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Diffusiophoresis in a Suspension of Charge-Regulating Colloidal
Spheres

Huan J. Keh* and Yu L. Li

Department of Chemical Engineering, National Taiwan UniVersity, Taipei 10617, Taiwan, Republic of
China

ReceiVed May 29, 2006. In Final Form: August 13, 2006

An analytical study of diffusiophoresis in a homogeneous suspension of identical spherical charge-regulating
particles with an arbitrary thickness of the electric double layers in a solution of a symmetrically charged electrolyte
with a uniform prescribed concentration gradient is presented. The charge regulation due to association/dissociation
reactions of ionogenic functional groups on the particle surface is approximated by a linearized regulation model,
which specifies a linear relationship between the surface charge density and the surface potential. The effects of
particle-particle electrohydrodynamic interactions are taken into account by employing a unit cell model, and the
overlap of the double layers of adjacent particles is allowed. The electrokinetic equations that govern the electric
potential profile, the ionic concentration distributions, and the fluid flow field in the electrolyte solution surrounding
the particle in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using
a regular perturbation method, these linearized equations are solved with the equilibrium surface charge density (or
zeta potential) of the particle as the small perturbation parameter. Closed-form formulas for the diffusiophoretic
velocity of the charge-regulating sphere correct to the second order of its surface charge density or zeta potential are
derived. Our results indicate that the charge regulation effect on the diffusiophoretic mobility is quite sensitive to the
boundary condition for the electric potential specified at the outer surface of the unit cell. For the limiting cases of
a very dilute suspension and a very thin or very thick electric double layer, the particle velocity is independent of
the charge regulation parameter.

1. Introduction

A colloidal particle can be driven to move by the application
of a nonuniform solute concentration field that interacts with
the surface of the particle. This phenomenon, known as
diffusiophoresis,1-3 has been demonstrated experimentally for
both charged4 and uncharged5 solutes. Diffusiophoresis is of
practical importance in some applications to particle analysis or
separation and in certain latex-particle coating processes.6,7 In
a solution of nonionic solute, the solute molecules interact with
the particle through the van der Waals and/or dipole forces. For
charged particles in an electrolyte solution, the particle-solute
interaction is electrostatic in nature, and its range is the Debye
screening lengthκ-1. Particles with zeta potentials on the order
of kT/e (∼25 mV; e is the elementary electric charge,k is
Boltzmann’s constant, andT is the absolute temperature) in
prescribed electrolyte gradients on the order of 100 kmol/m4 (1
M/cm) will move by diffusiophoresis at speeds of several
micrometers per second.

Using the classical model of the diffuse electric double layer,
Prieve8 derived a formula for the diffusiophoretic velocity of a
nonconducting particle of arbitrary shape in a solution of a
symmetrically charged electrolyte with a constant concentration
gradient for arbitrary zeta potential (ú) of the particle in the limit
of thin double layer (κa f ∞, wherea is the linear dimension

of the particle). This formula agrees with that previously deduced
by a more intuitive method.1 Using a method of matched
asymptotic expansions with (κa)-1 as the small parameter, Prieve
et al.2 evaluated the effect of particle curvature on the diffu-
siophoretic mobility of a spherical particle accurate to O[(κa)-1].
When the double-layer distortion from equilibrium was taken as
a small perturbation, Prieve and Roman9 obtained a numerical
solution for the diffusiophoresis of a dielectric sphere in
concentration gradients of 1:1 electrolytes (KCl or NaCl) which
was applicable to a broad range ofú andκa. Later, analytical
expressions for the diffusiophoretic velocities of a dielectric
sphere10,11 and cylinder11,12 with a “thin but polarized” double
layer were derived. Recently, analytical formulas in closed forms
for the diffusiophoretic mobility of a colloidal sphere13 and
cylinder14in symmetric electrolytes at low surface charge density
σ (valid for ú up to 50 mV) and arbitraryκa have also been
obtained. All results of the above investigations show that the
diffusiophoretic mobility of a particle in general decreases with
the increase of (κa)-1. Also, the particle can reverse the direction
of its migration when the value of|ú|, (κa)-1, or the valence of
the electrolyte increases.

In some practical applications of the diffusiophoretic mobility,
relatively concentrated suspensions of particles are encountered
and effects of particle interactions will be important. To avoid
the difficulty of the complex geometry appearing in assemblages
of particles, unit cell models were often employed to predict the
effects of particle interactions on the mean sedimentation rate
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in a bounded suspension of identical uncharged spheres.15These
models involve the concept that an assemblage can be divided
into a number of identical cells, one sphere occupying each cell
at its center. The boundary value problem for multiple spheres
is thus reduced to the consideration of the behavior of a single
sphere and its bounding envelope. The most acceptable of these
models with various boundary conditions for the fluid velocity
at the outer (virtual) surface of a spherical cell are the so-called
“free-surface” model of Happel16 and “zero-vorticity” model of
Kuwabara,17 the predictions of which have been tested against
the experimental data.

Using the Kuwabara cell model, Levine and Neale18 derived
an analytical expression for the electrophoretic mobility in a
suspension of identical charged spheres with smallú and arbitrary
κa as a function of the volume fraction of the particles. Later,
the Happel and/or Kuwabara cell models were also used by
Zharkikh and Shilov,19 Kozak and Davis,20,21 Ohshima,22,23

Dukhin et al.,24Ding and Keh,25and Carrique et al.26,27to predict
the electrophoretic mobility of charged spheres in concentrated
suspensions and/or the electric conductivity of the suspensions
under various conditions. It was found that the Happel model in
general shows a better agreement with the available experimental
data28,29 than the Kuwabara model does.25 Recently, the diffu-
siophoretic motions in homogeneous suspensions of identical
dielectric spheres with thin but polarized double layers30 and
with small surface potential but arbitrary double-layer thickness31

were analyzed by employing both the Happel and the Kuwabara
cell models. Closed-form formulas for the diffusiophoretic
mobility as functions of the volume fraction of the particles were
obtained.

