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Thermocapillary motion of a fluid droplet perpendicular to two plane walls
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Abstract

The quasisteady problem of the thermocapillary migration of a spherical fluid droplet situated at an arbitrary position between two infinite
parallel plane walls is studied theoretically in the limit of negligible Marangoni and Reynolds numbers. The applied temperature gradient is
constant and perpendicular to the plane walls. The presence of the plane walls causes two basic effects on the droplet velocity: first, the local
temperature gradient on the droplet surface is altered by the walls, thereby speeding up or slowing down the droplet; secondly, the walls
increase viscous retardation of the moving droplet. To solve the thermal and hydrodynamic governing equations, the general solutions are
constructed from the fundamental solutions in both cylindrical and spherical coordinates. The boundary conditions are enforced first at the
plane walls by the Hankel transforms and then on the droplet surface by a collocation technique. Numerical results for the thermocapillary
migration velocity of the droplet relative to that under identical conditions in an unbounded medium are presented for various values of the
relative viscosity and thermal conductivity of the droplet as well as the relative separation distances between the droplet and the confining walls.
The collocation results agree well with the approximate analytical solutions obtained by using a method of reflections. The presence of the
walls always reduces the droplet velocity, irrespective of the relative transport properties of the droplet or the relative droplet–wall separation
distances. The boundary effect on thermocapillary migration of a droplet normal to two plane walls, which is relatively weak in comparison
with the corresponding effect on sedimentation, is found to be quite significant and generally stronger than that parallel to the plane walls.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When a small droplet of one fluid is placed in a second fluid
in which it is immiscible, it will migrate toward the hotter side
if the surrounding fluid has a temperature gradient. This move-
ment is owing to the temperature-induced interfacial tension
gradient along the droplet surface. The thermocapillary migra-
tion of droplets was first demonstrated experimentally byYoung
et al. (1959). They also theoretically calculated the migration
velocity of a spherical droplet of radius a placed in an infinite
immiscible fluid of viscosity �f , with a linear temperature dis-
tribution T∞(x) far away from the droplet. If the droplet is suffi-
ciently small that effects of inertia and convection of energy are
negligible, its velocity U0 is related to the uniform temperature

∗ Corresponding author. Fax: +886 2 23623040.
E-mail address: huan@ntu.edu.tw (H.J. Keh).

0009-2509/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ces.2006.03.034

gradient ∇T∞ by

U0 = A∇T∞, (1)

where the thermocapillary mobility

A = 2

(2 + k∗)(2 + 3�∗)

(
− ��

�T

)
a

�f

, (2)

where ��/�T is the variation of the interfacial tension � at the
droplet surface with respect to the local temperature T (with a
typical value of 10−4 N m−1K−1), and k∗ and �∗ are the ratios
of thermal conductivities and viscosities, respectively, between
the internal and surrounding fluids. In Eq. (2), all the physical
properties are assumed to be constant except for the interfacial
tension, which is assumed to vary linearly with temperature.
The thermocapillary mobility of a single gas bubble can be
evaluated by Eq. (2) taking the limiting values k∗=0 and �∗=0.

In most practical applications of thermocapillary motion,
fluid droplets are not isolated and the surrounding fluid is
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externally bounded by solid or fluid surfaces (Morton et al.,
1990; Keh and Chen, 1990, 1992, 1993; Kasumi et al., 2000;
Sun and Hu, 2003; Sellier, 2005). Thus, it is important to de-
termine if the presence of neighboring boundaries significantly
affects the movement of droplets. During the past quarter of
century, much progress has been made in the theoretical anal-
ysis concerning the applicability of Eq. (2) for a fluid droplet
in a variety of bounded systems. Through an exact representa-
tion in spherical bipolar coordinates, Meyyappan et al. (1981)
and Sadhal (1983) solved the quasisteady problem of thermo-
capillary motion of a spherical gas bubble normal to an infi-
nite planar solid or free fluid surface of constant temperature.
Later, Meyyappan and Subramanian (1987) examined the ther-
mocapillary motion of a gas bubble parallel to a rigid plane
surface on which the far-field temperature distribution was im-
posed. In both cases, the bubble mobility was found to decrease
monotonically relative to its isolated value given by Eq. (2) for
motions close to the confining plane.

To extend the analysis by Meyyappan et al. (1981) for a gas
bubble, Barton and Subramanian (1990) and Chen and Keh
(1990) determined the thermocapillary migration velocity of a
fluid droplet in the direction perpendicular to a nearby isother-
mal planar solid or free surface using spherical bipolar co-
ordinates. Analytical solutions of this problem in asymptotic
forms were obtained by using a method of reflections (Chen
and Keh, 1990) and a lubrication approach (Loewenberg and
Davis, 1993). In addition to the above-mentioned studies for
the boundary effect on the thermocapillary motion of a fluid
sphere near a planar surface, the migration of a deformable
drop near another drop (Berejnov et al., 2001) or normal to an
isothermal rigid plane (Ascoli and Leal, 1990) due to thermo-
capillarity has also been examined. The effect of a planar solid
surface on fluid drops undergoing thermocapillary motion nor-
mal to it has also been investigated experimentally (Barton and
Subramanian, 1991) and was found to be in good agreement
with the predictions from the quasisteady analyses.

Chen et al. (1991) used a boundary collocation method to
solve for the axisymmetric thermocapillary motion of a spher-
ical drop within a long circular insulated tube. They found that
the fluid sphere in the tube always moves slower than it does
in an infinite medium as a result of the wall-drop thermal and
hydrodynamic interactions, and the thermocapillary velocity is
a monotonically decreasing function of the ratio of the sphere
to the tube diameters for fixed values of k∗ and �∗. At constant
values of �∗ and the sphere-to-tube radius ratio, the migration
velocity of the drop relative to the isolated value increases as
k∗ decreases, because a greater portion of energy is conducted
through the relatively conductive gap between the drop and
the insulated tube wall which creates a larger interfacial ten-
sion gradient. Recently, the thermocapillary motion of a fluid
sphere parallel to two plane walls at an arbitrary position be-
tween them has been investigated by Keh et al. (2002) using
both the boundary collocation technique and the method of re-
flections. Exact numerical results and approximate analytical
solutions of the wall-correction to Eq. (2) for the droplet mo-
bility were presented for various values of the relative separa-
tion distances and other relevant parameters. For the case that

a linear temperature profile is prescribed on the plane walls
which is consistent with the far-field distribution, the migration
velocity of the drop increases as k∗ increases and, under the
situation of large �∗ and large k∗, the thermocapillary mobil-
ity of the droplet first decreases and goes through a minimum
with the decrease of the droplet-to-wall distances when they
are relatively large and then increases monotonically. When the
gap between the droplet and the wall turns thin, the droplet can
even move faster than its isolated value.

This paper is an extension of the previous work (Keh et al.,
2002) to the situation of the thermocapillary motion of a spher-
ical droplet perpendicular to two parallel plane walls at an arbi-
trary position between them. The effects of fluid inertia as well
as thermal convection are neglected. For the case of a droplet
with a relatively high thermal conductivity undergoing thermo-
capillary motion normal to the plane walls, the heat conduction
around the droplet may generate larger temperature gradients
on the droplet surface relative to those in an infinite medium.
These gradients enhance the thermocapillary migration veloc-
ity, although their action will be retarded by the viscous inter-
action of the migrating droplet with the walls. The effects of the
thermal enhancement and the hydrodynamic retardation both
increase as the ratios of the radius of the droplet to its distances
from the walls increase. Determining which effect is overriding
at small droplet–wall gap widths is a main target of this study.
Because the governing equations and boundary conditions con-
cerning the general problem of thermocapillary motion of a
droplet at an arbitrary position between two parallel plane walls
in an arbitrary direction are linear, its solution can be obtained
as a superposition of the solutions for its two subproblems: mo-
tion parallel to the plane walls, which was previously examined
(Keh et al., 2002), and motion normal to the confining walls,
which is considered in this work. Unfortunately, with only one
exception (Barton and Subramanian, 1991), no experimental
data available in the literature involve the thermocapillary mi-
gration velocity of a fluid sphere as a function of its position
between two parallel plane walls or near a single plane wall for
a comparison with the theoretical predictions.

