(1 + i)ew(ﬂ')smh ¢
% z?

_ 124,
22

(£ + In cosh f)] [2.15a]

B2 = % [— f] In cosh I] [2.15b]
Bai = l[ 12/; In cosh ;] [2.15¢]
K 77
B2 = l{ 4 (1 + 3—fj)exp( $)sinh
K Z
12fz

t (&- lncoshs“)] [2.15d]

In the above equations,

E(kBT)Z

Im = 6mne’D,,’

m=12 ..., M, [2.16]
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which is the dimensionless drag coeflicient of ion #2. The
subscripts | and 2 for m or & of the variables in Egs. [2.15a]-
[2.15d] refer to the anion and cation, respectively.

For the case of a solution consisting of an arbitrary com-
bination of general electrolytes, it is impossible to evaluate
8, analytically because there is no analytical solution avail-
able for #° Nonetheless, this can be overcome by the uti-
lization of an asymptotic solution for ®° for the case when
the particle is highly charged. Also, a reasoning is that only
the most highly charged counterions play a major role in the
ionic fluxes normal to the particle surface (4); that is,
boundary condition [2.12] might be approximated by

3/
Vitm = =N Vipm + 5= 2 0 Vi
n-vy i 4a21§ Hi Vs iy
forz,, = z,, [2.17a]
n-Vu, =0 otherwise, [2.17b]
with
1 el z.{|
=— — -1 2.18
A oK [exD( ZkBT) ] [ a
and
|z, {1 1z
= -2>.'nf . 2.18b
o 2 1% Uy { ]

Here, 1 is the ionic strength in the bulk solution, the subscript
o denotes the counterions with the highest charge, and the
symbol 2% represents summation over all those ionic species
{for which z,, = z,).

2.3. Electrophoretic Velocity of an Isclated Particle

We now consider the electrophoresis of a single particle
when a constant external electric field E_, is imposed. In the
fluid phase outside the thin double layer, the ¢lectrochemical
potential energys p,, satisfy Laplace’s equation [ 2.9] and the
velocity field v is governed by the Stokes equations [2.10]
and [2.5]. The boundary conditions far away from the par-
ticle are

Ir] = o0 YV > —zpeE,, [2.19a]

v =0, [2.19b]
where r is the position vector with onigin at the particle center.
At the particle “surface”™ (outer edge of the diffuse layer),
Lm 15 subject to boundary condition {2.12] or [2.17] and v
is given (according to [2.11]) by
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v=U+QXr

1 ¥ o
- z Vsrumf yn(”?n - Hf'ﬁ)dy,,, [2.20]
nm:l 0

where U and Q are the translational and angular velocities
of the electrophoretic particle to be determined. Because the
particle surface encloses a neutral body (charged interface
plus diffuse ions), the particle is force and torque free. With
this constraint, one can calculate U and Q after solving Egs.
[2.5], [2.9], [2.10], [2.12], [2.19], and [2.20] for up,
and v,

When the particle is a sphere of radius a, its translational
and angular velocities, which can be determined through the
above procedure, are (4)

2 M
U=-ZE, 3 (1 + e zan
377 m=1
- 2,50
n - - n 12,21
XL ¥ exp( kBT) l]dy { al
Q-=40, [2.21b]
with
1 3x 3fmt
Cp == — + =
2 2a+X) zmla + W,A)
for z,, = z,, [2.22a]
1
Cor = 5 otherwise, [2.22b]
where
32 int
k
W, =1+ 2.23
’ 22 2N (2.23]

The equilibrium electrical potential % can be obtained by
solving the Poisson-Boltzmann equation by the Runge-
Kutta method, and then the integral in Eq. {2.21a] can be
computed numerically. If the zeta potential of the sphere is
small and xa is large so that the limit of Eq. [1.2] is ap-
proached, there are hardly any ton fluxes in the direction
normal to the particle surface and the polarization of the
double layer is negligible. In this situation, Eq. [2.11] for the
slip velocity at the outer edge of the diffuse layer becomes
the simple Helmholtz expression for electroosmotic flow, A/
a - 0, each c,, is equal to 1, and Eq. [2.21a] reduces to the
Smoluchowski equation [1.1].

If the spherical particle is undergoing electrophoresis in
the fluid containing only one symmetric electrolyte (M =
2), ¢; and ¢; in Eq. [2.21a] become
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1

¢ = {a’> + afy + 3aB,,

2a’A
—2afy; + 280262 — 2811822), [2.24a)]
1
€ = Sa2A (ﬂ2 + af + 3afy
— 2aPyn + 2815621 — 2811822), [2.24b]
where

1
A=_5(a’+abi +aBy + Bubn — Buba), [2.25]

and 83,y, #2, 821, and f,; are given by Eq. {2.15]. In this
case, the integral in Eq. [2.21a] can be calculated analytically
and the electrophoretic velocity can be expressed in a simple
closed form (11),

-

v 4y

1
Em 5(2 + C; + Cz)

4k T
3Zef

(e = &)n cosh(fkii_)}. [2.26]

3. ANALYSIS FOR THE ELECTROPHORESIS OF
MULTIPLE SPHERES

We consider the electrophoretic motion of N spherical
particles in an immense fluid in an arbitrary three-dimen-
sional configuration as shown in Fig, 1. The Cartesian co-
ordinate system (x, y, z) with the unit vectors e, e, and e,
is established so that the constant applied electric field E.,
equals E e, and the center of the ith sphere locates at the
position (;, ¢;, d;) with b, = ¢, = d, = 0. The radii and zeta

Foo Bz <
-
A ) W
(z-'y-z) — - (o -]/
(rh"’hWJ I‘“
1 Lty
| Ty |
O |
| ] H
! | (bucudy
I = l v ) r_L_ — — ar
Ve e —
L{ —_— e e —
Y
FIG. 1. Geometrical sketch of the electrophoretic motion of multiple

spheres.
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potentials of the particles may differ from one another. The
fluid solution contains M different types of ton but, for sim-
plicity, only one corresponding kind of counterion with the
highest charge for each particle. The thickness of the electrical
double layers is assumed to be small relative to the radius
of each sphere and to the surface-to-surface spacing between
any two particles. Nevertheless, the effect of polarization in
the diffuse layer described in the previous section will be
taken into account. The objective is to determine how the
electrophoretic velocity of each sphere is affected by the
presence of the other ones.

3.1. Electrochemical Potential Distributions

Since the bulk ionic concentrations outside the double
layers are uniform, the electrochemical potential energies
obey Laplace’s equation [2.9] and are subject to the bound-
ary conditions (according to Egs. [2.17]-[2.19a])

Mty

or = _ﬁmmivsp'm at ¥ =4, [3'1]
Vim > —ezmEqe, as(x’+p° + zH)177 > o, [3.2]
with
I 172 2 TZ
Binmi = 2(_00) (l + %)
nx 2rnD, ez},
il -1
5 Explelznlil/ 2keT) iFm =, [33a]
. |Zm|K
Bmmi = 0 otherwise, [3.3b]

fori=12,...,Nandm=1,2,..., M. Here, (r;, 8, ¢;)
represent spherical coordinates measured from the center of
particle /, «; is the radius of particle /, and index o; denotes
the most highly charged counterions for particle i.