The previous analyses for the diffusiophoretic mobility of
charged particles in either dilute or concentrated suspensions
were all based on the assumption that either the surface charge
density or the surface potential of the particles remains constant.
Although this assumption may be convincing under certain
conditions, it only leads to idealized results for limiting cases
and can be impractical for some particles. The actual surface
charge (and potential) for biological colloids, polymer latices,
and particles of metal oxides in electrolyte solutions is usually
determined by the dissociation of ionizable surface groups and/
or adsorption (or site-binding) of specific ions. The degree of
these dissociation and adsorption reactions will be a function of
the local concentrations of the charge-determining (and potential-
determining) ions at the particle surfaces. When a relatively
concentrated suspension is subjected to an imposed electrolyte
concentration gradient (which can cause an induced macroscopic
electric field), the neighboring particles will adjust the concen-
trations of the potential-determining ions at their surfaces to

minimize the electrostatic energy of interaction among them.
Thus, the extent of the surface reactions and the magnitudes of
the surface charge density and surface potential for multiple
particles undergoing diffusiophoresis will be changed in com-
parison with those for a single particle at equilibrium. This is the
so-called charge regulation phenomenon.32-42 The assumptions
of constant surface charge density and constant surface potential
provide two limiting cases for the combined electrostatic and
hydrodynamic interaction effects on the charge regulation surfaces
that exist in these systems.

In this article, the unit cell model is used to obtain analytical
expressions for the diffusiophoretic mobility of a suspension of
identical, charge-regulating colloidal spheres in a solution of a
symmetrically charged electrolyte with a constant imposed
concentration gradient. The linearized form of the charge
regulation boundary condition proposed by Carnie and Chan38

is employed. No assumption is made about the thickness of the
double layers relative to the radius of the particles, and the overlap
of adjacent double layers is allowed. Both the Happel model and
the Kuwabara model are considered. The basic electrokinetic
equations are linearized assuming that the electrolyte ion
concentrations, the electrostatic potential, and the fluid pressure
haveonlyaslightdeviation fromequilibriumdue to theapplication
of the electrolyte concentration gradient. Through the use of a
regular perturbation method with the equilibrium surface charge
density of the particle as the small perturbation parameter, the
ion concentration (or electrochemical potential energy), elec-
trostatic potential, fluid velocity, and pressure profiles are
determined by solving these linearized electrokinetic equations
subject to the appropriate boundary conditions. Analytical
expressions for the diffusiophoretic mobility of the suspension
of charge-regulating spheres are obtained in closed-forms.

2. Basic Electrokinetic Equations

We consider the steady diffusiophoresis of a statistically
homogeneous distribution of identical charged spherical particles
in a bounded liquid solution of a symmetrically charged
electrolyte. The particles can have charge-regulating surfaces on
which the chemical equilibrium of ionogenic functional groups
is maintained (see the Appendix). The applied electrolyte
concentration gradient∇n∞ is a constant equal to|∇n∞|ez, and
the diffusiophoretic velocity of the colloidal particles isUez,
whereez is a unit vector in the positivezdirection. Gravitational
effects on the particles are ignored. As shown in Figure 1, we
employ a unit cell model in which each particle of radiusa is
surrounded by a concentric spherical shell of the suspending
solution having an outer radius ofb such that the particle/cell
volume ratio is equal to the particle volume fractionæ throughout
the entire suspension, viz.,æ ) (a/b)3. The cell as a whole is
electrically neutral. The origin of the spherical coordinate system
(r, θ, æ) is taken at the center of the particle, and the polar axis
θ ) 0 points toward the positivez direction. Obviously, the
problem for each cell is axially symmetric about thez axis.
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It is assumed that the magnitude of∇n∞ or the particle velocity
is not large and hence that the electric double layer surrounding
the particle is only slightly distorted from the equilibrium state,
where no bulk electrolyte gradient is imposed and the particle
and fluid are at rest. Therefore, the ionic concentration (number
density) distributionsn((r,θ), the electrostatic potential distribu-
tion ψ(r,θ), and the dynamic pressure distributionp(r,θ) can be
expressed as

wheren(
(eq)(r), ψ(eq)(r), andp(eq)(r) are the equilibrium distribu-

tions of the ionic concentrations, electrostatic potential, and
dynamic pressure, respectively, andδn((r,θ), δψ(r,θ), and
δp(r,θ) are the small deviations from the equilibrium state.
Here, subscripts+ and- refer to the cation and anion, respec-
tively. The equilibrium concentration of each ionic species is
related to the equilibrium potential by the Boltzmann distribution.

It can be shown that the small perturbed quantitiesδn(, δψ,
andδp together with the fluid velocity fieldu(r,θ) satisfy the
following set of linearized electrokinetic equations:31

Here,δµ((r,θ) is defined as a linear combination ofδn( andδψ
on the basis of the concept of the electrochemical potential energy

n0
∞ is the value ofn∞ at the positions withz ) 0 which can be

experimentally taken as the mean bulk concentration of the
electrolyte in the vicinity of the diffusiophoretic particle (or in
the cell),η is the viscosity of the fluid,D( are the diffusion
coefficients of the ionic species,Z is the valence of the symmetric
electrolyte which is positive, andε ) 4πε0εr, whereεr is the
relative permittivity of the electrolyte solution andε0 is the
permittivity of a vacuum. The use of the bulk concentrationn0

∞

at the particle center in eq 5 is valid when the solution is only
slightly nonuniform in the imposed electrolyte concentration on
the length scale of the particle radius (a|∇n∞|/n0

∞ , 1).

The boundary conditions foru andδµ( at the surface of the
particle are

which are obtained from the assumptions that the “shear plane”
coincides with the particle surface and no ions can penetrate into
the particle. Note that eq 7a takes a reference frame traveling
with the particle. To obtain the boundary condition for the small
perturbed quantityδψ at the charge-regulating surface, we adopt
the linearized regulation model proposed by Carnie and Chan38

and express the surface charge densityσ as a linear function of
the surface potentialψS

whereσ(eq) andú are the values ofσ andψS, respectively, at
equilibrium. The substitution of eqs 1b and 8 into the Gauss
condition at the particle surface

results in

where the charge regulation coefficientL is defined by eqs A7
and A8 in the Appendix and can be evaluated in terms of
measurable quantities. The constant surface charge density limit
corresponds toL ) 0, whereas the constant surface potential
limit corresponds toL f ∞.

