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An analytical study of diffusiophoresis in a homogeneous suspension of identical spherical charge-regulating
particles with an arbitrary thickness of the electric double layers in a solution of a symmetrically charged electrolyte
with a uniform prescribed concentration gradient is presented. The charge regulation due to association/dissociation
reactions of ionogenic functional groups on the particle surface is approximated by a linearized regulation model,
which specifies a linear relationship between the surface charge density and the surface potential. The effects of
particle—particle electrohydrodynamic interactions are taken into account by employing a unit cell model, and the
overlap of the double layers of adjacent particles is allowed. The electrokinetic equations that govern the electric
potential profile, the ionic concentration distributions, and the fluid flow field in the electrolyte solution surrounding
the particle in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using
a regular perturbation method, these linearized equations are solved with the equilibrium surface charge density (or
zeta potential) of the particle as the small perturbation parameter. Closed-form formulas for the diffusiophoretic
velocity of the charge-regulating sphere correct to the second order of its surface charge density or zeta potential are
derived. Our results indicate that the charge regulation effect on the diffusiophoretic mobility is quite sensitive to the
boundary condition for the electric potential specified at the outer surface of the unit cell. For the limiting cases of
a very dilute suspension and a very thin or very thick electric double layer, the particle velocity is independent of
the charge regulation parameter.

1. Introduction of the particle). This formula agrees with that previously deduced

A colloidal particle can be driven to move by the application PY @ more intuitive mthoél.thmg a method of matched
of a nonuniform solute concentration field that interacts with 2Symptotic expansions witkg) *as the small parameter, Prieve
the surface of the particle. This phenomenon, known as e_t al? evgluated_ .the effect of_ parUch curvature on the diffu-
diffusiophoresis; 3 has been demonstrated experimentally for Siophoretic mobility of a spherical particle accurate to@]("].
both chargetiand unchargedsolutes. Diffusiophoresis is of When the double-layer distortion from equilibrium was taken as
practical importance in some applications to particle analysis or @ small perturbation, Prieve and Rorfahbtained a numerical
separation and in certain lateparticle coating procességIn solution for the diffusiophoresis of a dielectric sphere in
a solution of nonionic solute, the solute molecules interact with concentration gradients of 1:1 electrolytes (KCI or NaCl) which
the particle through the van der Waals and/or dipole forces. For was applicable to a broad range ®&nd«a. Later, analytical
charged particles in an electrolyte solution, the partisielute expressions for the diffusiophoretic velocities of a dielectric
interaction is electrostatic in nature, and its range is the Debye spheré®and cylindet*1?with a “thin but polarized” double
screening lengtk~1. Particles with zeta potentials on the order layerwere derived. Recently, analytical formulasin closed forms
of kT/e (~25 mV; e is the elementary electric chargk,is for the diffusiophoretic mobility of a colloidal sphéfeand
Boltzmann’s constant, and is the absolute temperature) in  cylinde*in symmetric electrolytes at low surface charge density
prescribed electrolyte gradients on the order of 100 knfo{im o (valid for & up to 50 mV) and arbitrarya have also been
M/cm) will move by diffusiophoresis at speeds of several obtained. All results of the above investigations show that the
micrometers per second. diffusiophoretic mobility of a particle in general decreases with

Using the classical model of the diffuse electric double layer, the increase ofda)~*. Also, the particle can reverse the direction
Prievé® derived a formula for the diffusiophoretic velocity of a  of jts migration when the value o£|, (ka)~%, or the valence of
nonconducting particle of arbitrary shape in a solution of a the electrolyte increases.
symmetrically charged electrolyte with a constant concentration
gradient for arbitrary zeta potentid])(of the particle in the limit
of thin double layer ka — o, wherea is the linear dimension

In some practical applications of the diffusiophoretic mobility,
relatively concentrated suspensions of particles are encountered
and effects of particle interactions will be important. To avoid

* To whom correspondence should be addressed. Rs886-2-2362- the dlff_lculty of Fhe complex geometry appearing in assemplages
3040. E-mail: huan@ntu.edu.tw. of particles, unit cell models were often employed to predict the

(1) Dukhin, S. S.; Derjaguin, B. V. IBurface and Colloid Scienciatijevic, effects of particle interactions on the mean sedimentation rate
E., Ed.; Wiley: New York, 1974; Vol. 7.
(2) Prieve, D. C.; Anderson, J. L.; Ebel, J. P.; Lowell, M.EEFluid Mech

1984 148, 247. (9) Prieve, D. C.; Roman, R. Chem. Soc., Faraday Trans1987 83, 1287.
(3) Anderson, J. L.; Prieve, D. Cangmuir1991 7, 403. (10) Pawar, Y.; Solomentsev, Y. E.; Anderson, JJLColloid Interface Sci.
(4) Ebel, J. P.; Anderson, J. L.; Prieve, D. [Gangmuir 1988 4, 396. 1993 155, 488.