The fundamental solution of the Laplace equation that
can describe an arbitrary disturbance caused by a sphere
includes the solid spherical harmonic functions. For N
spheres dispersed in the electrochemical potential fields, the
general solution to Eq. [2.9] can be expressed by a super-
position of this fundamental solution in the spherical co-
ordinates as written from N different origins (sphere centers),

Hon = o + kgTIn 02 — ez, Eox

N w n
tvezwEy 20 2 2 ri VP gy
J=1 n=0 k=0
X [ijkncos(k¢j) + Snfj'anin(kd)j)]v [34]
form=1,2,...,or M, where P% is the associated Legendre

function of order k and degree » and ¢; denotes cos 6; for
brevity. This solution form satisfies boundary condition [3.2]
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immediately and the coefficients R, and Sy, will be de-
termined using [3.1]. It is understood that S,u, = 0 if
k=0

In order to express the electrochemical potential fields
[3.4] in terms of a single coordinate system, it is necessary
to perform a transformation between the coordinates (r;, g;,
¢,;) of an arbitrary position relative to the jth sphere and the
coordinates (r;, q;, ¢;) of the position relative to the ith
sphere. The formulas for this transformation of coordinates
were provided in Part IV { lO) With the aid of these formulas
and the relation

wherei=1,2,...,.N,m=1,2,..., M,

1
-R:l{ikn(rh di, ¢l) = ﬁ{_qu[
i

i

+(r+ 1)(n+ 2)r;‘"+3’c05(k¢j)1{(1 -

+[—(n+ Dy ”*”cos(k@)][(l —g?

N
Z
j:

(n+ l)rf{””)cos(kqu) _q_ _ r;‘”“)k sm(k(j{, zj]
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1 4 ad | LK
Vies—|(1-¢ |~ |+5—575. [35
rz aqf[( 7 )aq.-] T —ghag ]

we introduce g, in Eq. [3.4] into the boundary condition
[3.1] to obtain

NMB

Z { Romjtcn Rjien( @iy iy @) + Bromi RGien{ @i, @iy $:)]

Sppenl Shiten{ @iy Gis @Y+ BonmiSyn( @iy iy D)1}

- (1 - Bmm,f)\h =7 cos b, [3.6]

13

3 arj)z 1 (ar})z}

N /=<

4 )(5%’ (1 —q?) \dgs
&y

—q7) 8]

Fr, 1
a% (1

Y T S Y

+ [—r; "k sin(kg;)] [(1 —qi) (?;qt;, (1 _lq;'-*) ‘;j:;f]

+[2(n + Dr7 Dk Si“(kd’f)][(] —ah) %% 1+q?) r% %”Pﬁ(qﬂ
+ % [ 2g,r 7" Deos(ke; q,t

+[-2(n + 1)r,-"‘”’cos(k¢,-)][(1 — 4l g—;’ 3% ﬁ%%}
+[=2r; 0k sin(kd»)][(l - qi) 3—3’ % + ﬁ g% %]
+[r;‘"*”cos(’<¢ﬁ1[(' i ?3% 1—1q%)%ﬂ dpdicij)

1 a 1 g \21d*Pr(q;
- 8 s (5

I
Stanlris @iy ;) = —2[ 2g; [ (n+ l)r,"””’SIn(kcb,)——

+[(n+ D(n+ 2)r;‘"+”sin(k¢j)][(l

+i-(n+ l)rf‘””’sin(kqu)][(l —qi) o5 +

[3.7a]
—(n-}—l)k COS(k(bJ ¢J]
dg;
ar:\? 1 ar;\?
39 =) + — =

qr)(aqi) (1—-a}) (a‘{be) ]
8°r; 1 a’r;
dgt (1 —gqi) 8¢}
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. a5\ 1 8¢;\*
+ [=r7 ™D ESin(ke)]| (1 — @ =2 + ——< [ 2
[ t; kSll’l( ‘3";)]{( di )(6q,-) (l—q%)(aqﬁ';)
+[rf(n+l)kcos(k¢.)] (1 _q.l Qibi _l_ﬂ
’ ’ Vagi (1 qi) 947
ar; d¢; 1 Ir; Oe;
+[=2(n + D)r7U Dk cos(ke;) [(1 —gh)y 2 = ——— L NP
[ ! )] 3g; 8g; (1 — g7 ) 8¢ 3¢ f] "~
1 mbl) ag;
+ pr] [~2q,-rj‘ *Dsin (ke 67;7
_ ] ar; dq; 1 ar; dq
+ [=2(n + 1)r; " Dsin (kg [ 1 —g? —i—’+————J—"]
(2w Dr s | (=90 5 g, ™ (= a7 30,90,
_ , dg; 0o, 1 dq; O¢;
+ [2r7 " Dk cos(ke)]| (1 — g}y 2 2+ ——— L
L2 ( "’J)][( ) 3,30, T =) 661 30
%, 1 dg)) dPi(q)
+ [ Dsin (ke 1 -y ——— — (L B
[r; sin( dy)][( q;)aqr2 0 =40y 597 dq;
L merys ag; \* 1 ag;\" d*Pi(4))
+— [r;7 " Ysin(kg;) [ 1 - q%)(——’) +——(—i) —5L [3.7b]
ri | { ag; (1—¢7) \d¢ dq}
and Rig.(r;, g;, &) and Siua(r:, ¢;, ¢:) were defined in Part
1V (10). LS o g
To satisfy boundary condition [3.6] exactly along the en- mikn (Shikn( @i, di> &)
tire surface of each sphere would require the solution of the
entire infinite array of unknowq coeflicients Rk, and Spyn. + B STin (@5, 61, 1)1 cOS( k'fbi)dﬁb;}
However, the boundary collocation method ( 10, 13) enforces
the boundary condition at a finite number of discrete points 5
on the surface of each sphere and truncates the infinite series ( 1 = Bomi —)r]/l —g? (K=1)
[3.4] into a finite one: = i
0 0 (k’=01233="':K_1)> [393]
oy = by + kgT I 0l — ez B x + ez E, N Kol KL .
N K-l kt+l-1 z z 2 [Rm'krij {Rr‘ikn(ai: dis ‘;bl)
X 2 > ri O PH G Rmncos{ k) J=t k=0 n=k 7 do !
Jj=1 k=0 n=k
+ mmfR'r"rr i, giy Pi sin kr‘bi d I
T Sosin(ka)], [38] B8 (i s @iy di)]SIN(K i) dp
psd
where m = 1, 2, ..., or M; K and L are positive integer + Sk J; [Sinlais Gis i)
numbers. This solution form leaves a total of MNL(2K —
1) unknown constants R, and S (Spyer = 0) to be + S g b sin(k b de:
determined. To generate the equations needed to evaluate BrumiSin( s, @i> @)]sin(k'd)de
these unknown constants, we multiply the truncated form =0 (K=12,...,K—1), [3.9b]

of Eq. [3.6] by the function sets cos{k’'¢;) and sin(k’¢,),
integrate with respect to ¢; from 0 to 27, and utilize the

orthogonality properties of these functions in this interval
to obtain

N K=l ktL-1 2
2 > [ijknf [Riumnlay, g;, ¢:)
J=t n=k 0

k=0

+ B Rienl @iy @iy @i}]COS(K i)

wherem=1,2,..., Mandi=1,2,..., N The above
equaltions can be satisfied at 1. discrete values of #; (rings)
along the surface of each sphere i to result in a set of MNL(2K
— 1) linear algebraic equations, which can be solved by any
standard matrix-reduction method to determine the equal-
number unknown constants. Note that the definite integrais
in Egs. {3.9] for each collocation ring must be performed
numerically.
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For the special case with planar symmetry, i.e., the centers
of all the spheres lie in the plane y = 0, the coefficients Sujex
are all zero and Eq. {3.9b] becomes trivial. Thus, the number
of unknown coefficients (R, only) is reduced to MNLK
and they can be solved by an equal number of collocation
equations in the form of Eq. [3.9a]. Furthermore, there are
two special cases which can be deduced from the planar case:
a string of spheres oriented parallel to the applied electric
field (the centers of all spheres lie along the x-axis) and a
string of spheres oriented perpendicular to the applied field
(the centers of all spheres lie on the z-axis). The electro-
chemical potential distributions for the former case are axi-
symmetric about the x-axis and were solved in a previous
analysis (11). For the configuration of a finite chain of
spheres located on the z-axis, we have ¢, = ¢, b= ¢; =0 (i