Because the bulk concentration of the electrolyte is not uniform,
it is required that the total fluxes of cations and anions are balanced
in order to have no current arising from the diffusive fluxes of
the electrolyte ions in an electrically neutral solution, and a
macroscopic electric field occurs spontaneously due to the
difference in ionic mobilities. At the virtual (outer) surface of
the cell, the local ionic concentration gradient and electric field
are compatible with the prescribed gradient and induced field,
respectively. Thus, the boundary conditions there are18,31

Figure 1. Geometric sketch of a spherical particle undergoing
diffusiophoresis at the center of a spherical cell.

n( ) n(
(eq) + δn( (1a)

ψ ) ψ(eq) + δψ (1b)

p ) p(eq) + δp (1c)

η∇2u ) ∇δp - ε

4π
(∇2ψ(eq)∇δψ + ∇2δψ ∇ψ(eq)) (2)

∇‚u ) 0 (3)

∇2δµ( ) (Ze
kT(∇ψ(eq)‚∇δµ( - kT

D(
∇ψ(eq)‚u) (4)

∇2δψ )
4πZen0

∞

εkT [ exp(Zeψ(eq)

kT )(δµ- + Zeδψ) -

exp(- Zeψ(eq)

kT )(δµ+ - Zeδψ)] (5)

δµ( ) kT
δn(

n(
(eq)

( Zeδψ (6)

r ) a: u ) 0 (7a)

∂µ(

∂r
) 0 (7b)

σ ) σ(eq) + ( dσ
dψS

)
ψS)ú

δψS (8)

r ) a:
∂ψ
∂r

) - 4π
ε

σ (9)

r ) a:
∂δψ
∂r

- Lδψ ) 0 (10)

Diffusiophoresis in a Suspension Langmuir, Vol. 23, No. 3, 20071063



whereR ) a|∇n∞|/n0
∞, â ) (D+ - D- )/(D+ + D- ), U is the

diffusiophoretic velocity of the charged sphere to be determined,
andur anduθ are ther andθ components, respectively, ofu.
Note that the Happel cell model16assumes that the radial velocity
and the shear stress of the fluid on the outer boundary of the cell
are zero, whereas the Kuwabara cell model17 assumes that the
radial velocity and the vorticity of the fluid are zero there. Since
the reference frame is taken to travel with the particle, the radial
velocity given by eq 11a is generated by the particle velocity in
the opposite direction. The condition in eq 11a implies that there
is no net flow of fluid between adjacent cells; it is valid because
the suspension of the particles is bounded by impermeable walls.
Thus, the effect of the backflow of fluid occurring in a closed
container is included in both cell models.

For the sedimentation of a suspension of uncharged spherical
particles, both the Happel and the Kuwabara models give
qualitatively the same flow fields and approximately comparable
drag forces on the particle in a cell. However, the Happel model
has a significant advantage in that it does not require an exchange
of mechanical energy between the cell and the environment.15

The boundary conditions of the ionic concentrations and electric
potential at the virtual surfacer ) b may be taken as the
distributions giving rise to the applied gradient∇n∞ in the cell
when the particle does not exist. In this case, the Neumann
approach given by eqs 11d and 11e becomes the following
Dirichlet approach:19,31

Note that the overlap of the electric double layers of adjacent
particles is allowed in both of the boundary conditions given by
eqs 11d, 11e, and 12.

In the next section, eqs 2-5 subject to eqs 7 and 10-12 are
solved using a regular perturbation method for a low equilibrium
surface potential or surface charge density of the particles, and
the diffusiophoretic velocity is determined with the condition of
zero net force acting on the particles or on a unit cell.

3. Solution of the Electrokinetic Equations and
Diffusiophoretic Velocity

Before solving for the problem of diffusiophoresis of the
charged sphere in a unit cell filled with the solution of a symmetric
electrolyte with a constant bulk concentration gradient∇n∞, we
need to determine the equilibrium electrostatic potential first.
The equilibrium potentialψ(eq)satisfies the Poisson-Boltzmann
equation and the boundary conditions

It can be shown that

where σj ) 4πZeσ(eq)/εκkT, which is the nondimensional
equilibrium surface charge density of the particle

and

Hereκ is the Debye screening parameter equal to [8πZ2e2n0
∞/

εkT]1/2. The expression in eq 14 forψ(eq)as a power series in the
equilibrium surface charge density of the particle up to O(σj) is
the equilibrium solution to the linearized Poisson-Boltzmann
equation that is valid for small values of the electric potential
(the Debye-Huckel approximation). Note that the contribution
from the effect of O(σj2) to ψ(eq) in eq 14 disappears only for the
case of a solution of symmetric electrolytes.

Substituting eq 14 together with eq 15 into eq 9, one obtains
a relation between the surface charge density and the surface
potential of the colloidal sphere in a unit cell at equilibrium

where

andγ ) κ(b - a) ) κa(æ - 1/3 - 1). The equilibrium surface
potential (known as the zeta potential)ú for a charge-regulating
sphere can be found by combining eqs 16 and A4 (withδµS )
0 at equilibrium) and then solving the resulting equation. Thus,
ú is able to be estimated in terms of measurable quantities. In
the limitæ ) 0, eq 16 reduces to the simple relationσ(eq)) εú(κa
+ 1)/4πa for an isolated charged sphere.

To solve for the small quantitiesu, δp, δµ(, andδψ in terms
of the particle velocityU when the parameterσj is small, these
variables can be written as perturbation expansions in powers
of σj

where the functionsui,pi,µi (,ψi, andUi arenotdirectlydependent
onσj. The zeroth-order terms ofU, u, andδp disappear because
a spherical particle withσ(eq) ) 0 or ú ) 0 will not move by

r ) b: ur ) -Ucosθ (11a)

τrθ ) η [r ∂

∂r(uθ

r ) + 1
r

∂ur

∂θ] ) 0

(for the Happel model) (11b)

(∇ × u)φ ) 1
r

∂

∂r
(ruθ) - 1

r

∂ur

∂θ
) 0

(for the Kuwabara model) (11c)

∂δµ(

∂r
) kT(1 - â)

R
a

cosθ (11d)

∂δψ
∂r

) - kT
Ze

âR
a

cosθ (11e)

r ) b: δµ( ) kT(1 - â)Rr
a
cosθ (12a)

δψ ) - kT
Ze

âRr
a
cosθ (12b)

r ) a:
dψ(eq)

dr
) - 4π

ε
σ(eq) (13a)

r ) b:
dψ(eq)

dr
) 0 (13b)