2. Analysis

We consider the quasisteady thermocapillary migration of
a spherical fluid droplet of radius a in an immiscible fluid
perpendicular to two infinite plane walls whose distances from
the center of the droplet are b and c, as shown in Fig. 1.
Here (�, �, z) and (r, �, �) denote the circular cylindrical and
spherical coordinate systems, respectively, and the origin of
coordinates is chosen at the droplet center. A linear tempera-
ture field T∞(z) with a uniform thermal gradient E∞ez (equal
to ∇T∞) is imposed in the external fluid far removed from the
droplet, where ez is the unit vector in the z direction and, for
convenience, E∞ is taken to be positive. The capillary num-
ber �f U0/� (where U0 = |U0| is given by Eqs. (1) and (2))
is assumed to be sufficiently small so that interfacial tension
maintains the spherical shape of the droplet during the con-
fined thermocapillary migration. Gravitational and natural-
convection effects are ignored. The purpose is to obtain the
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Fig. 1. Geometrical sketch for the thermocapillary motion of a spherical
droplet perpendicular to two plane walls at an arbitrary position between
them.

correction to Eq. (2) for the droplet mobility due to the pres-
ence of the plane walls.

To determine the thermocapillary migration velocity of the
droplet, it is necessary to ascertain the temperature and velocity
distributions in both internal and external fluid phases.

2.1. Temperature distribution

For the heat transfer in a system of thermocapillary motion,
the Marangoni number (Peclet number) can be assumed to be
small. Hence, the energy equations governing the temperature
distribution are

∇2T = 0 (r �a) (3a)

for the external fluid and

∇2T1 = 0 (r �a) (3b)

for the fluid inside the droplet.
The boundary conditions at the droplet surface require that

the temperature and the normal component of heat flux be con-
tinuous, namely,

r = a: T = T1, (4a)

k
�T

�r
= k1

�T1

�r
. (4b)

Here k and k1 are the thermal conductivities of the external
and internal fluids, respectively. Since the temperature field far
away from the droplet approaches the undisturbed values, we
can write

z = c: T = T0 + E∞c, (5)

z = −b: T = T0 − E∞b, (6)

� → ∞: T → T∞ = T0 + E∞z, (7)

where T0 is the undisturbed temperature at the droplet center.
The temperatures at the two parallel plane walls have been set
equal to different constants to allow a uniform thermal gradient
in their normal direction far from the droplet.

The external temperature distribution, which is governed by
the Laplace equation, can be expressed as the superposition

T = T0 + E∞z + Tw + Tp. (8)

Here, Tw is a separable solution of Eq. (3a) in cylindrical co-
ordinates that represents the disturbance produced by the plane

walls and is given by a Fourier–Bessel integral

Tw = E∞
∫ ∞

0
[X(�)e�z + Y (�)e−�z]�J0(��) d�, (9)

where Jn is the Bessel function of the first kind of order n

and X(�) and Y (�) are unknown functions of the separation
variable �. The last term on the right-hand side of Eq. (8),
Tp, is a separable solution of Eq. (3a) in spherical coordinates
representing the disturbance generated by the droplet and is
given by an infinite series in harmonics,

Tp = E∞
∞∑

m=0

Rmr−m−1Pm(cos �), (10)

where Pm is the Legendre polynomial of order m and Rm are
unknown constants. Note that a solution for T of the form given
by Eqs. (8)–(10) immediately satisfies the boundary condition
(7) at infinity. Since the temperature is finite for any position
in the interior of the droplet, the solution to Eq. (3b) can be
written as

T1 = T0 + E∞
∞∑

m=0

RmrmPm(cos �), (11)

where Rm are unknown constants.
Substituting the temperature distribution T given by Eqs.

(8)–(10) into the boundary conditions (5) and (6) and applying
the Hankel transform on the variable � lead to a solution for
the functions X(�) and Y (�) in terms of the coefficients Rm.
After the substitution of this solution into Eqs. (8)–(10), T can
be expressed as

T = T0 + E∞z + E∞
∞∑

m=0

Rm�(1)
m (r, �), (12)

where the function �(1)
m (r, �) is defined by Eq. (B.1) in Appendix

B (in which the integration must be performed numerically).
Applying the boundary conditions given by Eq. (4) to Eqs. (11)
and (12) yields

∞∑
m=0

[Rm�(1)
m (a, �) − RmamPm(cos �)] = − a cos �, (13a)

∞∑
m=0

[Rm�(2)
m (a, �)−Rmk∗mam−1Pm(cos �)]=− cos �, (13b)

where the definition of functions �(2)
m (r, �) is given by Eq. (B.2)

and k∗ = k1/k.
To satisfy the conditions in Eq. (13) exactly along the entire

surface of the droplet would require the solution of the entire
infinite array of unknown constants Rm and Rm. However, the
collocation technique (Ganatos et al., 1980; Keh et al., 2002)
enforces the boundary conditions at a finite number of discrete
points on the semicircular longitudinal generating arc of the
droplet (from � = 0 to �) and truncates the infinite series in
Eqs. (11) and (12) into finite ones. If the spherical boundary
is approximated by satisfying the conditions (4a) and (4b) at
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M discrete points on the generating arc, the infinite series in
Eqs. (11) and (12) are truncated after M terms, resulting in a
system of 2M simultaneous linear algebraic equations in the
truncated form of Eq. (13). This matrix equation can be nu-
merically solved to yield the 2M unknown constants Rm and
Rm required in the truncated form of Eqs. (11) and (12) for
the temperature distribution. The accuracy of the boundary-
collocation/truncation technique can be improved to any degree
by taking a sufficiently large value of M . Naturally, as M →
∞ the truncation error vanishes and the overall accuracy of the
solution depends only on the numerical integration required in
evaluating the functions �(1)

m and �(2)
m in Eq. (13).

2.2. Fluid velocity distribution

Having obtained the solution for the external temperature
distribution on the droplet surface which drives the thermocap-
illary migration, we can now proceed to find the flow field.
Owing to the low Reynolds number encountered in thermocap-
illary motions, the fluid motion is governed by the fourth-order
differential equations for viscous axisymmetric creeping flows,

E2(E2	) = 0 (r �a), (14a)

E2(E2	1) = 0 (r �a), (14b)

where 	1 and 	 are the Stokes stream functions for the flow
inside the droplet and for the external flow, respectively, which
are related to the components of corresponding fluid velocity
in cylindrical coordinates by (v� = v1� = 0)

v� = 1

�

�	

�z
, v1� = 1

�

�	1

�z
, (15a,b)

vz = − 1

�

�	

��
, v1z = − 1

�

�	1

��
, (15c,d)

and the Stokes operator E2 has the form

E2 = �
�

��

(
1

�

�

��

)
+ �2

�z2 . (16)

The boundary conditions for the fluid velocities at the droplet
surface (Young et al., 1959; Anderson, 1985), on the plane walls,
and far from the droplet are

r = a: v� = v1�, (17a)

vz = v1z, (17b)

v� tan � + vz = U , (17c)


r� − 
1r� = − ��

�T

�T

r��
, (17d)

z = c, −b: v� = vz = 0, (18)

� → ∞: v� = vz = 0. (19)

Here, 
r� and 
1r� are the viscous shear stresses for the exter-
nal flow and the flow inside the droplet, respectively, and U

is the thermocapillary migration velocity of the droplet to be
determined.

To solve the external flow field, we express its stream func-
tion in the form (Ganatos et al., 1980)

	 = 	w + 	p. (20)

Here 	w is a separable solution of Eq. (14a) in cylindrical
coordinates that represents the disturbance produced by the
plane walls and is given by a Fourier–Bessel integral

	w =
∫ ∞

0
[A(�)e�z + B(�)e−�z + C(�)�ze�z

+ D(�)�ze−�z]�J1(��) d�, (21)

where A(�), B(�), C(�), and D(�) are unknown functions
of the separation variable �. The second part of 	, denoted by
	p, is a separable solution of Eq. (14a) in spherical coordinates
representing the disturbance generated by the droplet and is
given by

	p =
∞∑

n=2

(Bnr
−n+1 + Dnr

−n+3)G
−1/2
n (cos �), (22)

where G
−1/2
n is the Gegenbauer polynomial of the first kind

of order n and degree − 1
2 ; Bn and Dn are unknown constants.