=1,2,...,N)}, and Eq. [3.6] can be simplified to yield
N w )
> 2 Rl Giialai, @) + BumiHinn{ai, 4:)]
=1 n=1
2
=(1—ﬁmm.-;)\/1—q%, [3.10]
wherem=1,2,...,M,i=1,12,..., N, the function

Gjin(r:, ;) was defined in Part IV (10),

Hjign(ri, iy = %) ﬂ(” + 1){(n+ 3)di(1 — g})

?’2 k2r4

+ 20+ Dyt = 30— )]Pk(q,)

+ [2(11 +2)dy(1 — g7 Mdyq — 1)

ri dPX(q)
+2 r—i gildyg; — r)) + gl — g )dz] dqjj
dzﬂm

+ [(1 — g7 )dyg; — r))°] } [3.11]

J

with d; = d; — d};, and the dependence on ¢ factors out.
Instead of using Eq. [3.9], one can apply the truncated form
of boundary condition [3.10] at L discrete values of 4; along
the surface of each of the N spheres for this special case. This
generates a set of MNL linear algebraic equations which can
be solved for the MNL unknown constants R,;,.

If the fluid contains only one symmetrically charged, bi-
nary electrolyte (M = 2), boundary condition {3.1] is re-
placed by

a
= a 5‘;‘—’ = — B Viu — B1aV2u,  [3.12a]
0
a—‘;‘z = — 82V, — BViiy, [3.12b]
i
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where 8,,, 812, 821, and B2, are given by Eqs. [2.15]. For
the case of a string of NV spheres oriented normal (o the applied
field, one can follow the same procedure leading to Eq. [3.10]
to obtain

N
> 2 ARy Gunla;, 4) + BuHHunla;, 4]
J=1 n=1

+ RojinBiofinn(a;, gi)}

_[14(511'*'1&2)%]“—(1%, [3.13a]
N
Z Z {RijiuB2Hitn(ai, @) + Rajial Giinn(ai, ai)
+ BaHnn(ai, 4:)]}
2
—[1—(32:4'322);]“_‘1:2, [3.13b]

where i = 1, 2, ..., or N, Similarly, the above boundary
conditions can also be applied using the truncation method
to generate a set of 2NL algebraic equations for unknown
coefficients R)j;, and R,;,,. Note that Ry, and Ry, are
coupled here, unlike any R, in Eq. [3.10] which is inde-
pendent of the others with different values of #:2.

3.2, Fluid Velocity Distribution

Knowing the electrochemical potential distributions in the
fluid phase, we can now take up the solution of the fluid
velocity field. Since the fluid outside the thin double layers
is neutral and the Reynolds numbers encountered in elec-
trophoretic motions are low, the velocity field is governed
by the Stokes equations [2.5] and [2.10]. The boundary
conditions for the fluid velocity beyond the double layers
surrounding the spheres, resulting from Egs. [2.20] and
[2.19b], are

|
V—U +Q Xr,—— Z vsﬂmf yJ(n-ma ;ﬁ)dyt

m=1

atr; = aj, [3.143]

v—=>0 as(x*+y*+:z3)"? > o, [3.14b]
fori=1,2, ..., or N. Here n%; is the equilibrium number
density of ion s within the double layer surrounding sphere
i, ¥, 1s the perpendicular distance from the surface of sphere
i, and U;(=U,e, + Uye, + U e} and Q, (=0, + Qe
+ Q;.e,) are the instantancous translational and rotational
velocities, respectively, of sphere 7 to be determined. Vi u,,
can be calculated from the electrochemical potential distri-
bution [ 3.8] with coefficients R,., and S,,» determined by
Eqs. [3.9]. The integral in Eq. [3.14a] must be evaluated
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numericaily except for the special case of a symmetric elec-
trolyte.

The general solution of the Stokes equations, which sat-
isfies boundary condition [3.14b] immediately, can be ex-
pressed in terms of the spherical coordinates originating at
the center of the ith sphere (10, 13),

v =100, T V58, T Uyly,, [3.15]

where e,,, e, and e,, are the unit vectors in the spherical
coordinate system {r;, 8;, ¢;),

()
vy, N w Aﬁk”
_ (2)
Vs, | = Z Z Z Ajkn Ajfkl?
j=1 n=1 k=0 (3)
véi A,h‘fm‘

i U}

B{H‘,, _{n’ur

+ Biu B’{%S’ ST ol T Ff('é‘;‘ , [3.16]
Jikn Fjikn

and Af,};f,, Af,i},, A}ig,, Bf;ﬂ,, ...,and F}fif, are functions of
(ri, ¢, ¢;) which have been defined in Part IV {i0). Un-
known coefhcients 4,4, Bitn, . . . , and Fy,, are to be deter-
mined by using Eq. [ 3.14a].

Utilizing the collocation technique presented in the pre-
vious subsection for the solution of the electrochemical po-
tential fields, we can apply the boundary condition [3.14a]
to Eq. [3.15] to yield

N K*—1 k+1*—)

Z Z 2

=1 k=0  n=k
n#Q

= UVl — gcos ¢; + U, V1 — gisin ¢, + Uigs, [3.17a]

N K*—| k+L*-i

{1 ()
[AJI\nAﬂAn + BjknBﬂhn ’ knFjlkn]r, g,

{2} (2) {2)
2 z Z [ jknAﬂkn'l_B}knBﬂl-n ‘ +F‘jkankn]r, a;
=t k=0 n=k
n#0

Uizhl_ 12
il vl — a»u'm

1
Q:,c08 ¢;) + 2 o

N m=1 a;

= Uiqicos ¢; + Uyqsin ¢; —

— a; (Q;sin ¢; —

=4

Xf vilho — nZ)dy:, [3.17b]
0

NOKf—| kL]

52 2 [AunAiet BBt + o+ + FynFlinliea
i=1 k= n=k
n#0
= —Upsin ¢; + Upcos ¢; — a;-(ﬂh-a.-cos b
. au
+ Qugisin ¢; — Q. V1 — g} )—— Z 1fr— .
) N =1 I_QI aqb‘ra,

X J; yi(nS: — n3)dy;, [3.17¢]
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where i = 1, 2, ..., or N. Multiplying Egs. [3.17] by the
function sets cos{k'¢;) (k' =0, 1,2, ..., K¥ — 1) and
sin(k'¢; Y (k'=1,2,..., K* — 1), integrating with respect
to ¢; from 0 to 2=, and utilizing the orthogonality properties
of these functions in this interval allow one to obtain 3(2K*
— 1) equations which are similar in form to Eqs. [3.9]. These
equations can be satisfied at 7.* discrete values of &; along
the surface of each of the N spheres to produce a set of
3NL*(2K* — 1) linear algebraic equations, which can be
solved for the equal-number unknown constants A;x., Bz,

,and Fign { Bjor = Djon = Fion = 0} in terms of the particle
vclocmes U; and €;. Once these coefficients are determined,
the fluid velocity field is compietely solved.