(5) Staffeld, P. O.; Quinn, J. Al. Colloid Interface Sci1989 130, 88. (11) Keh, H. J.; Chen, S. B.angmuir1993 9, 1142.

(6) Smith, R. E.; Prieve, D. GChem. Eng. Scil982 37, 1213. (12) Keh, H. J.; Wei, Y. KJ. Colloid Interface Sci2002 252, 354.
(7) Dukhin, S. SAdv. Colloid Interface Sci1993 44, 1. (13) Keh, H. J.; Wei, Y. KLangmuir200Q 16, 5289.

(8) Prieve, D. CAdv. Colloid Interface Sci1982 16, 321. (14) Keh, H. J. Wei, Y. KLangmuir2002 18, 10475.

10.1021/1a061517c CCC: $37.00 © 2007 American Chemical Society
Published on Web 01/03/2007



1062 Langmuir, Vol. 23, No. 3, 2007 Keh and Li

in a bounded suspension of identical uncharged sphefdmse minimize the electrostatic energy of interaction among them.
models involve the concept that an assemblage can be dividedThus, the extent of the surface reactions and the magnitudes of
into a number of identical cells, one sphere occupying each cell the surface charge density and surface potential for multiple
at its center. The boundary value problem for multiple spheres particles undergoing diffusiophoresis will be changed in com-
is thus reduced to the consideration of the behavior of a single parison with those for a single particle at equilibrium. Thisis the
sphere and its bounding envelope. The most acceptable of thesso-called charge regulation phenome#dr? The assumptions
models with various boundary conditions for the fluid velocity of constant surface charge density and constant surface potential
at the outer (virtual) surface of a spherical cell are the so-called provide two limiting cases for the combined electrostatic and
“free-surface” model of Happ¥land “zero-vorticity” model of hydrodynamic interaction effects on the charge regulation surfaces
Kuwabaral’ the predictions of which have been tested against that exist in these systems.
the experimental data. In this article, the unit cell model is used to obtain analytical
Using the Kuwabara cell model, Levine and Néé&kerived expressions for the diffusiophoretic mobility of a suspension of
an analytical expression for the electrophoretic mobility in a identical, charge-regulating colloidal spheres in a solution of a
suspension of identical charged spheres with sgraaid arbitrary symmetrically charged electrolyte with a constant imposed
xa as a function of the volume fraction of the particles. Later, concentration gradient. The linearized form of the charge
the Happel and/or Kuwabara cell models were also used by regulation boundary condition proposed by Carnie and €&han
Zharkikh and Shilo? Kozak and Davig%2! Ohshimag?.23 is employed. No assumption is made about the thickness of the
Dukhin et al.2*Ding and Ker?>and Carrique et &°27to predict double layers relative to the radius of the particles, and the overlap
the electrophoretic mobility of charged spheres in concentrated of adjacent double layers is allowed. Both the Happel model and
suspensions and/or the electric conductivity of the suspensionsthe Kuwabara model are considered. The basic electrokinetic
under various conditions. It was found that the Happel model in equations are linearized assuming that the electrolyte ion
general shows a better agreement with the available experimentatoncentrations, the electrostatic potential, and the fluid pressure

dat#82°than the Kuwabara model do&sRecently, the diffu- have only a slight deviation from equilibrium due to the application
siophoretic motions in homogeneous suspensions of identicalof the electrolyte concentration gradient. Through the use of a
dielectric spheres with thin but polarized double laj&end regular perturbation method with the equilibrium surface charge

with small surface potential but arbitrary double-layer thickfess ~ density of the particle as the small perturbation parameter, the
were analyzed by employing both the Happel and the Kuwabaraion concentration (or electrochemical potential energy), elec-
cell models. Closed-form formulas for the diffusiophoretic trostatic potential, fluid velocity, and pressure profiles are
mobility as functions of the volume fraction of the particles were determined by solving these linearized electrokinetic equations
obtained. subject to the appropriate boundary conditions. Analytical
The previous analyses for the diffusiophoretic mobility of expressions for the diffusiophoretic mobility of the suspension
charged particles in either dilute or concentrated suspensionsef charge-regulating spheres are obtained in closed-forms.
were all based on the assumption that either the surface charge ) o )
density or the surface potential of the particles remains constant. 2. Basic Electrokinetic Equations