Note that the boundary condition in Eq. (19) is immediately
satisfied by a solution of the form given by Eqs. (20)–(22).

The general solution to Eq. (14b) for the internal flow field
can be expressed as

	1 =
∞∑

n=2

(Anr
n + Cnr

n+2)G
−1/2
n (cos �), (23)

or

v1� =
∞∑

n=2

[An�
(1)
1n (r, �) + Cn�

(1)
2n (r, �)], (24a)

v1z =
∞∑

n=2

[An�
(2)
1n (r, �) + Cn�

(2)
2n (r, �)], (24b)

where the definitions of the functions �(j)
in (r, �) for i and j

equal to 1 or 2 are given by Eqs. (B.4) and (B.5) in Appendix
B, and An and Cn are unknown constants. A solution of this
form satisfies the requirement that the velocity is finite for any
position within the droplet.

Substituting the stream function 	 given by Eqs. (20)–(22)
into the boundary conditions in Eq. (18) and applying the
Hankel transform on the variable � lead to a solution for the
functions A(�), B(�), C(�), and D(�) in terms of the coef-
ficients Bn and Dn. After the substitution of this solution into
Eqs. (20)–(22), the fluid velocity components can be
expressed as

v� =
∞∑

n=2

[Bn�
(1)
1n (r, �) + Dn�

(1)
2n (r, �)], (25a)

vz =
∞∑

n=2

[Bn�
(2)
1n (r, �) + Dn�

(2)
2n (r, �)], (25b)
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where the definitions of the functions �(j)
in (r, �) for i and j equal

to 1 or 2 are given by Eqs. (B.6) and (B.7) (in integral forms
which must be evaluated numerically).

The only boundary conditions that remain to be satisfied are
those on the droplet surface. Substituting Eqs. (24) and (25)
into Eq. (17), one obtains

∞∑
n=2

[Bn�
(1)
1n (a, �) + Dn�

(1)
2n (a, �)

− An�
(1)
1n (a, �) − Cn�

(1)
2n (a, �)] = 0, (26a)

∞∑
n=2

[Bn�
(2)
1n (a, �) + Dn�

(2)
2n (a, �)

− An�
(2)
1n (a, �) − Cn�

(2)
2n (a, �)] = 0, (26b)

∞∑
n=2

{
Bn[�(1)

1n (a, �) tan � + �(2)
1n (a, �)]

+Dn[�(1)
2n (a, �) tan � + �(2)

2n (a, �)]
}

= U , (26c)

∞∑
n=2

[Bn�
∗
1n(a, �) + Dn�

∗
2n(a, �) − �∗An�

∗
1n(a, �)

− �∗Cn�
∗
2n(a, �)]

= −
(

��

�T

)
E∞
�f

[ ∞∑
m=0

Rm�(3)
m (a, �) − sin �

]
, (26d)

where the functions �(3)
m (r, �), �∗

in(r, �), and �∗
in(r, �) for i = 1

or 2 are defined by Eqs. (B.3), (B.16), and (B.17) (in which
the integration must be performed numerically). The first M

coefficients Rm have been determined through the procedure
given in the previous subsection.

Equation (26) can be satisfied by utilizing the collocation
technique presented for the solution of the temperature field.
Along a longitudinal generating arc at the droplet surface,
Eq. (26) is applied at N discrete points (values of � between
0 and �) and the infinite series in Eqs. (23)–(25) are truncated
after N terms. This generates a set of 4N linear algebraic
equations for the 4N unknown constants An, Cn, Bn, and
Dn. The fluid velocity field is completely obtained once these
coefficients are solved for a sufficiently large number of N .

2.3. Derivation of the droplet velocity

The hydrodynamic drag force acting on the droplet can be
determined from (Happel and Brenner, 1983)

F = 4��f D2. (27)

This expression shows that only the lowest-order coefficient
D2 contributes to the drag force exerted on the droplet by the
surrounding fluid.

Since the droplet is freely suspended in the surrounding fluid,
the net force acting on the droplet must vanish. Applying this

constraint to Eq. (27), one has

D2 = 0. (28)

To determine the thermocapillary migration velocity U of the
droplet, Eq. (28) and the 4N algebraic equations resulting from
Eq. (26) are to be solved simultaneously. Note that, similar to
the thermocapillary migration velocity of an isolated droplet
given by Eqs. (1) and (2), the value of U is proportional to the
quantity (−��/�T )(a/�f ) and dependent on the dimensionless
parameters k∗ and �∗ (in addition to the length ratios among a,
b, and c).

If the droplet velocity in Eq. (17c) is disabled (i.e., U = 0 is
set), then the force obtained from Eq. (27) can be taken as the
thermocapillary force exerted on the droplet near the walls due
to the prescribed temperature gradient ∇T∞. This force can be
expressed as

F = 6��f aU0
3�∗ + 2

3�∗ + 3
F ∗, (29)

where U0 is a characteristic velocity (the thermocapillary mi-
gration velocity of the droplet in the absence of the plane walls)
given by Eqs. (1) and (2) and F ∗ is the normalized magni-
tude of the thermocapillary force. The value of F ∗ also equals
f ∗U/U0, where f ∗ is the dimensionless Stokes resistance co-
efficient of the droplet migrating normal to the two plane walls
driven by a body force in the absence of the temperature gra-
dient (Chang and Keh, 2006) and U is the wall-corrected ther-
mocapillary migration velocity of the droplet obtained from
Eq. (28).

3. Results and discussion

The numerical results for the thermocapillary motion of a
fluid sphere perpendicular to two plane walls at an arbitrary
position between them, obtained by using the boundary-
collocation method described in the previous section, is pre-
sented in this section. The system of linear algebraic equations
to be solved for the coefficients Rm and Rm is constructed from
Eq. (13), while that for An, Bn, Cn, and Dn is composed of
Eq. (26). All the numerical integrations to evaluate the functions
�(j)
m , �(j)

in , and �∗
in were done by the 180-point Gauss–Laguerre

quadrature.
When selecting the points along the half-circular generating

arc of the spherical droplet where the boundary conditions are
to be exactly satisfied, the first points that should be chosen
are � = 0 and �, since these stagnation points control the gaps
between the droplet and the plane walls. In addition, the point
� = �/2 which defines the projected area of the droplet normal
to the direction of migration is also important. However, an
examination of the systems of linear algebraic equations (13)
and (26) shows that the matrix equations become singular if
these points are used. To overcome this difficulty, these points
are replaced by four closely adjacent basic points, i.e., � = �,
�/2 − �, �/2 + �, and � − � (Ganatos et al., 1980). Additional
points along the generating arc are selected as mirror-image
pairs about the plane �=�/2 to divide the two quarter-circular
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Table 1
Normalized thermocapillary migration velocity of a spherical droplet per-
pendicular to a single plane wall computed from the boundary-collocation
solution and the asymptotic method-of-reflection solution

a/b U/U0

�∗ = 0 �∗ = 10

Collocation Asymptotic Collocation Asymptotic
solution solution solution solution

k∗ = 0
0.2 0.99499 0.99499 0.99504 0.99504
0.4 0.95915 0.95918 0.96044 0.96043
0.6 0.85472 0.85572 0.86195 0.86327
0.8 0.61344 0.62872 0.63758 0.66407
0.9 0.38987 0.44147 0.42868 0.51865
0.95 0.22749 0.32260 0.27182 0.43643
0.99 0.05363 0.21314 0.08375 0.36798
0.995 0.02755 0.04906
0.999 0.00566 0.01362

k∗ = 1
0.2 0.99599 0.99599 0.99604 0.99604
0.4 0.96709 0.96714 0.96850 0.96851
0.6 0.88066 0.88216 0.88930 0.89089
0.8 0.66618 0.68870 0.69875 0.72931
0.9 0.44618 0.52340 0.50277 0.60953
0.95 0.27159 0.41625 0.33921 0.54121
0.99 0.06771 0.31626 0.11562 0.48399
0.995 0.03518 0.06951
0.999 0.00731 0.01995

k∗ = 10
0.2 0.99749 0.99749 0.99755 0.99755
0.4 0.97919 0.97925 0.98074 0.98077
0.6 0.92203 0.92412 0.93252 0.93440
0.8 0.76349 0.79444 0.81001 0.84282
0.9 0.57218 0.68170 0.66707 0.78246
0.95 0.39246 0.60830 0.52560 0.75266
0.99 0.12590 0.53977 0.25895 0.73145
0.995 0.07116 0.17852
0.999 0.01683 0.06428

arcs of the droplet into equal segments. The optimum value of
� in this work is found to be 0.01◦, with which the numerical
results of the droplet velocity converge satisfactorily.