For the case of planar symmetry, i.e., the centers of all
the spheres lie in the plane y = 0, U, = @ = ;= 0, the
coefficients A, Dix, and Fji, are all zero and the integration
of Egs. [3.17] after multiplication by sin{X’¢,) with respect
to ¢; from O to 27 is trivial. Thus, the number of unknown
coefficients is reduced to 3INL* K* and they are determined
by an equal number of collocation equations. Similar to the
previous subsection, two special cases can be deduced from
the planar case. The fluid velocity field about a chain of
spheres undergoing electrophoresis along their line of centers
is axially symmetric and was solved by employing the Stokes
stream function (11). For the case of a chain of spheres
oriented normal to the applied electric field (the centers of

all spheres lie on the z-axis), we have ¢; = ¢, b; = ¢, = (,
Ui,=0(i=1,2,...,N), and Egs. [3.17] can be simplified
10
N o L*
Z Z leﬂB}li')'l + C}lﬂc(iilzf + EIIHE(IM n=
= U,V1 — g?cos ¢, [3.18a]
N L* 5
2
= 3 BuuBjin + CuaCiitn + EnnEfinlme,
j=1 n=i
= Uy g;cos ¢ + a;Q;.cos ¢
L g ™
Nommr @G O _,
X J; yi(nh: — nS)ydy;, [3.18b]
N L* )
3
Z Z JI"BJ(”:' + C:flﬂc(zlzl E(J%L]r,—aj
_U,'xSiH ¢ — a;nyqjsin ¢
_l E 1 duy
7 =1 a‘bl _q1 qu ri=a;
X J; vilndi — n2)dy;. [3.18¢]
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In the above equations, the angular derivatives of the elec-
trochemical potential distributions at the particle surfaces
can be computed by using Eqgs. [3.8] and [3.10] (or [3.13]
if the fluid solution contains only one symmetric electrolyte)
with the facts that Ry, = 0 if & # 1 and S, = 0 and the
dependence on ¢ will all factor out. The 3NL* unknown
constants Bji,., Cyi,, and Ej;, could be easily calculated in
terms of the particle velocities Uy, and {;, by simultaneous
solution of a set of INL* algebraic equations generated by
Egs. [3.18].

3.3. Velocities of Free Spheres

The drag force exerted by the fluid on the ith sphere and
the hydrodynamic torque experienced by the sphere about
its center are (10, 13)

1.01 T L} T L} T

0.99

0.97

i 1 i L £z [ 1 ] i
°°°%.o 0.2 0.4 0.8 0.8 1.0
2a/r1a
[#
1,01 —

KEH AND CHEN

F; = —4n(E, ex + Fine, + Ejpie;) [3.19a]

and

T; = —8an{A; ey + Bje, + Ajpie;}, [3.19b]
respectively. The six coefficients in the above equations
for each of the N spheres are known from the solution of
Egs. [3.17].

Because the particles are freely suspended in the fluid and
the “surface™ of each encompasses a neutral body, no net
drag force or torque from the fluid acts on the particles in-
cluding the diffuse lavers. From Eqgs. [3.19], it is apparent
that

Ajor = Ajy = By = Ewpy = Ejy = Fyy =0, [3.20]
1001 b L T L] T L] L] T L L
0.88 4

Msn) L

0.87 | 4
0.9 A L 1 1 A 1 . 1 i
%.0 0.2 0.4 0.8 0.8 1.0
20/ M2

MS") 5

097 |
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1 I ! 1 | I

°‘°%.o ' o.lz -
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0.8 0.8 1.0

2a/ry2

FIG. 2. Plots of the translational mobility parameters of two identical spheres undergoing electrophoresis normal to their line of centers (Mi") =
M ™) versus the separation parameter 2a/r; with k@ = 100 and f = 0.2 (solid curves) or f= 0.4 (dashed curves):{(a) Z =1, () Z=2,(c) Z = 3.
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fori=1,2,...,orNN.The translational and angular velocities
U; and @, of the N spheres {6/N components in total) can
be determined by solving the above 6N equations simulta-
neously. The result for the /th sphere can be expressed as

U! = Mi'UJ'oo» [3213}

Q = iNr'Uim,

[3.21b]

where U, is the electrophoretic velocity of sphere / when it
is isolated from the others, The derivation of U;,, has been
discussed in Subsection 2.3, The dimensionless maobility

0.0 T T T T T T T v T
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tensors M; and N; depend on the relative positions, sizes,
and zeta potentials of the particles as well as on the bulk
concentrations, valences, and diffusivities of the ions.

For the special case of a string of coaxial spheres oriented
arbitrarily with respect to the applied electric field, Eqs. [3.21]
become

U =M™ ee + M7 (1—ee)]- U, [3.22a]

1
Qf = -uNie X Uioos

a;

[3.22b]

where e is the unit vector directed from the center of sphere
1 toward the centers of the other spheres.

0.08 T T T Y T T ¥ ¥

0,08 0.05 4
N| Ny
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0, =0.0
%5 0.6 0.7 0.8 0.8 1.0 5 1.0
2a/ra
c
+ L
_0. L L 1 1 [ i 1
0%.5 0.8 0.7 0.8 0.9 1.0
2a/ryz
FIG. 3. Plots of the rotational mobility parameters of two identical spheres undergoing electrophoresis normal to their line of centers (N, = — M)

versus the separation parameter 2a/r; with kg = 100 and f= 0.2 (solid curves) or f'= 0.4 (dashed curves): (a) Z=1,(B) Z=2,(c) Z=3.
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3.4. Velocities of a Rigid Cluster of Spheres

We now consider the electrophoresis of a rigid cluster of
N spheres connected through their centers with rigid rods of
arbitrary lengths. The connecting rods are assumed to be
infinitesimally thin compared to the sphere sizes; hence they
make neither electrostatic nor hydrodynamic contributions
but only serve to ensure the rigid-body motion of the cluster.
Here, our objective is to explore the electrophoresis of ag-
gregates formed by flocculation or bridging of colloidal par-
ticles in a suspension.

The difference between the case here and that of free
spheres in the previous subsection is that the N spheres rotate
at the same angular velocity @, which is also the angular

1.005 T T T T T Y

1.000

0.995

Vi

0.990

0.985
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velocity of the rigid cluster, and the translational velocity of
each sphere in the cluster can be written as

U,'=U()+9.><l'gi, i=1,2,...,N, [3.23]
where Up refers to the translational velocity of a peint on
the cluster designated as the origin and r is the pesition
vector of the center of sphere i measured from the origin.
After the substitution of Eq. [3.23] and the relation 2, = @
into Eqs. [3.17] or {3.18], the set of unknown coefficients
{Ajkns Bikns - -» Fixn} o {Bj1n, Citmy Ej1n} can be solved
in terms of the components of the cluster velocities Uy and
Q by using the same collocation technique.
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F1G. 4. Pilots of the translational mobility parameters of two identical spheres undergoing electrophoresis normal to their line of centers versus the
dimensionless zeta potential {e/kgT with 2a/r, =06 and f=04:(a)Z= 1, (Y Z=2,(c) Z= 3.
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To determine U and € the requirement that the net force N _
and net torque exerted by the fluid on the rigid cluster are § (2nAins + yoiEior — zo,Fi)) = 0, [3.24d]
zero is needed. Application of this constraint to Eq. [3.19] -
yields (10) N
2 (29Bi + z0iEiny — x0:Ei01) = 0, [3.24¢]
N i=1
2 En =0, [3.24a] .
=t
N (2n4;01 + Xo:Fi1y — YoiEiny) = 0, [3.24f]
i=1
2 Fai=0, [3.24b] .
i=1 where xp,. Jo,, and zq, are the Cartesian components of vector
N r,. The translational and rotational velocities Ug and Q (each
S Ei =0, [3.24c] having three components) can be obtained by solving the
i=1 above six equations simultaneously.
0.0015 a T Y T T 0.0015 b T T T T “+— T
0.0010 0.0010
N1 N1
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0.0000 3 0.0000 .
{e/keT e/kT
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Ny
0.0003
~0.0003 i
{o/kT

FIG, 5. Plots of the rotational mobility parameters of two identical spheres undergoing electrophoresis normal to their line of centers versus the
dimensionless zeta potential {e/kgT with 2a/r; = 0.6 and f=04{a)Z=1,(byZ=2(c)Z=3.