Although this assumption may be convincing under certain e consider the steady diffusiophoresis of a statistically
conditions, it only leads to idealized results for limiting cases homogeneous distribution of identical charged spherical particles
and can be impractical for some particles. The actual surfacejn 3 bounded liquid solution of a symmetrically charged
charge (and potential) for biological colloids, polymer latices, glectrolyte. The particles can have charge-regulating surfaces on
and particles of metal oxides in electrolyte solutions is usually \yhich the chemical equilibrium of ionogenic functional groups
determined by the dissociation of ionizable surface groups and/ijs maintained (see the Appendix). The applied electrolyte
or adsorption (or site-binding) of specific ions. The degree of ¢gncentration gradier¥n® is a constant equal to/n“|e,, and
these dissociation and adsorption reactions will be a function of the diffusiophoretic velocity of the colloidal particles lie,,

the local concentrations of the charge-determining (and potential-\yheree, is a unit vector in the positivedirection. Gravitational
determining) ions at the particle surfaces. When a relatively effects on the particles are ignored. As shown in Figure 1, we
concentrated suspension is subjected to an imposed electrolyt%mmoy a unit cell model in which each particle of radas
concentration gradient (which can cause an induced macroscopiGyrrounded by a concentric spherical shell of the suspending
electric field), the neighboring particles will adjust the concen- ggjution having an outer radius bfsuch that the particle/cell
trations of the potential-determining ions at their surfaces to ygjume ratiois equal to the particle volume fractipthroughout

the entire suspension, vizp, = (a/b)®. The cell as a whole is
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Ny is the value ofr™ at the positions witle = 0 which can be
experimentally taken as the mean bulk concentration of the
electrolyte in the vicinity of the diffusiophoretic particle (or in
the cell),# is the viscosity of the fluidD. are the diffusion
coefficients of the ionic speciedjs the valence of the symmetric
electrolyte which is positive, and = 4mepe;, Wheree, is the
relative permittivity of the electrolyte solution ang is the
permittivity of a vacuum. The use of the bulk concentratign

at the particle center in eq 5 is valid when the solution is only
slightly nonuniform in the imposed electrolyte concentration on
the length scale of the particle radiwgV¥n|/n; < 1).

The boundary conditions far anddu.. at the surface of the

particle are
Figure 1. Geometric sketch of a spherical particle undergoing r=a u=0 (7a)
diffusiophoresis at the center of a spherical cell.
A 7b
Itis assumed that the magnitudevaf® or the particle velocity ar (7b)

is not large and hence that the electric double layer surrounding

the particle is only slightly distorted from the equilibrium state,

where no bulk electrolyte gradient is imposed and the particle Which are obtained from the assumptions that the “shear plane”
and fluid are at rest. Therefore, the ionic concentration (number coincides with the particle surface and no ions can penetrate into
density) distributions..(r,0), the electrostatic potential distribu- ~ the particle. Note that eq 7a takes a reference frame traveling
tion y(r,0), and the dynamic pressure distributiain,f) can be with the particle. To obtain the boundary condition for the small

expressed as perturbed quantityy at the charge-regulating surface, we adopt
the linearized regulation model proposed by Carnie and &han
n,= nf‘*)+ on, (1a) and express the surface charge densig a linear function of
the surface potentiaps
p =9+ 0y (1b)
p=p©+ op (1c) o= o)+ (ﬁ) O (8)
de =€

wheren®¥(r), y©aXr), andp©dr) are the equilibrium distribu-
tions of the ionic concentrations, electrostatic potential, and
dynamic pressure, respectively, and.(r,0), dy(r,0), and whereo® and ¢ are the values of andys, respectively, at
op(r,0) are the small deviations from the equilibrium state. equilibrium. The substitution of egs 1b and 8 into the Gauss
Here, subscripts- and— refer to the cation and anion, respec- condition at the particle surface
tively. The equilibrium concentration of each ionic species is
related to the equilibrium potential by the Boltzmann distribution. 9 4ot
It can be shown that the small perturbed quantidies, oy, r=a W _ —0 9)
and op together with the fluid velocity fieldi(r,0) satisfy the or €
following set of linearized electrokinetic equatiotis:
results in
ViU = Vop — (VA Woy + Vioy vy (2)
90