3.1. Motion normal to a single plane wall

Numerical solutions for the thermocapillary migration veloc-
ity of a spherical droplet near a single plane wall (i.e., with c →
∞) caused by a temperature gradient in the normal direction are
presented in Table 1 for various values of the parameters k∗, �∗,
and a/b at the quasisteady state using the boundary-collocation
method. The velocity for the thermocapillary motion of an iden-
tical droplet in an infinite fluid, U0 = AE∞ given by Eqs. (1)
and (2), is used to normalize the boundary-corrected values.
All of the results obtained under this collocation scheme con-
verge satisfactorily to at least the significant figures shown in
the table. The accuracy and convergence behavior of the trun-
cation technique is principally a function of the ratio a/b. For
general cases with a/b�0.9, the numbers of collocation points

M = 26 and N = 26 can lead to these satisfactory results. For
the most difficult case with a/b=0.999, the numbers M =200
and N = 200 are sufficiently large to achieve this convergence.

In Appendix A, an approximate analytical solution for the
same thermocapillary motion as that considered here is also
obtained by using a method of reflections. The droplet velocity
normal to an isothermal plane wall is given by Eq. (A.11), which
is a power series expansion in � (=a/b). The values of the
wall-corrected normalized thermocapillary mobility calculated
from this asymptotic solution, with the O(�9) term neglected,
are also listed in Table 1 for comparison. It can be seen that the
asymptotic formula of Eq. (A.11) from the method of reflections
for U/U0 agrees very well with the collocation results as long
as ��0.8; the errors in all cases are less than 4.4%. However,
accuracy of Eq. (A.11) begins to deteriorate, as expected, when
the relative spacing between the droplet and the plane wall
becomes small (say, ��0.9). In general, the formula of Eq.
(A.11) overestimates the thermocapillary migration velocity of
the droplet.

Through the use of spherical bipolar coordinates, Chen and
Keh (1990) obtained some semianalytical–seminumerical so-
lutions for the normalized themocapillary velocity U/U0 of a
spherical droplet perpendicular to an isothermal plane wall. In
general, these solutions are in agreement with our results given
in Table 2. A detailed comparison shows that our collocation
solutions agree better with the method-of-reflection solution
given by Eq. (A.11) than the bipolar-coordinate solutions do
for all values of a/b�0.6.

The collocation solutions for the normalized velocity U/U0
of a spherical droplet undergoing thermocapillary motion per-
pendicular to a plane wall as functions of a/b are depicted in
Fig. 2 for various values of k∗ and �∗. For any set of fixed
values of k∗ and �∗, U/U0 decreases monotonically with an
increase in a/b and approaches zero in the limit. As expected,
the droplet migrates with the velocity that would exist in the
absence of the wall as a/b goes to 0. However, the bound-
ary effect of the plane wall on thermocapillary motion can be
quite significant when a/b becomes greater. The wall-corrected
normalized thermocapillary mobility U/U0 of the droplet in-
creases with an increase in k∗, keeping the other factors �∗ and
a/b unchanged. This increase in the droplet mobility in gen-
eral becomes more pronounced as a/b increases. This behavior
is expected knowing that the local temperature gradients along
the droplet surface near an isothermal plane wall with a per-
pendicularly imposed thermal gradient increase as k∗ increases
(the tangential temperature gradient at the droplet surface on
the near side to the plane wall is depressed compared with that
on the far side, as can be seen in the analysis given by Keh and
Lien (1991) or in Appendix B). On the other hand, the wall-
corrected normalized thermocapillary mobility of the droplet
increases with an increase in �∗ for any given values of k∗
and a/b, in agreement with the prediction from the method-of-
reflection solution given by Eq. (A.7) or (A.11). For the partic-
ular case of k∗ = 1, the effect of thermal interaction between
the droplet and the wall disappears, and the relative thermo-
capillary mobility of the droplet decreases with a/b solely ow-
ing to the hydrodynamic resistance exerted by the plane wall.
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Table 2
Normalized thermocapillary migration velocity of a spherical droplet perpen-
dicular to two equally distant plane walls (with c = b) computed from the
boundary-collocation solution and the asymptotic method-of-reflection solu-
tion

a/b U/U0

�∗ = 0 �∗ = 10

Collocation Asymptotic Collocation Asymptotic
solution solution solution solution

k∗ = 0
0.2 0.99129 0.99129 0.99142 0.99142
0.4 0.93131 0.93150 0.93493 0.93566
0.6 0.77504 0.77958 0.79601 0.80970
0.8 0.48611 0.52723 0.54356 0.64206
0.9 0.27753 0.37874 0.34891 0.56972
0.95 0.15089 0.30544 0.21631 0.54333
0.99 0.03315 0.24989 0.06577 0.52889
0.995 0.01686 0.03853
0.999 0.00343 0.01072

k∗ = 1
0.2 0.99367 0.99367 0.99380 0.99381
0.4 0.94930 0.94939 0.95301 0.95363
0.6 0.82684 0.82920 0.84957 0.86140
0.8 0.57064 0.59513 0.64031 0.73084
0.9 0.35466 0.42353 0.45080 0.66808
0.95 0.20562 0.32202 0.30152 0.64248
0.99 0.04901 0.23272 0.10273 0.62657
0.995 0.02533 0.06188
0.999 0.00525 0.01782

k∗ = 10
0.2 0.99727 0.99727 0.99740 0.99740
0.4 0.97759 0.97761 0.98144 0.98198
0.6 0.91819 0.91941 0.94386 0.95475
0.8 0.76378 0.78575 0.86043 0.95278
0.9 0.58477 0.67070 0.75386 0.99561
0.95 0.41436 0.59584 0.62865 1.04015
0.99 0.14318 0.52582 0.33664 1.09193
0.995 0.08273 0.23627
0.999 0.02014 0.08673

In general, our theoretical predictions agree with the available
experimental results (Barton and Subramanian, 1991).

For the creeping motion of a spherical droplet on which
a constant body force F ez (e.g., a gravitational field) is ex-
erted normal to an infinite plane wall, the numerical result
of the droplet velocity has recently been obtained by using
the boundary-collocation technique (Chang and Keh, 2006). A
comparison of the boundary effects on the translation of the
fluid sphere under gravity (in which U0 = (F/6��f a)(3�∗ +
3)/(3�∗ + 2)) and on the thermocapillary migration is given in
Fig. 3. Obviously, the wall effect on thermocapillary motion is
much weaker than that on a sedimenting or buoyantly rising
droplet (also see the discussion after Eq. (A.7) in Appendix A).
Note that the wall effect on the droplet motion in a gravitational
field is stronger when the value of �∗ becomes larger, which is
opposite to that which would occur if the droplet migrates near
a plane wall due to thermocapillarity.

Because the governing equations and boundary conditions
concerning the general problem of thermocapillary motion of

Fig. 2. Plots of the normalized thermocapillary mobility U/U0 of a spherical
droplet migrating perpendicular to a plane wall versus the separation parameter
a/b for various values of �∗. The solid curves represent the case of k∗ =100
and the dashed curves denote the case of k∗ = 0.

Fig. 3. Plots of the normalized thermocapillary mobility (solid curves, with
k∗ = 1) and sedimenting mobility (dashed curves) of a spherical droplet
migrating perpendicular to a plane wall versus the separation parameter a/b

for different values of �∗.

a droplet in an arbitrary direction near a plane wall are lin-
ear, the solution can be obtained as a superposition of the so-
lutions for its two subproblems: motion perpendicular to the
plane, which is examined in this paper, and motion parallel
to the plane. The collocation solutions for the thermocapil-
lary motion of a spherical droplet parallel to a plane wall have
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already been obtained by Keh et al. (2002). It was found that,
when the wall is prescribed with a linear temperature profile
consistent with the far-field temperature distribution, the wall-
corrected normalized thermocapillary migration velocity of the
droplet also increases with an increase in k∗, keeping �∗ and
a/b unchanged. A comparison between Table 1 of Keh et al.
and our Table 1 indicates that the plane wall in general exerts
the most influence on the droplet when thermocapillary motion
occurs normal to it, and the least in the case of thermocapil-
lary motion parallel to it. Evidently, the direction of motion of
a droplet near a plane wall is different from that of the pre-
scribed thermal gradient, except when it is oriented parallel or
perpendicular to the plane wall.