4. RESULTS AND DISCUSSION

The electrophoretic velocity of an isolated sphere can be
evaluated using Eq, [2.21a] for the general case, or Eq. [2.26]
for the spectal situation when the fluid contains only one
symmetric electrolyte. The numerical results for the axisym-
metric electrophoretic motions of two or three free spheres
and of a rigid dumbbell {cluster of two spheres), resulting
from using the boundary collocation method, have already
been obtained (11). In this section, we present our results
for the electrophoretic motions of two free spheres, of three
coaxial free spheres, and of a rigid dumbbell normal to their
lines of sphere centers. The details of the collocation scheme
used for this work were given in Part IV (10). To avoid

0.580 T T R R e S AT W T |

1.005
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superfluity, only the fluid containing one symmetric electro-
lyte will be considered. In other words, Eq. [3.13 ] is applied
to solve the unknown constants Ry;,, and Ry, in Eq. [3.4]
for u,.,. Because of governing equations and boundary con-
ditions concerning the problem of electrophoresis of coaxial
spheres oricnted at an arbitrary angle with respect to the
applied electric field are linear, the general solution can be
obtained as a superposition of the individual components
provided by the previous study (11} and this work.

4.1. Tweo Identical Free Spheres

1n this subsection, we present the particle interaction re-
sults, obtained by using the collocation technique, for the

1.005 r—v'ﬁﬂfﬂl—l_!'ﬂﬂm—l—r!mwrw

0.985 4
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0.985 ]
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0.875
102 10°
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FIG. 6. Plots of the translational mobility parameters of two identical spheres undergoing electrophoresis normal to their line of centers versus the
ratio of the sphere radius to the Debye length xa with 2a/r; = 0.6 and f=04:(a) Z=1,(b) £ = 2 {c)Z=3.
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electrophoresis of two identical spheres {a@; = a; = a and {
= (> = {) perpendicular to their line of centers. Unlike the
conclusions of the previous studies in which the effects of
polarization of diffuse ions were neglected (5-10), interac-
tions exist between the two spheres even though they have
equal zeta potentials on the surface.

The mobility parameters M\ (=M $”Yand N, (= —N,),
which indicate the extent of particle interactions as defined
by Eqgs. {3.22], are plotted as a function of the separation
parameter 2a/r; with kg = 100 in Figs 2 and 3, respectively.
It is assumed that the drag coefhicients of the anion and cation
are equal (/} = f> = /) and the cases /= 0.2 and /= 0.4
are selected because they represent the bounds for most re-
alistic aqueous systems. It can be seen that the ionic drag

0.0015 g—rw-rrmq-w—ﬁ-mml—-!—rrnmr—ﬁmm
Z=1
0.0010 - to/kT=8 1
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0.0015

Ny
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efficient only weakly affects the particle interaction, especially
for the cases when Z = 2 and Z = 3. In general, the trans-
lational velocities of the two spheres undergoing electropho-
resis normal to their line of centers are reduced and their
anguiar velocities are enhanced by the proximity of each
other except when the particles have a large zeta potential
and the counterions carry a high charge. The particle veloc-
ities for a given case of { and Z are not necessarily a mono-
tonic function of 2a/r;. Note that the two electrophoretic
spheres rotate in the opposite directions and these directions
for the case of large ¢e/kp7 and Z can be reversed when
their gap thickness is varied, as shown in Figs. 3b and 3c.
Figures 4 and 5 are drawn to show the interaction effects
between the two spheres versus the particles’ zeta potential
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FIG. 7. Plots of the rotational mobility parameters of 1wo identical spheres undergoing electrophoresis normal to their line of centers versus the ratio
of the sphere radius to the Debye length xa with 2a/r; = 0.6 and f=04:(a)Z=1,(b) Z=2,{c) Z=3.
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for three cases of xa when the separation parameter 2a/7,»
is kept constant. When Z = 1, the translational mobility
parameter of each sphere is a monotonic decreasing function
and the magnitude of the rotational mobility parameter is a
monotonic increasing function of the nondimensional zeta
potential {e/ kg T ranging from 1 to 7.5, as illustrated in Figs.
4a and Sa. Also, the spheres translate slower and rotate faster
with smaller ka. However, when Z = 2 or 3, a minimum of
the translational velocity and a maximum of the angular
velocity of the particles exist for some cases, as shown in
Figs. 4b, 4¢, 3b, and 5¢. When «a increases, the minimum
or the maximum occurs at a larger zeta potential. Note that
these extremes for the cases with Z = 3 take place at smaller
zeta potentials than those with Z = 2,

In Figs. 6 and 7, the mobility parameters are plotted versus
xa for ka = 100. It is shown that there is no particle interaction
in electrophoresis for each case as long as the value of «a
approaches infinity. This result is in accordance with the
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situation considered earlier using the Helmholiz relation,
instead of Eq. [2.11], to express the “slip velocity” at the
particle surfaces (5, 8). From Figs. 6a and 7a for the case Z
= 1, the particle interaction is weakened steadily as xa be-
comes large gradually. A novel result is that, as shown in
Figs. 6b, 6¢, 7b, and 7c for Z = 2 and 3, there can be a
minimum of the translational velocity and a maximum of
the angular velocity of the spheres occurring at some xa for
the representative cases of {e/kgT = 5 and 8. If the particles
are charged more highly or the counterions have a larger
magnitude of valence, the locations of these maximal particle
interactions will shift toward larger «a; that means larger
values of ka are required to make the assumption of xa —
oo valid.

4.2, Two Arbitrary Free Spheres

In this subsection, we first present the results of mobility
parameters M\". M3, Ny, and N, for the electrophoresis

TABLE 1

The Mobility Parameters M{" and M for the Electrophoresis of Two Freely Suspended Spheres Normal to Their Line of
Centers with a, = a, = a for the Case of f = 0.4 and xa = 100

Z=1 Z=12 Z=13
{ie {2e 2a

knT kT 2 M M MY M My MP
l 5 0.2 0.9983 1.0004 0.9990 1.0002 0.9993 0.9997
0.4 0.9864 1.0029 (.9918 1.0013 0.9940 0.9974
0.6 (.9531 1.0098 0.9719 1.0047 0.9796 0.9920
0.8 0.8791 1.0260 0.9307 1.0145 0.9510 0.9901
0.9 0.8073 1.0453 0.8967 1.0311 0.9295 1.0086
0.95 0.7476 1.0672 0.8715 1.0533 0.9137 1.0412
0.99 0.6151 1.1197 £.1510 1.2429 —0.1033 —-0.0563
3 6 0.2 0.9994 1.0000 0.9993 0.9993 0.9993 0.9991
0.4 0.9949 1.0003 0.9942 0.9948 (1.9948 0.9933
0.6 0.9825 1.0010 0.9803 0.9833 0.9828 0.9785
0.8 0.9577 1.0049 0.9547 0.9688 0.9618 0.9569
0.9 0.9394 1.0145 0.9382 0.9744 0.9500 0.9529
0.95 0.9299 1.0296 0.9294 0.9943 0.9448 0.9598
0.99 0.9010 1.0593 0.8616 0.9570 0.9124 0.9188
5 =5 0.2 1.0008 1.0008 1.0005 1.0005 0.9998 0.9998
0.4 1.0068 1.0068 1.0040 1.0040 0.9985 0.9985
0.6 1.0234 1.0234 1.0132 1.0132 0.9940 0.9940
0.8 1.0603 1.0603 1.0304 1.0304 0.9795 0.9795
0.9 1.0982 1.0982 1.042t 1.0421 0.9565 0.9565
0.95 1.1330 1.1330 1.0479 1.0479 0.9285 0.9285
0.99 1.1963 1.1963 1.0506 1.0506 0.8687 0.8687