V-u=0 3) r=a = oy =0 (10)

Vzéﬂi — iz— Vl/)(eq)'V5ﬂi _ va(eq)-u () where th_e charge regulgtion coefficidnis defined b)_/ egs A7
k D, and A8 in the Appendix and can be evaluated in terms of
measurable quantities. The constant surface charge density limit
corresponds td. = 0, whereas the constant surface potential

dnZer} (ea)
Vzéw = ekTrb[ ex;(zelip.r )(cm + Zedy) — limit corresponds td. — co.

ew(eq) Because the bulk concentration of the electrolyte is not uniform,
exp\ — = g |0u, — Zeoy)| (5) itis required that the total fluxes of cations and anions are balanced
in order to have no current arising from the diffusive fluxes of

Here,du.(r,0) is defined as a linear combinationdi. anddy the electrolyte ions in an electrically neutral solution, and a

onthe basis of the concept of the electrochemical potential energyMacroscopic electric field occurs spontaneously due to the
difference in ionic mobilities. At the virtual (outer) surface of

on, the cell, the local ionic concentration gradient and electric field
ou, = kT(—eq) + Zedy (6) are compatible with the prescribed gradient and induced field,
n, respectively. Thus, the boundary conditions theréégfe
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r=>b: u =-Ucosé (11a)
_ @@ 1u] _
Tr"_n[rar(r T
(for the Happel model) (11b)
_lo, o 104
(Vxcu)y = T grio) =7 59 =
(for the Kuwabara model) (11c)
90U a
P KT(1+ ﬂ)gCOSQ (11d)
doy _ _ KT
o ZeBacose (11e)

wherea = a|vn®|/Iny, f = (D+ — D )/(D+ + D- ), U is the
diffusiophoretic velocity of the charged sphere to be determined,
andu, anduy are ther and @ components, respectively, af
Note that the Happel cell modéhssumes that the radial velocity
and the shear stress of the fluid on the outer boundary of the cell
are zero, whereas the Kuwabara cell métiassumes that the
radial velocity and the vorticity of the fluid are zero there. Since
the reference frame is taken to travel with the particle, the radial
velocity given by eq 11a is generated by the particle velocity in
the opposite direction. The condition in eq 11aimplies that there
is no net flow of fluid between adjacent cells; it is valid because

Keh and Li

AR Y

r=a = . (13a)
. d,l/)(Eq)
r=>nb: T 0 (13b)
It can be shown that
PN = g0 + O@°) (14)

where 6 = 4nZes®VexkT, which is the nondimensional
equilibrium surface charge density of the particle

KT

weql(r) = Z_ £8

A

Plleb + e + (kb — 1)g@ )
(15a)

and

A= (kb= Dca+ D~ (@~ Db+ DT

Herex is the Debye screening parameter equal taZf&?n,™/
ekT]¥2 The expression in eq 14 fgr¢9 as a power series in the
equilibrium surface charge density of the particle up t6)0g

the equilibrium solution to the linearized PoisseBoltzmann
equation that is valid for small values of the electric potential
(the Debye-Huckel approximation). Note that the contribution

the suspension of the particles is bounded by impermeable walls from the effect of Of?) to 19 in eq 14 disappears only for the

Thus, the effect of the backflow of fluid occurring in a closed
container is included in both cell models.

For the sedimentation of a suspension of uncharged spherica
particles, both the Happel and the Kuwabara models give
gualitatively the same flow fields and approximately comparable
drag forces on the particle in a cell. However, the Happel model

has a significant advantage in that it does not require an exchange

of mechanical energy between the cell and the environftent.

The boundary conditions of the ionic concentrations and electric
potential at the virtual surface = b may be taken as the
distributions giving rise to the applied gradievit® in the cell
when the particle does not exist. In this case, the Neumann
approach given by eqs 11d and 1le becomes the following
Dirichlet approact®31

r=b: ou,=KTLF ﬁ)aécos@ (12a)
_ _kT, 1
oY = Z aacost9 (12b)

Note that the overlap of the electric double layers of adjacent
particles is allowed in both of the boundary conditions given by
egs 11d, 11e, and 12.