3.2. Motion perpendicular to two plane walls

Numerical results of the normalized thermocapillary migra-
tion velocity U/U0 of a spherical droplet perpendicular to two
parallel plane walls with equal distances from the droplet (c=b)
are presented in Table 2 for various values of the parameters k∗,
�∗, and a/b using the boundary-collocation method. The cor-
responding method-of-reflection solutions, given by Eq. (A.20)
in Appendix A as a power series expansion in � (=a/b) correct
to O(�8), are also listed in this table for comparison. Similar to
the case of migration of a droplet normal to a single plane wall
considered in the previous subsection, the approximate analyt-
ical formula (A.20) agrees quite well with the exact results as
long as ��0.6, but can have significant errors when ��0.8.
Formula (A.20) always overestimates the thermocapillary mi-
gration velocity of the droplet. When all the values of k∗, �∗,
and a.b are sufficiently large (e.g., k∗=�∗=10 and a/b�0.95),
Eq. (A.20) accurate to O(�8) predicts that the droplet can
even move faster than it would as a/b goes to 0. However, the
collocation solutions show that U/U0 is always a monotonic
decreasing function of a/b for any combination of constant
values of k∗ and �∗. This result indicates that the effect of
hydrodynamic retardation, rather than that of the possible
thermal enhancement, is overriding for the thermocapillary
motion of a fluid sphere normal to two parallel plane walls. A
comparison between Table 2 for the case of a slit and Table 1
for the case of a single normal plane indicates that the assump-
tion that the boundary effect for two walls can be obtained
by simple addition of single-wall effects leads to a greater
correction to thermocapillary motion for any given value
of a/b.

The collocation results for the normalized thermocapillary
mobility U/U0 of a spherical droplet locating midway between
two parallel plane walls (with c = b) caused by a perpendic-
ular thermal gradient are plotted in Fig. 4 as functions of a/b

for several values of k∗ and �∗. Analogous to the correspond-
ing motion of a droplet normal to a single plane wall, U/U0
increases with an increase in k∗ for specified values of �∗ and
a/b and increases with an increase in �∗ for fixed values of k∗
and a/b.

A careful comparison of Fig. 4 or Table 2 for the case of a
slit with Fig. 2 or Table 1 for the case of a single plane wall
reveals an interesting feature. When the value of k∗ is large,

Fig. 4. Plots of the normalized mobility U/U0 of a spherical droplet situated
midway between two parallel plane walls (with c=b) undergoing thermocap-
illary motion perpendicularly versus the separation parameter a/b for several
values of �∗. The solid curves represent the case of k∗ = 100 and the dashed
curves denote the case of k∗ = 0.

the boundary effect on the thermocapillary motion of a droplet
can be weaker for the case of a slit than for the case of a single
plane wall with the same value of a/b. Namely, the presence
of a second, normal plane wall, even at a symmetric position
with respect to the fluid sphere against the first, does not always
enhance the wall effect on the thermocapillary migration of
the droplet induced by the first plate only. These results reflect
the fact that the confining wall can affect the thermal driving
force and the viscous drag force on a fluid droplet in opposite
directions. Each force is increased in its own direction, but to
a different degree, for the case of thermocapillary motion of a
droplet in a slit relative to that for the case of migration normal
to a single plate. Thus, the net effect composed of these two
opposite forces for the slit case is not necessarily to enhance
that for the case of a single wall.

In Fig. 5, the collocation results for the normalized mobility
U/U0 of a fluid sphere with k∗ = �∗ = 1 and k∗ = �∗ = 0 un-
dergoing thermocapillary motion normal to two plane walls at
various positions between them are plotted. The dashed curves
(with a/b = constant) illustrate the effect of the position of the
second wall (at z = c) on the droplet mobility for various val-
ues of the relative sphere-to-first-wall spacing b/a. The solid
curves (with 2a/(b+c)=constant) indicate the variation of the
droplet mobility as a function of the sphere position at various
values of the relative wall-to-wall spacing (b + c)/2a. It can
be seen that the net wall effect is to reduce the thermocapillary
mobility U/U0 of the droplet. At a constant value of 2a/(b+c),
the droplet experiences a minimum viscous drag force and has
a greatest mobility when it is located midway between the two
walls (with c = b). The hydrodynamic drag increases and the
droplet mobility decreases as the droplet approaches either of
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Fig. 5. Plots of the normalized thermocapillary mobility U/U0 of a spherical
droplet migrating perpendicular to two plane walls versus the ratio b/(b + c)

with a/b and 2a/(b + c) as parameters: (a) for the case k∗ = �∗ = 1; (b) for
the case k∗ = �∗ = 0.

the walls (or the ratio b/(b + c) decreases). Interestingly, at
some specified values of a/b for the droplet undergoing ther-
mocapillary motion near a first wall, the presence and approach
of a second plate can increase the velocity of the droplet when
it is far from the droplet (c is large), and then reduce the droplet
velocity when it is close to the droplet (say, b/(b + c) > 0.4).

The collocation solution for the problem of sedimentation of
a spherical droplet perpendicular to two plane walls at an arbi-
trary position between them was also obtained recently (Chang
and Keh, 2006). Comparing that solution with the present
result, we still find that the wall effect on thermocapillary

migration in general is much weaker than that on sedimen-
tation. Opposite to the cases of thermocapillary migration
illustrated in Fig. 4, the retardation effect on the sedimenting
droplet in a slit is stronger for a greater value of �∗.

Since the general problem of thermocapillary motion of a
droplet in an arbitrary direction between two parallel plane
walls is linear, its solution can be obtained as the vectorial
summation of the solutions for its two subproblems: mo-
tion perpendicular to the plane walls, which is examined in
this paper, and motion parallel to the confining boundaries.
The collocation solutions for the thermocapillary motion of a
spherical droplet parallel to two plane walls have already been
obtained by Keh et al. (2002). It was found that, when the
walls are prescribed with a linear temperature profile consistent
with the far-field temperature distribution, the wall-corrected
normalized thermocapillary migration velocity of the droplet
also increases with an increase in k∗. A comparison between
Table 3 of Keh et al. and our Table 2 shows that the plane
walls in general exert the most influence on the droplet when
thermocapillary motion occurs normal to them, and the least
in the case of thermocapillary motion parallel to them. There-
fore, the direction of thermocapillary motion of a droplet
between two parallel plane walls is different from that of the
imposed thermal gradient, except when it is oriented parallel
or perpendicular to the plane walls.

4. Conclusions

The numerical solution and approximate analytical solu-
tion for the quasisteady thermocapillary motion of a spherical
droplet perpendicular to two infinite plane walls at an arbi-
trary position between them have been obtained in this work
by using the boundary-collocation technique and the method
of reflections, respectively, in the limit of vanishingly small
Reynolds and Peclet numbers. It has been found that the
boundary effect on thermocapillary motion of a fluid droplet is
quite complicated. For specified values of k∗ and �∗, the ther-
mocapillary migration velocity of a droplet perpendicular to
one or two plane walls is a monotonic decreasing function of
the separation parameter a/b. The results of the wall-corrected
droplet mobility reflect the dominance of the hydrodynamic
retardation exerted by the confining wall on the droplet migra-
tion over the possible thermocapillary enhancement due to the
thermal interaction between the droplet and the normal walls.