ψ(eq)(r) ) ψeq1σj + O(σj3) (14)

ψeq1(r) ) kT
Ze(κa

A )ar [(κb + 1)eκ(a + r) + (κb - 1)eκ(a + 2b - r)]
(15a)

A ) (κb - 1)(κa + 1)e2κb - (κa - 1)(κb + 1)e2κa

(15b)

σj ) W
Zeú
kT

(16a)

W )
γ coshγ + (κaγ + κ

2a2 - 1) sinhγ
κa(κa + γ) coshγ - sinhγ

(16b)

u ) u1σj + u2σj
2 + ... (17a)

δp ) p1σj + p2σj
2 + ... (17b)

δµ ( ) µ0( + µ1(σj + µ2(σj2 + ... (17c)

δψ ) ψ0 + ψ1σj + ψ2σj
2 + ... (17d)

U ) U1σj + U2σj
2 + ... (17e)
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applying an electrolyte concentration gradient [although a
“neutral” sphere with ionogenic surface groups in equilibrium
with the suspending solution can develop an odd (antisymmetric)
distribution of surface charges when an electrolyte gradient is
imposed]. It is easy to show that

where the coefficientø equals 1- æ when the boundary conditions
in eqs 11d and 11e are used, and equals 1+ æ/2 when the
conditions in eq 12 are used.

Substituting the expansions given by eq 17 andψ(eq)given by
eq 14 into the governing equations given by eqs 2-5 and boundary
conditions in eqs 7 and 10-12, and equating like powers ofσj
on both sides of the respective equations, one can derive a group
of linear differential equations and boundary conditions for each
set of functionsui, pi, µi(, andψi with i equal to 0, 1, 2, etc. After
collecting the zeroth-order and first-order terms in the perturbation
procedure, we obtain

with

The solutions forψ0, µ1(, p1, and ther andθ components ofu1

subject to eqs 19-23 are

where

and the functionsFir(r), Fiθ(r), Fpi(r), andFµi(r) with i equal to
0, 1, and 2 were given in ref 31. In eq 27,K andK′ are functions
of parametersLa, κa, andκb

Obviously,K ) K′ ) 0 asLa ) 0. In the limit La f ∞, eq 28
reduces to

Among the higher-order terms in the perturbation procedure, the
distributions we need in the following calculations areψ1, u2,
andp2. The governing equations and boundary conditions for
these distributions are given by eqs 19, 20, 22a, 22b, 23c, 23d,
and 23e, with the subscript 0 and 1 being replaced by 1 and 2,
respectively, and

The solutions of these distributions are

µ0( )
kT(1 - â)R

ø (r
a

+ a2

2r2)cosθ (18)

∇2ψ0 ) - 4πZe
εkT

n0
∞(µ0+ - µ0-) + κ

2ψ0 (19)

∇2u1 ) 1
η
∇p1 - ε

4πη
(∇2ψeq1∇ψ0 + ∇2ψ0∇ψeq1)

(20a)

∇‚u1 ) 0 (20b)

∇2µ1( ) (
Ze(1 - â)R

øa (1 - a3

r3)dψeq1

dr
cosθ (21)

r ) a:
∂ψ0

∂r
- Lψ0 ) 0 (22a)

u1 ) 0 (22b)

∂µ1(

∂r
) 0 (22c)

r ) b:
∂ψ0

∂r
) - kT

Ze
âR

a
cosθ (if eq 11e is used) (23a)

ψ0 ) - kT
Ze

âRr
a
cosθ (if eq 12b is used) (23b)

u1r ) -U1 cosθ (23c)

τ1rθ ) 0 (for the Happel model) (23d)

(∇ × u1)φ ) 0 (for the Kuwabara model) (23e)

∂µ1(

∂r
) 0 (if eq 11d is used) (23f)

µ1( ) 0 (if eq 12a is used) (23g)

ψ0 ) kT
Ze

RâFψ0(r) cosθ (24)

u1r ) [U1F0r(r) - kT

ηa2
âRF1r(r)] cosθ (25a)

u1θ ) [U1F0θ(r) - kT

ηa2
âRF1θ(r)] sin θ (25b)

p1 ) η
a[U1Fp0(r) - kT

ηa2
âRFp1(r) - εκ

2akT
4πηZe

âRψeq1

(r)Fψ0(r)] cosθ (25c)

µ1( ) -kT(1 - â)RFµ1(r) cosθ (26)

Fψ0(r) ) 1
1 - æ[3a2K

2r2
{ [κb(κb - 2) + 2](κr + 1)eκ(b-r) +

[κb(κb + 2) + 2](κr - 1)e-κ(b-r)} - ( a2

2r2
+ r

a)]
(if eq 11e is used) (27a)

Fψ0(r) ) 1
1 + æ/2{ 3a2K'

2r2
[(κb - 1)(κr + 1)eκ(b-r) - (κb +

1)(κr - 1)e-κ(b-r)] - ( a2

2r2
+ r

a)} (if eq 12b is used) (27b)

K ) La{ [κb(κb - 2) + 2][κa(κa + La + 2) + La +
2]eκ(b-a) - [κb(κb + 2) + 2][κa(κa - La - 2) + La +

2]e-κ(b-a)}-1 (28a)

K′ ) La{ (κb - 1)[κa(κa + La + 2) + La + 2]eκ(b-a) +
(κb + 1)[κa(κa - La - 2) + La + 2]e-κ(b-a)}-1 (28b)

K∞ ) { [κb(κb - 2) + 2](κa + 1)eκ(b-a) + [κb(κb + 2) +

2](κa - 1)e-κ(b-a)}-1 (29a)

K′∞ ) { (κb - 1)(κa + 1)eκ(b-a) - (κb + 1)(κa -

1)e-κ(b-a)}-1 (29b)

r ) b:
∂ψ1

∂r
) 0 (if eq 11e is used) (30a)

ψ1 ) 0 (if eq 12b is used) (30b)

ψ1 ) kTR
Ze

Fψ1(r)cosθ (31)
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where

Since the unit cell as a whole is electrically neutral, the net force
exerted on its virtual surface must be zero. Applying this constraint
to the above solutions, one can obtain the leading-order terms
U1andU2 for the diffusiophoretic velocity of the charge-regulating
sphere. When the Neumann-type boundary conditions in eqs
11d and 11e are employed (ø ) 1 - æ), the result is

whereW is defined by eq 16b andΘi with i equal to 1 and 2
are functions ofκa, La, andæ given by

for the Happel model, and

for the Kuwabara model. In eq 37

and the finite integrals can be calculated numerically. Note that
the effect of charge regulation at the particle surface on the
diffusiophoretic velocity is demonstrated in terms of functions
Fψ0(r) andFψ1(r) given by eqs 27 and 33.