In the next section, eqs—5 subject to eqs 7 and 12 are
solved using a regular perturbation method for a low equilibrium
surface potential or surface charge density of the particles, and
the diffusiophoretic velocity is determined with the condition of
zero net force acting on the particles or on a unit cell.

3. Solution of the Electrokinetic Equations and
Diffusiophoretic Velocity

Before solving for the problem of diffusiophoresis of the
charged sphere in a unit cell filled with the solution of a symmetric
electrolyte with a constant bulk concentration gradientt, we
need to determine the equilibrium electrostatic potential first.
The equilibrium potentiap©®satisfies the PoisserBoltzmann
equation and the boundary conditions

case of a solution of symmetric electrolytes.

Substituting eq 14 together with eq 15 into eq 9, one obtains
la relation between the surface charge density and the surface
potential of the colloidal sphere in a unit cell at equilibrium

W2

kT

o (16a)

where

_ y coshy + (kay + «*a& — 1) sinhy
ka(ka + y) coshy — sinhy

(16b)

andy = «(b — a) = xa(p ~ 13 — 1). The equilibrium surface
potential (known as the zeta potentialor a charge-regulating
sphere can be found by combining eqs 16 and A4 (Wit =
0 at equilibrium) and then solving the resulting equation. Thus,
€ is able to be estimated in terms of measurable quantities. In
the limitg = 0, eq 16 reduces to the simple relatig??) = ¢;(ka
+ 1)/4ra for an isolated charged sphere.

To solve for the small quantitiag op, ou+, andoy in terms
of the particle velocity when the parameter is small, these
variables can be written as perturbation expansions in powers
of o

U=u,6+ Ud” + ... (17a)
Op=po+p, 5+ ... (17b)

Opt 4 = thos T 1,0 + 4p.0° + . (17c)
O =+ Py0 + 0" + ... (17d)
U=U,;5+ U5+ ... (17e)

where the functions;, pi, ui +, i, andU; are not directly dependent
ona. The zeroth-order terms &f, u, anddp disappear because
a spherical particle witw€) = 0 or £ = 0 will not move by
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applying an electrolyte concentration gradient [although a
“neutral” sphere with ionogenic surface groups in equilibrium
with the suspending solution can develop an odd (antisymmetric)
distribution of surface charges when an electrolyte gradient is
imposed]. It is easy to show that

@( n Z)Cosg
a or?

P (18)

Hor =

where the coefficientequals - ¢ when the boundary conditions
in egs 11d and 11e are used, and equats &/2 when the
conditions in eq 12 are used.

Substituting the expansions given by eq 17 aff¥ given by
eq 14 into the governing equations given by egS2nd boundary
conditions in egs 7 and 112, and equating like powers of

on both sides of the respective equations, one can derive a group

of linear differential equations and boundary conditions for each
set of functionsy;, pi, ui+, andy; with i equal to 0, 1, 2, etc. After
collecting the zeroth-order and first-order terms in the perturbation
procedure, we obtain

4arZe o

Vi = kT o (tor — to-) + Kg (19)
1
Vzu1 = Evpl - MLW(VZWeqlva + vzwovweq])
(20a)
Veu, =0 (20b)
2 1 Ze(l + ﬁ)a( \ Weql
\% Uiy = Xa \1 r3} d 050 (21)
with
ad
r=a: ﬂ)—Ltpozo (22a)
ar
u, =0 (22b)
oy
o (22c)
d
r=nb: ﬂ) =— %6—0039 (if eq 11e is used) (23a)
ar
_ kT
Yo = ~ 7 a—cos@ (if eq 12b is used) (23b)
u,, = —U, cos6 (23c)
74,9 = O (for the Happel model) (23d)
(V x uy), = 0 (for the Kuwabara model) (23e)
ﬂli
o =0 (if eq 11d is used) (23f)
1+ = 0(ifeq 12ais used) (239)

The solutions forpo, u14, p1, and ther andd components ofi;
subject to egs 1923 are

kT
Yo = Z—eaﬂFwo(r) cos6 (24)