1.0 1.39 1.39 1.02 1.02 0.68 0.68
8 -8 0.2 1.0006 1.0006 0.9997 0.9947 0.9995 0.9995
04 1.0047 1.0047 0.9975 0.9975 0.9960 0.9960
0.6 1.0160 1.0160 0.9907 0.9907 0.9855 0.9855
0.8 1.0384 1.0384 0.9707 0.9707 0.9571 0.957t
0.9 1.0567 1.0567 0.9421 0.9421 0.9194 0.9194
0.95 1.0697 1.0697 0.9088 (0.9088 08775 0.8775
0.99 1.0869 1.0869 0.8390 0.8390 0.7917 0.7917

1.0 1.13 1.13 0.54 0.54 0.52 0.52
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of two spheres of the same size (g, = g2 = a) having different
zeta potentials, The values of the translational and rotational
mobility parameters for several representative cases of zeta
potentials at various particle separations are illustrated in
Tables 1 and 2, respectively, in which all the results are at
least convergent to the digits as shown. In Figs. 8 and 9, the
corresponding plots of these mobility parameters versus «g
are drawn for xa = 100 and 2a/r, = 0.6. It is evident that
as xa becomes very large, the translational and rotational
velocities of each of the two spheres undergoing electropho-
resis normal to their line of centers will approach the values
calculated by ignoring the polarization effect of the double
layer (8, 10). When the two spheres with finite xa have the
zeta potentials of the same electrical sign, the numerical re-
sults for the case Z = 1 show that the particle with larger
zeta potential would be speeded up by the other, which at
the same time is slowed down by the former, consistent with
the tendency exhibited when xa — o0 (5, 8). However, for

2i5

the cases of Z = 2 and 3, the translational velocity of the
particle with the larger zeta potential can be reduced by the
other if the value of ka is not very high, When the two spheres
are charged oppositely but with equal magnitudes of zeta
potentizal, they will translate at the same speed but in opposite
directions. Whether the particle velocities are increased or
decreased depends on the combination of {, Z, f, xa, and
24/ ;. Note that the two electrophoretic spheres always ro-
tate in the same direction when k@ — oo. If the value of ka
is not very high, the two spheres can rotate in opposite di-
rections, as illustrated in Figs. %a and 9b.

Because many suspensions in practical applications are
composed of particles of the same material, it might be of
interest to examine the interactions between two identically
charged spheres ({; = {» = {) with unequal sizes. The results
for the translational and rotational mobility parameters for
spheres with a,/a, = 2 and (a, + a2}/ r,» = 0.6 are depicted
versus «a, in Figs. 10 and |1, respectively. It is understood

TABLE 2

The Mobility Parameters N, and N, for the Electrophoresis of Two Freely Suspended Spheres Normal to Their Line of Centers
with a, = @, = a for the Case of /= 0.4 and xa = 100

Z=1 Z=2 Z=3
Sie fze a
ksT keT 2 N, N N, N, N, N

1 5 0.2 —9.09E-7 —8.67E-8 ~3.26E-8 —3.00E-7 3.08E-7 1.67E-8
04 —1.11E-4 —4.80E-5 ~6.54F-6 —6.92E-5 2.55E-5 —1.30E-4
0.6 —2.00E-3 —9.88E-4 1.48E.5 —1.46E-3 5.98E-4 -2.76E-3
0.8 —1,42E-2 —1.05E-2 3.55F-3 —1.60E-2 7.62E-3 —3.08E-2
0.9 —2.38F-2 —3.50E-2 1.90£-2 —5.29E-2 24RE-2 —9.92E-2
0.95 —1.{8E-2 —7.44E-2 4.15E-2 —L.05E-1 4.09E-2 —1.8B5E-1
0.99 —3.55E-2 —1.72E-1 1.42 —9. HE-] —4.12 5.95

3 [ 0.2 4.80E-8 -3.10E-7 3.19E-7 ~8.44E-7 5.65E-7 —-1.72E-6
0.4 9.24E-6 —5.02E-5 3.84E-5 —1.23E-4 3.55E-5 -1.10£-4
0.6 J01E-4 —1.07E-3 8.45E-4 ~2.57E-3 T49FE-4 —2.23E-3
0.8 5.80E-3 ~1.21E-2 9.74E-2 -2.80E-2 8.06E-3 —2.30E-2
0.9 2.60E-2 —-4.20E-2 3.09E-2 —8.89E-2 2.40F-2 —6.88E-2
0.95 6.19E-2 —8.84F.2 5.55E-2 —1.67E- 4.03E-2 —1.19E-1
0.99 6.36E-2 —1.49F-1 —F.59E-1 1.41E-1 —6.39E-2 1.14E-1

5 -5 0.2 5.62E-7 ~5.62E-7 1.97E-7 -1.97E-7 —4 46E-7 4 46E-7
0.4 8.3LE-5 —8.31E-3 3.80E-5 —3.80E-3 —~2.88E-5 2.88E.5
0.6 1.62E-3 —1.62E-3 7.04FE-4 —7.04E-4 —6.27E-4 6.27E-4
0.8 1.49E-2 —1.49E-2 5.40E-3 —5.40£-3 —-7.73E-3 7.73E-3
0.9 4.18E-2 —4.18£-2 1.15E-2 —1.15E-2 —219E-2 2.79E-2
0.95 7.48E-2 —7.48E-2 1.48F2 —1.48FE-2 —5.86FE-2 5.86E.2
0.99 [.48E-1 —1.48E-1 1.54E-2 —1.54E-2 —1.32E-1 1.32E-1
1.0 4.01E-1 —4.01F-1 —2.11E-2 21182 —-3.79E-1 3.79E-1

8 -8 0.2 3.07E-7 —3.07E-7 —1.01E-6 LOLE-6 —1.38E-6 1.38E-6
0.4 4.99E-5 —4.99F-5 —4.03E-5 4.03E-8 —5.82E-5 5.82E-5
0.6 9.45E-4 —9.45E-4 —8.45E-4 8.45FE-4 —~1.20E-3 1.20E-3
0.8 7.89E-3 ~7.89E-3 —9.88E-3 9.88E-3 ~1.33E-2 [.33E-2
0.9 1.93E-2 -1.93E-2 ~3.43E-2 343E.2 —4.46E-2 4.46E-2
0.95 3.02E-2 —-3.02E-2 —7.03E-2 7.03E-2 —B.95E-2 8.95E-2
0.99 4.82E-2 —4.82E-2 —1.56E-1 [.56E-1 —1.94F-1 1.94E-1
1.0 1.02E-1 —1.02E-1 —5.44F-1 5.44 -1 —5.54F-1 5,54 k-1
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FI1G. 8. Plots of the translationa) mobility parameters of two equal-sized spheres undergoing electrophoresis normal to their line of centers versus ka
with 2a/ry, = 0.6 and = 0.4: (a) {1e/ksT = 1 and GLe/keT = 5, (b} f1e/ksT = 3 and Ge/ksT = 6, (¢) GiefksT = — GefhaT = 5or 8 (M}" = M),

that, although the two spheres possess the same zeta potential,
they will translate at different speeds even if situated very
far apart. In general, the translational velocity of the larger
sphere is enhanced by the motion of the smaller one, which
is retarded at the same time by the larger one. The two elec-
trophoretic spheres rotate in the opposite directions, which
are the same as those for a pair of identical spheres. It can
be seen that the shift of the locations of the maximal particle
interactions is also like that for two identical spheres.