The thermocapillary migration mobility of a spherical droplet
parallel to two infinite plane walls at an arbitrary position be-
tween them was calculated in a previous work (Keh et al., 2002)
for various values of the parameters k∗, �∗, a/b, and b/(b+c).
It was found that, for the case of the confining walls prescribed
with the far-field temperature profile under the situation of large
k∗ and �∗, the droplet mobility first decreases with an increase
in a/b from a/b → 0 and then increases monotonically from
a minimum with further increasing a/b. When the gaps be-
tween the droplet and the plane walls turn thin, however, the
droplet can even migrate faster than it would as a/b goes to 0
(by as much as 20% for a case of k∗ = �∗ = 100, c = b, and
a/b = 0.995). This interesting feature that U/U0 may not be a
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monotonic function of a/b and can even be greater than unity
is understandable because the wall effect of hydrodynamic re-
sistance on the droplet is in competition with the wall effect
of thermal enhancement when a droplet with large k∗ and �∗
is undergoing thermocapillary motion parallel to a plane wall
with the imposed far-field temperature distribution. A compari-
son of this previous work with our results shows that the effect
of viscous interactions is stronger or the effect of thermal in-
teractions is weaker in the transverse thermocapillary motion
of a fluid sphere in a slit than in the parallel motion. In gen-
eral, the net boundary effect on thermocapillary motion of a
droplet is stronger for the perpendicular migration. For the gen-
eral problem of a droplet undergoing thermocapillary motion
in an arbitrary direction with respect to the two parallel plane
walls, the solution can be obtained by adding both the parallel
and transverse results vectorially.

Notation

a radius of the droplet, m
A thermocapillary mobility defined by Eqs. (1)

and (2), m2 s−1 K−1

An, Cn coefficients in Eq. (23) for the internal flow
field, m−n+3 s−1, m−n+1 s−1

A(�), B(�), unknown functions in Eq. (21), m3 s−1

C(�), D(�)

b, c the respective distances from the droplet cen-
ter to the two plane walls, m

B coefficient defined after Eq. (A.8),
m2 s−1 K−1

Bn, Dn coefficients in Eq. (22) for the external flow
field, mn+2 s−1, mn s−1

C, D dimensionless parameters defined after Eqs.
(A.3) and (A.8)

ez, er , e� unit vectors in z, r , and � directions
E2 Stokes operator defined by Eq. (16),m−2

E∞ =|∇T∞|, K m−1

G, H dimensionless parameters defined by Eqs.
(A.4) and (A.8)

G
−1/2
n Gegenbauer polynomial of the first kind of

order n and degree − 1
2

Jn Bessel function of the first kind of order n

k thermal conductivity of the external fluid,
W m−1 K−1

k1 thermal conductivity of the droplet,
W m−1 K−1

k∗ =k1/k

M, N numbers of collocation points on the droplet
surface

Pn Legendre function of order n

r radial spherical coordinate, m

Rm, Rm coefficients in Eqs. (10)–(12) for the temper-
ature field, mm+2, m−m+1

T temperature field in the external fluid, K
T1 temperature field inside the droplet, K

T0 undisturbed temperature at the droplet cen-
ter, K

T∞ prescribed temperature field defined by Eq.
(7), K

U, U droplet velocity, m s−1

U0, U0 velocity of an isolated droplet, m s−1

v�, vz velocity components of the external fluid in
cylindrical coordinates, m s−1

v1�, v1z velocity components of the internal fluid in
cylindrical coordinates, m s−1

X(�), Y (�) unknown functions in Eq. (9), m3

z axial cylindrical coordinate, m

Greek letters

�(j)
1n , �(j)

2n functions of r and � defined by Eqs. (B.4)
and (B.5), mn−2, mn

�∗
1n, �∗

2n functions of r and � defined by Eq. (B.16),
mn−3, mn−1

� interfacial tension, kg s−2

�(j)
1n , �(j)

2n functions of r and � defined by Eqs. (B.6)
and (B.7), m−n−1, m−n+1

�∗
1n,�∗

2n functions of r and � defined by Eq. (B.17),
m−n−2, m−n

�(1)
m , �(2)

m , �(3)
m functions of r and � defined by Eqs.

(B.1)–(B.3), m−m−1, m−m−2, m−m−2

�f viscosity of the fluid droplet, kg m−1 s−1

�∗ ratio of viscosities between the internal and
external fluids

�, � angular spherical coordinates
� =a/b

� radial cylindrical coordinate, m

r�, 
1r� viscous shear stresses of the external and in-

ternal fluids, kg m−1 s−2

	, 	1 Stokes stream functions for the external and
internal fluid flows, m3 s−1

Subscripts

p droplet
w wall

Superscript

(i) the ith reflection
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Appendix A. Analysis of the thermocapillary motion of a
fluid sphere normal to one or two plane walls by a method
of reflections

In this appendix, the quasisteady thermocapillary migration
of a spherical droplet perpendicular either to an infinite plane
wall (c → ∞) or to two parallel plane walls with equal dis-
tances from the droplet (c = b), as shown in Fig. 1, will be
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analyzed using a method of reflections. The effect of the walls
on the droplet velocity U is sought in expansions of �, which
equals a/b, the ratio of the droplet radius to the distance be-
tween the droplet center and the walls.

A.1. Motion normal to a plane wall

For the problem of thermocapillary migration of a fluid
sphere with the relative thermal conductivity k∗ and viscos-
ity �∗ normal to an infinite plane wall, the governing Eqs. (3)
and (14) must be solved by satisfying the boundary conditions
(4)–(7) and (17)–(19) with c → ∞. The method-of-reflection
solution for the temperature and velocity fields in the external
fluid phase consists of the following series, whose terms de-
pend on increasing powers of �:

T = T0 + E∞z + T (1)
p + T (1)

w + T (2)
p + T (2)

w + · · · , (A.1a)

v = v(1)
p + v(1)

w + v(2)
p + v(2)

w + · · · , (A.1b)

where the subscripts w and p represent the reflections from
the wall and the droplet, respectively, and the superscript (i)

denotes the ith reflection from that surface. In these series, all
the expansion sets of the temperature and velocity fields must
satisfy Eqs. (3a) and (14a).

According to Eq. (A.1), the thermocapillary migration ve-
locity of the droplet can also be expressed in the series form

U = U0ez + U(1) + U(2) + · · · . (A.2)

In this expression, U0 =AE∞ is the thermocapillary migration
velocity of an identical droplet in the corresponding unbounded
continuous phase given by Eqs. (1) and (2); U(i) is related to
T

(i)
w and v(i)

w by (Anderson, 1985; Chen and Keh, 1990)

U(i) = A[∇T (i)
w ]0 + [v(i)

w ]0 + C
a2

6
[∇2v(i)

w ]0, (A.3)

where C = 3�∗(2 + 3�∗)−1 and the subscript 0 to variables
inside brackets denotes evaluation at the position of the droplet
center. Note that 0�C�1 and the last two terms in Eq. (A.3)
represent the Faxen law for the isothermal creeping motion of a
freely suspended fluid sphere in the velocity field v(i)

w (Hetsroni
and Haber, 1970).

The solution for the first reflected fields from the droplet is

T (1)
p = GE∞a3r−2 cos �, (A.4a)

v(1)
p = 1

2 U0a
3r−3(2 cos �er + sin �e�), (A.4b)

where G = (1 − k∗)(2 + k∗)−1. Obviously, −1�G� 1
2 , with

the upper and lower bounds occurring at the limits k∗ = 0
and k∗ → ∞, respectively. The velocity distribution shown in
Eq. (A.4b) is identical to the irrotational flow surrounding a
rigid sphere moving with velocity U0ez.

The boundary conditions for the ith reflected fields from the
wall are derived from Eqs. (6), (7), (18), and (19),

z = −b: T (i)
w = −T (i)

p , (A.5a)

v(i)
w = −v(i)

p , (A.5b)

r → ∞, z > − b: T (i)
w → 0, (A.5c)

v(i)
w → 0. (A.5d)

The solution of T
(i)
w is obtained by applying Hankel trans-

forms on the variable � in Eqs. (3a) and (A.5a,c) (taking i =1),
with the result

T (1)
w = GE∞a3(2b + z)[�2 + (2b + z)2]−3/2. (A.6a)

This reflected temperature field may be interpreted as arising
from the reflection of the imposed field E∞ez from a fictitious
droplet identical to the actual droplet, its location being at the
mirror-image position of the actual droplet with respect to the
plane z = −b (i.e., at x = 0, y = 0, z = −2b). The solution of
v(1)
w can also be obtained by applying Hankel transforms to the

Stokes (14a) twice and to the boundary conditions (A.5b, d),
which results in

v(1)
w = − 1

2
U0a

3
∫ ∞

0
�2[E(�, z)J1(��)e�

+ F(�, z)J0(��)ez] d�, (A.6b)

where

E(�, z) = [2(b + z)� − 1]e−�(z+2b),

F(�, z) = [2(b + z)� + 1]e−�(z+2b).