When the Dirichlet-type boundary conditions in eq 12 are
chosen, the result forUi will be independent of the charge
regulation coefficientL, and its analytical expressions for the
Happel and Kuwabara models are the same as those obtained for
the limiting case ofL ) 0 (given by eqs 36-39 with K ) K′ )
0 andø ) 1 + æ/2).

Substituting eqs 16a and 36 into eq 17e, we obtain the
expression for the diffusiophoretic velocity of the particle as an
expansion in powers of the equilibrium surface potentialú

Since the solutionsµ1( andψ1 given by eqs 26 and 31 are not
influenced by the fluid flow, the relaxation effect of the diffuse
ions in the electric double layer surrounding the particle is not
included in eq 40 up to the orderú2.

For the reason that all of the governing equations and boundary
conditions in this analysis have been linearized, diffusiophoresis
of charged particles in an electrolyte solution can be considered
as a linear combination of two effects: (i) chemiphoresis due to
the nonuniform adsorption of counterions and depletion of co-
ions over the surface of the particle and (ii) electrophoresis due
to the macroscopic electric field generated by the electrolyte
concentration gradient given by eq 11e or 12b. In eq 40 for the
diffusiophoretic velocity, theO(ú) term (involving parameterâ)
results from the contribution of electrophoresis, whereas theO(ú2)
term represents the chemiphoretic contribution.

4. Results and Discussion

Before the evaluation of the diffusiophoretic mobility of
suspensions of identical charge-regulating spheres from eqs 37
and 40, it is necessary to know how the equilibrium surface
potentialú, equilibrium surface charge densityσ(eq), and charge
regulation coefficientL depend on the bulk electrolyte concen-
tration n∞, surface reaction equilibrium constantsK+ and K-
(defined by eq A2), and particle volume fractionæ. To perform
a typical calculation using eqs 16, A4, and A8, we make the
continuousphaseanaqueous1-1electrolytesolutionwith relative
permittivity εr ) 78.54, the particle radiusa ) 200 nm, the
ionogenic surface group densityNS ) 5 × 1016 site/m2, and the
system temperatureT ) 298 K. The numerical results of the
dimensionless equilibrium surface potentialúh, equilibrium surface
charge densityσj(eq), and charge regulation parameterLacalculated
as functions of the variablesn∞, K+ K- , K-/K+, and æ are
plotted in Figures 2 and 3. The value ofK+K- is fixed at 10-6

M2 in Figure 2 and the value ofK-/K+ is specified at 10-4 in
Figure 3. It can be seen that the point of zero charge is given
by n∞ ) (K+K-)1/2. If n∞ < (K+K-)1/2, the values ofú andσ(eq)

are negative; the magnitude ofú decreases monotonically with

u2r ) [U2F0r(r) + kT

ηa2
RF2r(r)] cosθ (32a)

u2θ ) [U2F0θ(r) + kT

ηa2
RF2θ(r)] sin θ (32b)

p2 ) η
a[U2Fp0(r) + kT

ηa2
RFp2(r) + εκ

2akT
4πηZe

Rψeq1(r)Fψ1(r)] ×
cosθ (32c)

Fψ1(r) ) 1

κ
3r2[{[g1+(κa,La) - e2κag1-(κa,La)]Aψ1(a,b) -

2g1+(κa,La)Bψ1(a,b)}{-g2+(κb)[κr cosh(κr) -

sinh(κr)] + 1
2
[g2+(κb) - e2κbg2-(κb)](κr + 1)e-κr} /

[e2κag2+(κb)g1-(κa,La) - e2κbg2-(κb)g1+(κa,La)] -

[κr cosh(κr) - sinh(κr)]Aψ1(r,b) + (κr + 1)e-κrBψ1(r,b)]
(33)

Aψ1
(x,y) ) ∫x

y
e-κr

κ
2(κr + 1)[Fµ1(r) + Ze

kT
ψeq1(r)Fµ0(r)] dr

(34a)

Bψ1(x,y) ) ∫x

y
κ

2[κr cosh(κr) -

sinh(κr)][Fµ1(r) + Ze
kT

ψeq1(r)Fµ0(r)] dr (34b)

g1((x,y) ) 2 ( 2x + x2 + y(1 ( x) (35a)

g2((x) ) 2 ( 2x + x2 (if eq 11e is used) (35b)

g2((x) ) 1 ( x (if eq 12b is used) (35c)

Ui ) (8â)1-i εâR
4πηa(kT

Ze)2Θi

Wi
(36)

Θi )
(-8)i-1

3(3 + 2æ5/3)
(κa)2WiZe

kT{ 2

æ2/3ω
ψeq1(b)Fψ(i - 1)(b) -

∫a

b [1 - 3
r2

a2
+ 2

r3

a3
- æ5/3(2r2

a2
- 3

r3

a3
+ r5

a5)]Gi(r) dr} (37a)

Θi )
(-8)i-1

9
(κa)2WiZe

kT{ 2

æ2/3ω'
ψeq1(b)Fψ(i-1)(b) -

∫a

b [1 - 3
r2

a2
+ 2

r3

a3
- 1

5
æ(2 - 5

r3

a3
+ 3

r5

a5)]Gi(r) dr} (37b)

Gi(r) ) (-1)i -1a
r [Fµ(i - 1)(r) +

(i - 1)
Ze
kT

ψeq1(r)Fµ0(r)]dψeq1

dr
(38)

ω ) (1 - 3
2

æ1/3 + 3
2

æ5/3 - æ2)-1
(39a)

ω′ ) (1 - 9
5

æ1/3 + æ - 1
5

æ2)-1
(39b)

U ) εR
4πηa[kT

Ze
âΘ1ú + 1

8
Θ2ú

2 + O(ú3)] (40)
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an increase inn∞ for an otherwise specified condition, whereas
σ(eq)may have a maximal magnitude at some values ofn∞. If n∞