4.3. Three Free Spheres

The number of relevant parameters involved in the general
problem of three spheres is quite great. Also, the utilization

of the houndary collocation technique for solving the three-
sphere problem becomes more difficult than for the case of
two spheres. Therefore, we only consider the simplest case
in this subsection: three spheres having equal radii (¢, = a»
= @3 = a) and zeta potentials ({, = & = {5 = §) separated
at the same spacing on a straight line (r12 = r53). The values
of the mobility parameters M\ (= M), MY”, and N,
(= —N,) for the case of /= 0.4 and «a = 100 as a function
of ¢e/kgT and 2a/ry, are listed in Table 3. As expected, the
translational velocity of the middle sphere is affected more
by the particle interaction than are those at each side of it.
Note that the middle sphere does not rotate in this symmetric
configuration,
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FIG. 9. Plots of the rotational mobility parameters of two equal-sized spheres undergoing electrophoresis normal to their line of centers versus xa
with 2a/ri; = 0.6 and /= 0.4 (a) hie/kgT = L and LelkaT = 5, (b) e/ kaT = Y and LefkgT = 6, (c) f1e/ kT = — GefkgT = Sor 8 (N, = M),

It may be of interest to see how the existence of a third
coaxial sphere affects the electrophoretic velocities of two
neighboring spheres. The difference between two-sphere and
three-sphere interaction effects on the electrophoretic mo-
bilitics in the direction of their line of centers has been com-
pared in a previous study (11). A comparison between Table
3 and Figs. 2 and 3 shows that the presence of the third
sphere enhances the translation, while reducing the rotation,
of both sphere 1 and sphere 2 during the electrophoresis
normal to the line through the sphere centers.

4.4. A Rigid Cluster of Spheres

The transiational and angular velocities of a rigid cluster
of spheres undergoing electrophoresis can be determined by

the procedure described in Subsection 3.4. For conciseness,
here we only consider the motion of a dumbbell, the cluster
composed of two spheres connected by an infinitesimally
thin, rigid rod. Although the angular velocity @ of the rigid
dumbbell is independent of the location of its origin, the
choice of the origin will affect the presentation of results for
the translational velocity Ug. We follow the previous studies
on the electrophoresis of a dumbbell with k@ = oo (10, 14)
to place the origin of the dumbbell at its center of hydro-
dynamic stress,

The results for the translational and angular velocities of
a rigid dumbbell undergoing electrophoresis normal to the
line through the sphere centers, expressed in terms of the
dimensionless forms U,/ U, and Qr;U,, (where Uy =
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FIG. 10. Plots of the translational mobility parameters M &"' {solid curves}and Af;  {dashed curves) of two unequal-sized spheres with the same zeta
potential versus xa, for the case of az/a, = 2, (@, + a3)/riz = 0.6 and /= 0.4: (a) fefkaT = 2,{b) {e/ksT = 5, (¢) {e/ kT = 8.

Upe,, @ = Qe Xeand U, = U .e,), versus the separation
parameter (aq; + a;)/r; for various cases, are exhibited in
Table 4. The last comumn in Table 4 represents results ne-
glecting the polarization effects of the ions in diffuse layer,
for comparison, Generally speaking, the polarization effects
on the electrophoresis of a rigid dumbhbell can be quite large
under appropriate conditions,

For the simplest case of the electrophoretic motion of a
dumbbell having two identical spheres perpendicular to its
connecting rod, the dumbbell will move without rotation at
the same velocity as that of either of these two spheres sus-
pended freely and separated by the same distance, as dis-
cussed in Subsection 4.1. When the two spheres of a dumb-

bell are of the same radius but unequal zeta potentials, the
effect of polarization of the diffuse layer is to reduce its
translational and rotational velocities, as illustrated in the
10 rows with a2/ @, = 1 in Table 4. The magnitudes of these
velocities decrease with the increase of the separation pa-
rameter 2a/r;.

Since flocculation by bridging of particies having identical
zeta potentials but different sizes can occur in a suspension
of colloidal particles of the same material, it might be im-
portant to investigate the electrophoretic motion of such a
dumbbell. Results of the translational and angular velocities
for the case of a rigid dumbbell composed of two spheres
with a»/a, = 2, ka, = 100, and {e/kT = bHe/kT = 5 un-
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dergoing electrophoresis normal to its connecting rod are
also listed in Table 4, As expected, the motion of the dumb-
bell is dominated by the larger sphere. The tendency that
the two-sphere interaction effect is strong for the case of Z
= 2 and weak for Z = | is consistent with the results of Figs.
10b and 11b for two free spheres with {e/kT = 5.

An interesting case is the electrophoresis of a neutral
dumbbell (with the ratio {/{; equal to —a?/a3). In Table
4, we also present the translational and rotational mobilities
of a neutral dumbbell with {e/kT = 4, He/kT = —1, and
a;/a, = 2 undergoing transverse electrophoresis. It can be
seen that the larger sphere will increasingly dominate the
dumbbell’s migration, and the magnitude of the dumbbell’s

angular velocity is reduced as the distance between the two
spheres decreases. This observation is qualitatively consistent
with that of previous studies in which the double-layer po-
larization effect is excluded (10, 14). Note that the neutral
dumbbell migrates in the same direction as that of the larger
sphere when isolated for the cases Z = 2 and 3, while it
moves in the opposite direction for the case of Z = 1.

4.5, Concentration Dependence of Electrophoretic Velocity

The interaction effects between pairs of particles can be
used to determine how the average electrophoretic velocity
of a dilute dispersion is affected by the volume fraction ¢ of
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TABLE 3
The Mobility Parameters M{® (=M{), M{", and N, (= —N;) for the Electrophoresis of Three Coaxial 1dentical Spheres (a, = a,
=gy;=gand {; = {; = {3 = {) Suspended Freely with Equal Spacings (r,; = r»;) for the Case of f= 0.4 and xa = 100