The contributions of T
(1)
w and v(1)

w to the droplet velocity are
determined using Eq. (A.3),

U(1)
t = A[∇T (1)

w ]r=0 = − 1
4 G�3U0ez, (A.7a)

U(1)
h =

[
v(1)
w + C

a2

6
∇2v(1)

w

]
r=0

= − 1

4
(2�3 − C�5)U0ez, (A.7b)

U(1) = U(1)
t + U(1)

h = 1
4 [−(2 + G)�3 + C�5]U0ez. (A.7c)

Eq. (A.7a) shows that the reflected temperature field from
the plane wall can decrease (if G > 0 or k∗ < 1) or increase
(if G < 0 or k∗ > 1) the migration velocity of the droplet from
its undisturbed value, while Eq. (A.7b) indicates that the re-
flected velocity field is to decrease this velocity; the net effect
of the reflected fields is expressed by Eq. (A.7c), which always
retards the movement of the droplet, irrespective of the values
of G (or k∗), �∗, and �. When G = 0 (or k∗ = 1), the reflected
temperature field makes no contribution to the thermocapillary
migration velocity. For any given values of �∗ and �, the normal-
ized droplet velocity increases monotonically with an increase



5232 Yu C. Chang, H.J. Keh / Chemical Engineering Science 61 (2006) 5221–5235

in k∗. Eq. (A.7) indicates that the wall correction to the veloc-
ity of the thermocapillary droplet is O(�3), which is weaker
than that obtained for the corresponding sedimentation prob-
lem, in which the leading boundary effect is O(�). Note that the
wall effect on thermocapillary motion involving the viscosity
parameter �∗ appears starting from O(�5), and the normalized
droplet velocity increases with an increase in �∗.

The solution for the second reflected fields from the
droplet is

T (2)
p = E∞[− 1

4 G2�3a3r−2 cos � + 1
16GH�4a4r−3

× (3 cos2� − 1) + O(�5a5)], (A.8a)

v(2)
p = U0

{
−1

8
G�3a3r−3(2 cos �er + sin �e�) − 3

64

×
(

D + 2G
B

A

)
�4a2r−2(3 cos2� − 1)er + 3

32
G

B

A

× �4a4r−4[(3 cos2�−1)er +2 sin � cos �e�]
}

, (A.8b)

where H = 3(1 − k∗)(3 + 2k∗)−1, B = 3(3 + 2k∗)−1(1 +
�∗)−1(−��/�T )(a/�f ), and D = 3(2 + 5�∗)(1 + �∗)−1.

The boundary conditions for the second reflected fields from
the wall are obtained by substituting the results of T

(2)
p and v(2)

p

into Eq. (A.5), with which Eqs. (3a) and (14a) can be solved
as before to yield

[∇T (2)
w ]r=0 = 1

256 E∞[16G2�6 +6GH�8 +O(�9)]ez, (A.9a)

[
v(2)
w + C

a2

6
∇2v(2)

w

]
r=0

= U0

{
1

256

[
32G − 9

(
D + 2G

B

A

)]
�6

+ 1

512

[
− 32GC + 9

(
D + 2G

B

A

)
C

]
�8

+ O(�9)

}
ez. (A.9b)

The contribution of the second reflected fields to the droplet
velocity is obtained by combining Eqs. (A.3) and (A.9), which
gives

U(2) = U0

{
1

256

[
−9

(
D + 2G

B

A

)
+ 16(2 + G)G

]
�6

+ 1

512

[
9

(
D + 2G

B

A

)
C + 4(3H − 8C)G

]
�8

+ O(�9)

}
ez. (A.10)

Obviously, U(3) will be O(�9). With the substitution of
Eqs. (A.7c) and (A.10) into Eq. (A.2), the droplet velocity

can be expressed as U = Uez with

U = U0

{
1 − 1

4
(2 + G)�3 + 1

4
C�5 − 1

256

[
9

(
D + 2G

B

A

)

− 16(2 + G)G

]
�6 + 1

512

[
9

(
D + 2G

B

A

)
C

+ 4(3H − 8C)G

]
�8 + O(�9)

}
. (A.11)

Owing to the linearity of the problem, the above analysis is
valid when the droplet is either approaching the plane wall or
receding from it.

A.2. Motion normal to two parallel plane walls

For the problem of thermocapillary migration of a spherical
droplet perpendicular to two infinite plane walls with equal dis-
tances from the droplet, the boundary conditions correspond-
ing to governing Eqs. (3) and (14) are given by Eqs. (4)–(7)
and (17)–(19) with c = b. With � = a/b � 1, the series ex-
pansions of the temperature, fluid velocity, and droplet velocity
given by Eqs. (A.1), (A.2), and (A.4) remain valid here. From
Eqs. (5)–(7), (18), and (19), the boundary conditions for T

(i)
w

and v(i)
w are found to be

|z| = b: T (i)
w = −T (i)

p , (A.12a)

v(i)
w = −v(i)

p , (A.12b)

r → ∞, |z|�b: T (i)
w → 0, (A.12c)

v(i)
w → 0. (A.12d)

The first wall-reflected fields can be solved by the same
method as used for the case of a single plane wall in the pre-
vious subsection, with the result

T (1)
w = − GE∞a�2

∫ ∞

0

1 + e−2�

sinh(2�)
sinh

(�

b
z
)

× �J0

(�

b
�
)

d�, (A.13a)

v(1)
w = − 1

2
U0�

3
∫ ∞

0
�2

[
E(�, z)J1

(�

b
�
)

e�

+F(�, z)J0

(�

b
�
)

ez

]
d�, (A.13b)

where

E(�, z) = 2

2� + sinh(2�)

[
(1 − � − e−� sinh �) sinh

(�

b
z
)

+�

b
z cosh

(�

b
z
)]

, (A.14a)

F(�, z) = 2

2� + sinh(2�)

[
(� + e−� sinh �) cosh

(�

b
z
)

−�

b
z sinh

(�

b
z
)]

. (A.14b)
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The contributions of T
(1)
w and v(1)

w to the droplet velocity are
determined using Eq. (A.3), which lead to a result similar to
Eq. (A.7),

U(1)
t = A[∇T (1)

w ]r=0 = −d1G�3U0ez, (A.15a)

U(1)
h =

[
v(1)
w + a2

6
C∇2v(1)

w

]
r=0

= [−d2�
3 + d3C�5]U0ez, (A.15b)

U(1) = U(1)
t + U(1)

h = [−(d2 + d1G)�3 + d3C�5]U0ez,

(A.15c)

where

d1 =
∫ ∞

0

1 + e−2�

sinh(2�)
�2 d� = 0.60103, (A.16a)

d2 =
∫ ∞

0

sinh(�)e−� + �

2� + sinh(2�)
�2 d� = 0.79076, (A.16b)

d3 = 1

3

∫ ∞

0

�4

2� + sinh(2�)
d� = 0.44175. (A.16c)

Again, Eq. (A.15a) shows that the reflected temperature field
from the confining walls can decrease (if G > 0 or k∗ < 1)
or increase (if G < 0 or k∗ > 1) the droplet velocity, while
Eq. (A.15b) indicates that the reflected velocity field is to de-
crease this velocity; the net effect is expressed by Eq. (A.15c),
which can enhance or retard the movement of the droplet, de-
pending on the combination of the values of G (or k∗), �∗, and
�. Note that, when the value of �∗ is large, the necessary con-
dition for the wall enhancement on the thermocapillary motion
to occur is a large value of k∗ and a value of � close to unity
such that the relation d3C�5 > (d2 + d1G)�3 is warranted.

Analogous to the previous case, the results of the second
reflections can be obtained as

T (2)
p = −E∞[d1G

2�3a3r−2 cos � + O(�5a5)], (A.17a)

v(2)
p = − 1

2 U0d1G�3a3r−3(2 cos �er + sin �e�)

+ O(�5a3), (A.17b)

[∇T (2)
w ]r=0 = E∞[d2

1G2�6 + O(�9)]ez, (A.18a)[
∇v(2)

w + a2

6
C∇2v(2)

w

]
r=0

= U0[d1d2G�6 − d1d3CG�8 + O(�9)]ez, (A.18b)

and

U(2) = [(d2
1G2 + d1d2G)�6 − d1d3CG�8 + O(�9)]U0ez.