> (K+K-)1/2, the values ofú andσ(eq), which are both positive,
do not increase monotonically with an increase inn∞ and may

have maxima at some values ofn∞. The magnitudes ofú andσ(eq)

increase asK-/K+ increases, because the concentration of the
un-ionized surface group AB decreases withK-/K+, as inferred
from eq A2. When the value ofK+K- increases, the concentration
of the negatively charged surface group AZ- will increase or that

Figure 2. Plots of the dimensionless equilibrium surface potential
úh, equilibrium surface charge densityσj(eq), and charge regulation
parameterLa versus the bulk concentrationn∞ of an aqueous 1-1
electrolyte solution under the condition ofa ) 200 nm,NS ) 5 ×
1016 site/m2, andK+K- ) 10 - 6 M2. The solid and dashed curves
represent the cases of the volume fractionæ equal to 0.3 and 0,
respectively.

Figure 3. Plots of the dimensionless equilibrium surface potential
úh, equilibrium surface charge densityσj(eq), and charge regulation
parameterLa versus the bulk concentrationn∞ of an aqueous 1-1
electrolyte solution under the condition ofa ) 200 nm,NS ) 5 ×
1016site/m2, andK-/K+ ) 10-4. The solid and dashed curves represent
the cases of the volume fractionæ equal to 0.3 and 0, respectively,
and the unit ofK+K- is M2.
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of the positively charged surface group AB2
Z+ will decrease

according to eq A2; thus, the particles become more negatively
charged or less positively charged. The magnitude ofú increases,
while the magnitude ofσ(eq) decreases, as the volume fraction
æ increases, but these dependencies become negligible when the
value ofn∞ is relatively high. The regulation parameterLa is not
a monotonic function of the characteristic variablesn∞, K+K-,
K-/K+, andæ of the suspension.

Now we consider several limiting cases of the analytical
expressions for the diffusiophoretic velocity. In the limit of an
infinitely dilute suspension (æ f 0), eq 37 reduces to

whereEn is a function defined by

Interestingly, these reduced results, which are the same as the
formulas for the diffusiophoretic velocity obtained previously13

for a single dielectric sphere in an unbounded electrolyte, do not
depend on the charge regulation parameterLa. However, it is
understood that the value ofú in eq 40 for a charge-regulating
sphere is dependent on the regulation characteristics of the particle
and suspending electrolyte solution.

Whenκa. 1, eq 37 fori ) 1 can be expressed asymptotically
as

Again, these asymptotic results are independent of the charge
regulation parameterLa to the order as listed. When the boundary
conditions 11d and 11e are used (i.e.,ø ) 1 - æ), the leading
terms in eq 43 are identical to the formulas of the electrophoretic
mobility of a dielectric sphere in a cell derived by Levine and
Neale18 in the limit κa f ∞. Note that, whenκa f ∞, the value
of Θ1 predicted by the Happel model can be as much as 14%
greater (occurring atæ = 0.39) than that predicted by the
Kuwabara model.

Whenκa , 1, eq 37 withi ) 1 for the case that the boundary
conditions in eqs 11d and 11e apply (ø ) 1 - æ) can be written
as

where

If the boundary conditions in eq 12 are chosen, eqs 44 and 45
will still be valid as long as one takesL ) 0 andø ) 1 + æ/2.

The numerical results of the dimensionless coefficientΘ1 for
a suspension of identical charge-regulating spheres calculated
from eq 37 withø ) 1 - æ as a function of the parametersκa,
La, andæ are plotted in Figures 4 and 5 for the Happel and
Kuwabara models, respectively. The calculations are presented
up toæ ) 0.74, which corresponds to the maximum attainable
volume fraction for a swarm of identical spheres.18 It can be seen
thatΘ1 decreases gently and monotonically with an increase in
the charge regulation parameterLa for specified values ofκaand
æ. This coefficient becomes independent ofLa for the case of
very dilute suspensions and for the situations of very large and
very small values ofκa. For given values ofLa and æ, Θ1

decreases monotonically with a decrease inκa(or with an increase
in the double layer overlap). Whenκa ) 0, Θ1 ) 2/3 asæ )
0 andΘ1 ) 0 for all finite values ofæ. For the case of the
Kuwabara model,Θ1 is a monotonic decreasing function ofæ
for fixed values ofκaandLaand equals unity asκaf ∞, whereas
for the case of the Happel model,Θ1 is a monotonic function
of æ only for a given value ofκa less than about unity. For any
combination ofκa, La, andæ, the Kuwabara model predicts a
smaller value ofΘ1 than the Happel model does. This occurs
because the zero-vorticity model yields larger energy dissipation
in the cell than that due to the particle drag alone for the free-
surface model, owing to the additional work done by the stresses
at the outer boundary.15

In Figures 6 and 7, the coefficientΘ2 for a suspension of
identical charge-regulating spheres calculated from eq 37 with
ø ) 1 - æ is plotted for the Happel and Kuwabara models,
respectively, as a function of the parametersκa, La, and æ.
Analogous to the case ofΘ1, Θ2 decreases monotonically with
an increase in the charge regulation parameterLa for specified
values ofκa andæ and becomes independent ofLa for the case
of very dilute suspensions and for the situations of very large
and very small values ofκa. However,Θ2 is not monotonic
functions of eitherκaoræ, and a local maximum and/or minimum
of each of these functions would appear, for an otherwise
unchanged condition. For a combination ofκa, La, andæ not
too close to these minima, the Kuwabara model predicts a
somewhat smaller value ofΘ2 than the Happel model does.
Whenκa ) 0, both models predict thatΘ2 ) 0 for all values
of æ andLa.