Z =1 Z=12 Z=3
te 2a
JegT 1 My Ay N M MY N MP MY N,
2 0.2 1.0000 0.9999 —2.21E-6 0.9999 0.9997 —3.43E-8 0.9996 (.9994 —2.03E-8
04 0.9996 0.9993 1.64E-6 0.9988 0.9979 6.47E-6 0.9971 0.9950 1.32E-5
0.6 0.9987 0.9977 9.44E-5 0.9958 0.9928 2.52E-3 0.9903 0.9831 4.TE-4
0.8 0.9966 .9949 1.73E-3 0.9396 0.9844 4.40E-3 0.9765 0.9635 7.92E-3
0.99 0.993 1.033 7.83E-2 0.9686 0.469 —B.53E-1 0.9313 —0.333 -2.17
5 0.2 0.9996 0.9993 —1.60E-8 0.9992 0.9987 6.55E-7 0.9997 0.9995 2.52E-6
0.4 0.9971 0.9948 1.39E-5 0.9940 0.9893 2.03E-5 0.9977 0.9960 1.39E-4
0.6 0.9899 0.9826 4.95F-4 0.9802 0.9651 5.97E-4 0.9927 0.9871 1.43E-4
0.8 0.9756 0.9622 8.17E-3 0.9554 0.9261 8.79E-3 0.9843 0.9730 2.03E-3
0.99 0.9546 1.167 3.96E-1 0.9228 0.9429 1.01E-1 0.9797 1.1783 3.70F-1
8 0.2 0.9992 0.9987 2.15E-7 0.9998 0.9997 3.00F-8 1.0000 1.0000 5.37E-6
0.4 0.9940 0.9394 2.10E-5 0.9986 0.9976 1.31E-5 1.0002 1.0003 6.26E-6
0.6 0.9801 0.9651 6.39E-4 0.9957 0.9923 5.66E-3 1.0007 1.0012 —1.07FE-4
0.8 0.9547 0.9258 9.91E-3 0.9908 0.9840 8.25E-4 1.0020 1.0028 —1.35E-3
0.99 0.9180 0.8936 2.12E-2 0.9868 0.9467 —543E-2 1.0107 1.2250 3.68E-1

the particles. For a bounded suspension of identical spheres,
the mean electrophoretic velocity can be expressed as (5, 10,
15)

(U = Ugll + ap + O(¢)], (4.1]

with
1
w15+ sf [MP + 21 — 3], [4.2]
0

where X = 2a/r», U, is the electrophoretic velocity of an
isolated sphere given by Eq. [2.21a] or [2.26], and the two-
particle mobility parameters M\? and M ﬁ") are defined by
Eq.[3.22a] for the case of two identical spheres. When kg =
oo, M = M™ = 1 (there is no particle interaction in
electrophoresis of identical spheres) and Eq. [4.2] gives o =
—1.5.

The collocation results of M{"” in Eq. [4.2] as a function
of X for various values of ka, {e/kp T, and Z were presented
in Subsection 4.1, while the corresponding numerical solu-
tions of M/ (,p ' were obtained in a previous study (11). Thus,
the integration in Eq. [4.2] can be performed numerically
using these data, and the results of the coefficient « for various
cases of identical particles and symmetric electrolyte are listed
in Table 5. Note that, in each case, « is negative and the
average electrophoretic velocity becomes lower when the
volume fraction of the spheres in the suspension is increased,
When Z = 1, the « values for all cases of different xa and
{e/ kT deviate little from the value of —1.5 for the limiting

situation of kg — oc. However, when Z = 2 or 3, the mag-
nitude of « increases monotonically with the increase of {e/
kT for a given value of kz and can be much greater than 1.5
for the cases of large {e/kT.

Particle interactions in electrophoresis have also been
studied by using a unit cell model for a concentrated sus-
pension of spheres with thin but finite double layers (16,
17). Without accounting for the statistical randomness and
the boundaries of the suspension, this model also predicts
that the average electrophoretic mobility decreases with an
increase of the particle concentration,

5. CONCLUSIONS

The electrophoretic motion of an assemblage of colloidal
spheres with thin but distorted electrical double layers is
studied in this paper. The spheres may differ in radius and
in zeta potential, and they are allowed to be arranged in any
configuration in three-dimensional space. Not only the par-
ticle interactions among free spheres but also the movement
of a rigid cluster of connected spheres has been examined.
The governing eqguations in the “outer” region can be solved
by applying the boundary conditions provided by the sclution
for the “inner” region and using a matching procedure to
ensure a continuous solution in the whole fluid phase. There
are four factors influencing the mobility of a particle and the
interactions among particles: the ratio of the particle dimen-
sion to the Debye length, the zeta potential at the particle
surface, the valences of ions in solution, and the ionic drag
coeflicients.

A combined analytical-numerical procedure with the
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TABLE 4
The Dimensionless Translational and Rotational Velocities of a Rigid Dumbbell Undergoing Electrophoresis Normal to the

Line Connecting Two Spheres for the Case of f= 0.4 and xa; = 100
Up/ U, (with polarization) U/ Ul
4 Sie S @t (without
a g kT iz Z= Z=2 Z = polarization)
| f 5 0.2 24257 1.3040 0.8007 3.0000
0.4 2,4246 1.3013 0.7974 3.0000
0.6 24213 1.2939 0.7885 3.0000
0.8 24136 1.2792 0.7718 3.0000
0.99 2.3964 1.2544 0.7600 3.0000
2 5 5 0.2 1.t416 1.5647 1.3397 1.000¢
0.4 1.1430 1.5705 1.3432 1.0000
0.6 1.1426 1.5693 1.3427 1.0000
0.8 1.1394 1.5594 1.3378 1.0000
0.99 1.1323 1.5456 1.3329 1.0000
2 4 -1 0.2 0.1249 ~0,0041 —0.5012 0.1520
04 0.1090 ~0.0222 ~0.5279 0.1366
0.6 0.0928 —0.0404 ~-0.5540 0.1207
0.8 0.0755 —0.0596 —0,5803 0.1038
0.99 0.0552 —0.0839 -0.6121 0.0849
Qr2/ U\, (with polarization) Qri2f Ui
it} be E 4t (without
ay kT kgl 71z Z=1 Z=2 zZ=3 polarization)
| I b] 0.2 27256 0.5823 ~0.3790 3.8227
0.4 2.4629 0.5300 —0.3366 3.4525
0.6 2.1982 0.4819 —0.2867 30
0.8 1.9865 0.4491 —0.2366 2.7757
(.99 1.8396 0.4299 —{.1895 2.5708
2 5 5 .2 (3.1952 0.7788 0.4685 0
04 0.1682 0.6711 0.4038 ¢
0.6 0.1428 0.5698 0.3430 0
0.8 0.1230 0.4900 0.2955 0
0.99 0.1095 0.4244 0.2579 0
2 4 ~1 0.2 —1.2048 -1.3823 —2.0667 -1.1674
0.4 —1.0340 —1.1861 —-1,7727 —-1.0020
0.6 —0.8691 -0.9964 —1,4879 —0.8423
0.8 —0.7365 —-(1.8431 —1.2568 —0.7142
0.99 —{0.6355 -0.7222 —1.0757 —0.6186
TABLE 5 boundary collocation technique has been used to solve the

The Results of Coefficient « (Defined by Eq. [4.2]) for Various
Values of xa, {e/kpT, and Z with /= 0.4

e

Kt knT Z=1 Z=72 Z=3

102 2 —1.48 —1.59 —1.58
5 —1.60 —1.67 -2.07
8 -1.36 -2.13 —-2.7%

10? 2 —1.47 —1.47 -1.49
5 —1.49 —1.65 —1.58
8 —1.53 ~1.78 ~2.61

10° 2 —1.46 —1.48 —1.47
5 —1.47 —1.49 -1.57
8 ~1.45 ~1.67 —2.28

electrochemical potential distributions and the velocity field
for the fluid around the electrophoretic spheres. it has been
found that particle interactions actually exist among spheres
with identical zeta potentials in an unbounded fluid as long
as x4 is finite. In addition, the particle interaction is no longer
a simple monotonic function of both the spheres’ and ions’
properties as well as the separation distance for some cases.

The interaction effects between pairs of spheres have also
been employed to find the average electrophoretic velocity
in a bounded suspension of colloidal particles. This average
velocity is decreased for various cases as the concentration
of the particles in the suspension is increased.
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