(A.19)

Note that the �4a2 and �4a4 terms in the expressions for T
(2)
p

and v(2)
p vanish.

With the combination of Eqs. (A.2), (A.15c), and (A.19), the
droplet velocity can be expressed as U = Uez with

U = U0[1 − (d2 + d1G)�3 + d3C�5 + (d2
1G2 + d1d2G)�6

− d1d3CG�8 + O(�9)]. (A.20)

This result is valid for a droplet undergoing thermocapillary
motion toward either of the two plane walls.

Comparing Eq. (A.20) for the slit case with Eq. (A.11) for
the case of a single normal plane, one can find that the wall
effects on the thermocapillary motion of a droplet in the two
cases are qualitatively similar. However, the assumption that
the result of the boundary effect for two walls can be obtained
by simple addition of the single-wall effect generally gives
a greater correction to thermocapillary motion, similar to the
case of the corresponding sedimentation problem (Happel and
Brenner, 1983).

Appendix B. Definitions of some functions in Section 2

The functions �(1)
m , �(2)

m , and �(3)
m in Eqs. (12), (13), and (26d)

are defined by

�(1)
m (r, �) =

∫ ∞

0
�[−B ′′

1m(�, −b) sinh � + B ′′
1m(�, c) sinh ]

× (sinh−1
)J0(�r sin �) d�

+ r−m−1Pm(cos �), (B.1)

�(2)
m (r, �) =

∫ ∞

0
�2{sin �[B ′′

1m(�, −b) sinh �

− B ′′
1m(�, c) sinh ]J1(r� sin �) + cos �

× [−B ′′
1m(�, −b) cosh � + B ′′

1m(�, c) cosh ]
× J0(r� sin �)}(sinh−1
) d�

− (m + 1)r−m−2Pm(cos �), (B.2)

�(3)
m (r, �) =

∫ ∞

0
�2{cos �[B ′′

1m(�, −b) sinh �

− B ′′
1m(�, c) sinh ]J1(r� sin �) + sin �

× [B ′′
1m(�, −b) cosh � − B ′′

1m(�, c) cosh ]
× J0(r� sin �)}(sinh−1
) d� + mr−m−2

× [Pm(cos �) cos � − Pm−1(cos �)] csc �, (B.3)

and the functions �(j)
in and �(j)

in for i and j equal to 1 or 2 in
Eqs. (24)–(26) are defined by

�(1)
in (r, �) = − rn+2i−4[(n + 1)G

−1/2
n+1 (cos �) csc �

− (2n + 2i − 3)G
−1/2
n (cos �) cot �], (B.4)

�(2)
in (r, �) = − rn+2i−4[(2n + 2i − 3)G

−1/2
n (cos �)

+ Pn(cos �)], (B.5)

�(1)
in (r, �) = −

∫ ∞

0
[G′′+(, �)B ′

in(�, −b) − G′′+(�, )B ′
in(�, c)

− G′+(, �)B ′′
in(�, −b) + G′+(�, )B ′′

in(�, c)]
× �J1(�r sin �)d� − r−n+2i−3[(n + 1)G

−1/2
n+1

× (cos �) csc � − 2(i − 1)G
−1/2
n (cos �) cot �],

(B.6)
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�(2)
in (r, �)=−

∫ ∞

0
[−G′−(, �)B ′

in(�, −b)+G′−(�, )B ′
in(�, c)

+ G′′−(, �)B ′′
in(�, −b) − G′′−(�, )B ′′

in(�, c)]
× �J0(�r sin �) d� − r−n+2i−3[Pn(cos �)

+ 2(i − 1)G
−1/2
n (cos �)], (B.7)

where

B ′
1n(�, z) = − 1

n!
(

�|z|
z

)n−1

e−�|z|, (B.8)

B ′′
1n(�, z) = −�n−1

n!
( |z|

z

)n

e−�|z|, (B.9)

B ′
2n(�, z) = − 1

n!
(

�|z|
z

)n−3

[(2n − 3)�|z|

− n(n − 2)]e−�|z|, (B.10)

B ′′
2n(�, z) = − �n−3

n!
( |z|

z

)n

[(2n − 3)�|z|

− (n − 1)(n − 3)]e−�|z|, (B.11)

G′±(�, �) = 
∗��(�′ ± 
′�′), (B.12)

G′′±(�, �) = 
∗[�(cosh � − 
′�′) ± �(�′ − 
′ cosh �)], (B.13)

�′ = sinh �

�
, �′ = sinh �

�
, 
′ = sinh 




,


∗ = 


sinh2
 − 
2
, (B.14)

 = �(r cos � + b), � = �(r cos � − c),


 = �(b + c). (B.15)

The functions �∗
in and �∗

in for i equal to 1 or 2 in Eq. (26d) is
defined by

�∗
in(r, �) = − rn+2i−5[(n + 1)(n + 2i − 5)G

−1/2
n+1 (cos �) cot �

− (n + 2i − 5)(2n + 2i − 3)G
−1/2
n (cos �) csc �

+ (5 − 2i + n cot2�)Pn(cos �) sin �

− nP n−1(cos �) cot �], (B.16)

�∗
in(r, �) = − cos � sin �[C∗

in(r, �) + D∗
in(r, �)]

− (cos2�−sin2�)[C∗∗
in (r, �)+D∗∗

in (r, �)], (B.17)

where

C∗
1n(r, �) = − 2r−(n+2)[(n + 1)(n + csc2�)G

−1/2
n+1 (cos �)

− (3n + 2)Pn(cos �) cos �

+ nP n−1(cos �)], (B.18)

C∗
2n(r, �) = 2r−n[2(2n − 1 + cot2�)G

−1/2
n (cos �) cos �

− (n + 1)(n − 1 + cot2�)G
−1/2
n+1 (cos �)

− (n + 2 − 4 sin2�)Pn−1(cos �)

+ 3nP n(cos �) cos �], (B.19)

C∗∗
1n(r, �) = − r−(n+2){n cot �[(n + 1)G

−1/2
n+1 (cos �)

+ Pn−1(cos �)] + [(3n + 2) sin � − n csc �]
× Pn(cos �)}, (B.20)

C∗∗
2n(r, �) = − r−n{2[2(n − 1) sin � − (n − 2) csc �]

× G
−1/2
n (cos �) + (n2 − n − 2)G

−1/2
n+1 (cos �) cot �

+ (n − 4 sin2�)Pn−1(cos �) cot �

+ n(3 sin � − csc �)Pn(cos �)}, (B.21)

D∗
in(r, �) =

∫ ∞

0
{[G′′+(, �)B ′

in(�, −b) − G′′+(�, )B ′
in(�, c)

− G′+(, �)B ′′
in(�, −b) + G′+(�, )B ′′

in(�, c)]
× [J0(�r sin �) − J2(�r sin �)]
+ 2[G∗−(, �)B ′

in(�, −b) − G∗−(�, )B ′
in(�, c)

− G∗∗− (, �)B ′′
in(�, −b) + G∗∗− (�, )B ′′

in(�, c)]
× J0(�r sin �)}�2 d�, (B.22)

D∗∗
in (r, �) =

∫ ∞

0
{[G∗∗+ (, �)B ′

in(�, −b) − G∗∗+ (�, )B ′
in(�, c)

− G∗+(, �)B ′′
in(�, −b) + G∗+(�, )B ′′

in(�, c)]
+ [G′−(, �)B ′

in(�, −b) − G′−(�, )B ′
in(�, c)

− G′′−(, �)B ′′
in(�, −b) + G′′−(�, )B ′′

in(�, c)]}
× �2J1(�r sin �) d�, (B.23)

and

G∗±(�, �) = 
∗[(� + �)(�′ ± 
′�′) + �(cosh � − �′)
± 
′�(cosh � − �′)], (B.24)

G∗∗± (�, �) = 
∗[cosh � − 
′�′ ± (�′ − 
′ cosh �)

+ � sinh � − 
′(cosh � − �′)
± (cosh � − �′ − 
′� sinh �)]. (B.25)
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