In Figures 8 and 9, the dependence of the diffusiophoretic
velocityU in a suspension of identical charge-regulating spheres
on their dimensionless zeta potential (Zeú/kT) at various values
of the parametersκa andLa calculated from eq 40 withø ) 1
- æ andæ ) 0.1 is plotted for the Happel and Kuwabara models,
respectively. The magnitude of the diffusiophoretic velocity is
normalized by a characteristic value given by

The case that the cation and anion diffusivities are equal (â )
0) is displayed in Figures 8a and 9a. Only the results at positive
zeta potentials are shown since the particle velocity, which is
due to the chemiphoretic effect entirely, is an even function of
the zeta potential as illustrated by eq 40. Because our analysis
is based on the assumption of small surface charge density or
zeta potential, the magnitudes ofZeú/kTconsidered are less than

ν ) 2 + æ - 9Laæ
2(1 - æ) + La(1 + 2æ)

(κa)2 + O[(κa)4]

(45)

U* ) εR
4πηa(kT

Ze)2
(46)

Θ1 ) 1 - eκa[5E7(κa) - 2E5(κa)] (41a)

Θ2 ) 1 + 1
3
e2κa[10E6(2κa) + 7E8(2κa)] - 40e2κaE7(κa)

[E3(κa) - E5(κa)] + 4
3
eκa[3E3(κa) + 9E4(κa) - 7E5(κa) -

15E6(κa)] (41b)

En(x) ) ∫1

∞
t-ne-xt dt (42)

Θ1 ) 3
ø{ 1 - æ5/3

3 + 2æ5/3
- (κa)-1 + O[(κa)-2]}

(for the Happel model) (43a)

Θ1 ) 1
ø
{1 - æ - 3(κa)-1 + O[(κa)-2]}

(for the Kuwabara model) (43b)

Θ1 ) ν
6ø(3 + 2æ -5/3

3 + 2æ5/3
æ2/3 - æ-2/3)(κa)2 + O[(κa)4]

(for the Happel model) (44a)

Θ1 ) ν
45ø

(5æ-1 - 9æ-2/3 + 5 - æ)(κa)2 + O[(κa)4]

(for the Kuwabara model) (44b)
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2. It can be seen that, in this range ofZeú/kT, the reduced
diffusiophoretic velocityU/U* increases monotonically with an
increase in the magnitude ofZeú/kT for fixed values ofκa and
La and with a decrease inLa for given values ofκa andZeú/kT.
For the case of very large and very small values ofκa, U/U*
becomes independent ofLa. On the other hand, consistent with
the result ofΘ2, U/U* is not a monotonic function ofκa for an
otherwise specified condition. There is no chemiphoretic motion
of the particles for the special cases ofZeú/kT ) 0 or κa ) 0.

Figures 8b and 9b are drawn for the reduced diffusiophoretic
mobility U/U* of the particles for a case that the cation and anion
have different diffusion coefficients (â ) -0.2). In this case,
both the chemiphoretic and the electrophoretic effects contribute
to the particle’s movement, and the net diffusiophoretic velocity
is neither an even nor an odd function of the zeta potential. For
constant values ofκa andLa, the reduced particle velocityU/U*
is not necessarily a monotonic function ofZeú/kT. When the
product ofâ andZeú/kT is negative,U/U* is not a monotonic
function ofκa for given values ofZeú/kT andLa. The reduced
diffusiophoretic velocityU/U*, which is not necessarily to
decrease with an increase inLa for given values ofκa andZeú/
kT, becomes independent ofLa for the case of very large and
very small values ofκa. Some of the curves in Figures 8b and

9b indicate that particles might reverse direction of movement
more than once as their zeta potential varies from negative to
positive values. The reversals occurring at the values ofZeú/kT
other than zero result from the competition between the
contributions from chemiphoresis and electrophoresis. In the
limit κa) 0, the diffusiophoretic velocity vanishes for any finite
value ofæ, irrespective of the value ofLa. Note that the situations
associated with Figures 8a or 9a (â ) 0) and 8b or 9b (â ) -
0.2) takingZ ) 1 are close to the diffusiophoresis in the aqueous
solutions of KCl and NaCl, respectively.

When the boundary conditions in eq 12 are chosen for the
electrostatic and electrochemical potentials at the virtual surface
of the unit cell, the diffusiophoretic mobility of a suspension of
identical charge-regulating spheres is independent of the charge
regulation parameterLa. Graphical results of the dimensionless
coefficientsΘ1 andΘ2 as well as the reduced diffusiophoretic
mobility U/U* as functions of the parametersκa andæ for this
case are the same as those presented in a previous paper31 for
the limit La ) 0. For a given suspension of identical charge-
regulating spheres, the diffusiophoretic mobility obtained by each
cell model can be evaluated as functions of the regulation
characteristics of the suspension (such asn∞, K+, K-, NS, a, æ,
etc.) from eqs 37 and 40 incorporating with eqs 16, A4, and A8.

Figure 4. Plots of the dimensionless coefficientΘ1 for a suspension
of identical spheres calculated from eq 37a withø ) 1 - æ (using
boundary conditions 11d and 11e) for the Happel model versus the
parametersκa andæ. The solid, dotted-dashed, and dashed curves
represent the cases of the charge regulation parameterLa equal to
0, 5, and∞, respectively.

Figure 5. Plots of the dimensionless coefficientΘ1 for a suspension
of identical spheres calculated from eq 37b withø ) 1 - æ (using
boundary conditions 11d and 11e) for the Kuwabara model versus
the parametersκaandæ. The solid, dotted-dashed, and dashed curves
represent the cases of the charge regulation parameterLa equal to
0, 5, and∞, respectively.
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These functions are quite complicated for most situations and
cannot be predicted systematically by simple general rules.

5. Concluding Remarks

In this work, the steady-state diffusiophoresis in a homogeneous
suspension of identical charge-regulating spheres in an electrolyte
solution with arbitrary values of the parametersκa, La, andæ
(and of the regulation characteristics of the suspension) is analyzed
by employing the Happel and Kuwabara cell models. Solving
the linearized electrokinetic equations applicable to the system
of a sphere in a unit cell by a regular perturbation method, we
have determined the electrochemical potential energy distributions
of the electrolyte ions, the electrostatic potential profile, and the
fluid flow field through the use of a linearized charge regulation
model. The requirement that the net force exerted on the unit cell
is zero leads to eqs 37 and 40 for the diffusiophoretic velocity
of the charged sphere correct to the orderú2. With the use of the
Neumann-type boundary conditions in eqs 11d and 11e at the
virtual surface of the unit cell, the normalized diffusiophoretic
mobility is a monotonic decreasing function ofLa for fixed values
of κa andæ.

Equation 40 with eq 37 are derived on the basis of the Debye-
Huckel approximation for the equilibrium potential distribution

around the charge-regulating sphere in a unit cell. Comparing
our results of the coefficientΘ1 with the numerical solution for
the electrophoretic mobility of a charged sphere in unbounded
KCl solutions obtained by O’Brien and White43 valid for an
arbitrary value of zeta potential, one can find that eq 41a for a
charged sphere with a low zeta potential in an unbounded
electrolyte solution is also quite accurate for reasonably high
zeta potentials (with errors less than 4% for|ú|e/kTe2). Therefore,
our results in eqs 37 and 40 might be used tentatively for the
situation of reasonably high electric potentials.

We note that the unit cell models with various boundary
conditions at the virtual surface of the cell lead to somewhat
different results of the effect of charge regulation at the particle
surfaces on the diffusiophoretic velocity. Neither of these
boundary conditions is rigorously correct, for the surrounding
spheres affect the ionic concentrations, electrostatic potential,
and fluid velocity at this surface. Mathematically, the concentra-
tion, potential, and flow fields in the surrounding matrix should
be coupled to the corresponding fields in the unit cell through
appropriate compatibility conditions (as opposed to boundary
conditions), and specification of boundary conditions at the virtual

(43) O’Brien, R. W.; White, L. R.J. Chem. Soc., Faraday Trans. 21978, 74,
1607.

Figure 6. Plots of the dimensionless coefficientΘ2 for a suspension
of identical spheres calculated from eq 37a withø ) 1 - æ (using
boundary conditions 11d and 11e) for the Happel model versus the
parametersκa andæ. The solid, dotted-dashed, and dashed curves
represent the cases of the charge regulation parameterLa equal to
0, 5, and∞, respectively.

Figure 7. Plots of the dimensionless coefficientΘ2 for a suspension
of identical spheres calculated from eq 37b withø ) 1 - æ (using
boundary conditions 11d and 11e) for the Kuwabara model versus
the parametersκaandæ. The solid, dotted-dashed, and dashed curves
represent the cases of the charge regulation parameterLa equal to
0, 5, and∞, respectively.
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surface is, at best, an approximation. Nonetheless, the analysis
presented here provides meaningful information for the volume
fraction effects on the diffusiophoretic mobility in concentrated
suspensions of particles. In many other electrokinetic phenomena,
the Dirichlet approach given by eq 12 has been shown to be
better than Neumann’s (better agreement with the ensemble-
averaged predictions and experiments as regards electrophoretic
mobility and electric conductivity, compatibility with Onsager
reciprocity laws connecting different phenomena, etc., for
instance), probably due to the fact that the angular components
of the concentration and potential gradients at the virtual surface
of the unit cell are not specified in eqs 11d and 11e. The results
of our analysis show that the regulation mechanism for the surface
charge is of minor importance if the Dirichlet option is chosen.
The relevant experimental data (such as if the diffusiophoretic
mobility in a concentrated suspension is enough sensitive to the
changes of the charge regulation parameter), which are not
available in the literature yet, would be needed for confirming
the validity of each approach of the cell model at various situations.
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Appendix: Model for a Charge-Regulating Surface

Following the previous studies,33,34we consider a general model
for the charge-regulating surface which develops surface charges
via association/dissociation equilibrium of ionogenic surface
groups. The surface reactions may be expressed as

where AB represents the associable/dissociable functional group
on the surface, BZ+ denotes the ion to determine the status of
charges on the surface groups (the potential-determining ion),
and the positive integerZ is the valence of ionization. For the
case of an amphoteric surface, BZ+ is usually the hydrogen ion
H+. The equilibrium constants for the reactions in eq A1 are
given by

Figure 8. Plots of the reduced diffusiophoretic mobility in a
suspension of identical spheres versus the dimensionless zeta potential
at fixed values ofκa calculated from eq 40 withø ) 1 - æ (using
boundary conditions 11d and 11e) andæ ) 0.1 for the Happel
model: (a)â ) 0; (b) â ) -0.2. The solid, dotted-dashed, and
dashed curves represent the cases of the charge regulation parameter
La equal to 0, 5, and∞, respectively.

Figure 9. Plots of the reduced diffusiophoretic mobility in a
suspension of identical spheres versus the dimensionless zeta potential
at fixed values ofκa calculated from eq 40 withø ) 1 - æ (using
boundary conditions 11d and 11e) andæ ) 0.1 for the Kuwabara
model: (a)â ) 0; (b) â ) -0.2. The solid, dotted-dashed, and
dashed curves represent the cases of the charge regulation parameter
La equal to 0, 5, and∞, respectively.

AB2
Z+ S AB + BZ+ (A1a)

AB S AZ- + BZ+ (A1b)
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where [BZ+]S is the concentration of BZ+ next to the surface. The
surface dissociation constantsK+ andK- are taken to be functions
of temperature only.

ForNS ionizable surface groups per unit area, the net surface
charge density is

By the substitution of the Boltzmann distribution for the
equilibrium concentration of BZ+ and the utilization of the concept
of electrochemical potential energy, eq A3 forσ can be expressed
in terms of the surface potentialψS as

where

δµS is the deviation in electrochemical potential of BZ+ next to
the surface from the equilibrium state defined by eq 6, andn∞

is the concentration of BZ+ in the bulk solution where the
equilibrium potential is set equal to zero. Equation A6 is the
Nernst equation relating the Nernst potentialψN to the isoelectric
point [with n∞ ) (K+ K-)1/2]. It can be seen from eq A4, which
acts as an equation of the electric state of the surface, that the
sign ofσ is opposite to that ofψS - ψN at equilibrium (withδµS

) 0). The surface charge density approaches the saturation values
(ZeNS when the difference between the surface potential and
its Nernst value becomes large [e.g., when the value ofn∞/(K+
K-)1/2 approaches zero or infinity and the value ofψS is finite].

With the relationship betweenσ andψS given by eq A4, the
charge regulation capacitance of the surface at equilibrium can
be written as

whereú is the value ofψS at equilibrium and

The reciprocal of the positive quantityL can be regarded as the
characteristic length controlling the charge regulation condition
at the surface. The limiting values ofL ) 0 andL f ∞ correspond
to the cases of constant surface charge density and constant surface
potential, respectively. Note thatL is small when the difference
between the equilibrium surface potential and its Nernst value
is large.

LA061517C

-( dσ
dψS

)
ψS)ú

) ε

4π
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