Langmuir, Vol. 23, No. 3, 200065

U, = [UlFOr(r) - HzﬁaFlr(r)] cos6 (25a)
na

Uy = [UlFoa(r) - HzﬁaFw(r)] sin¢ (25)

ex’akT
anzed Ve

(r)FwO(r)] cos6 (25c)

p,= g’uleo(r) zﬁaF (1)~

here Uy, = FKT(LF B)aF (1) cosd (26)

1 [3ak ber
Foolh) = m[?{ [kb(kb — 2) + 2](kr + 1)&® ™ +

]

(ifeq 1le is used) (27a)

3K’ :
W(r)—m{ ;‘ [(kb — 1)(r + 1)@ — (b +

1)(kr — 1)e N — (22 )} (ifeq 12b is used) (27b)
r

[kb(kb + 2) + 2](kr — 1)e N} — (2 22 +

and the function$ (r), Fig(r), Fpi(r), andF(r) with i equal to
0, 1, and 2 were given in ref 31. In eq 27andK’ are functions
of parameterd.a, xa, and«b

K = La{ [«b(xb — 2) + 2][xa(xa + La+ 2) + La +
21e®® — [kb(kb + 2) + 2][ka(ka — La — 2) + La +
2]e "1 (28a)

K' = La{ (xb — 1)[xa(ka+ La+ 2) + La+ 2]e® @ +
(kb + 1)[ka(ka — La— 2) + La+ 2]e “®"¥} 71 (28h)

Obviously,K = K’
reduces to

0 asLa = 0. In the limitLa— o, eq 28

K, ={ [kb(kb — 2) + 2](xa + 1)€®? + [kb(xb + 2) +

2)(ka — 1)e 1 (29a)
K, ={ (kb — 1)(ka+ 1)e® @ — (kb + 1)(xa —

1)e “C~AN 1 (29p)

Among the higher-order terms in the perturbation procedure, the
distributions we need in the following calculations arg uy,
andp,. The governing equations and boundary conditions for
these distributions are given by eqgs 19, 20, 22a, 22b, 23c, 23d,

and 23e, with the subscript 0 and 1 being replaced by 1 and 2,
respectively, and

0
il =0 (ifeq 1le is used)

r=h: o (30a)
y, =0 (ifeq 12b is used) (30b)
The solutions of these distributions are
kTa
¥1= g Fy(r)cod) (31)
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Uy = [UZFOr(r) + k_Tzanr(r)] coso (322)
na
B kT .
Upp = [U,Fop(r) + —zan(,(r) sin@ (32b)
na
kT “akT
p2 = Ui Uszo(r) + ya anZ( ) + ZK Ze weql(r)le(r)] x
cosé (32c)
where

F () = %[{ [0y, (kaLa) — €%, (xa LA, (ab) -
201, (ca,La)B, (@D} G (cb)licr cosher)

sinher)] + %[%(xb) &g, (kb)) (xr + 1)e }
[€*%g,. (kb)g,_(xa,La) — €°g,_(kh)g,. (xa,La)] —
[r coshfr) — sinhr)]A,,,(r,b) + (k1 + l)e”“Bwl(r,b)]
(33)
y —Kr 2 Ze
AN = [ &+ D[Fal0) + a0 ol0)]
(34a)

K[kt coshr) —

sinh(r)]

B‘l/fl(x!y) = j;y
dr (34b)

Z
Foa1) + ¥ eqtF 1)

g (xy) =2+ 2x+ X+ y(1 £ X) (35a)

0,.() =2+2x+x* (ifeqlleisused) (35h)

0,.(X)=1+£x (ifeql2bisused) (35¢)
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G(r) = (1) *?[F,t@ 0

we
(= Ve eI, o] (38)
3 3 -1
o= (1 _ Eq01/3 + E§05/3 _ (pz) (39a)
, 9 1 ,\-1
o' = (1 o~ g ) (39b)

and the finite integrals can be calculated numerically. Note that
the effect of charge regulation at the particle surface on the
diffusiophoretic velocity is demonstrated in terms of functions
Fyo(r) andF,.(r) given by eqs 27 and 33.

When the Dirichlet-type boundary conditions in eq 12 are
chosen, the result fot; will be independent of the charge
regulation coefficient, and its analytical expressions for the
Happel and Kuwabara models are the same as those obtained for
the limiting case of. = 0 (given by eqgs 3639 withK =K' =
0 andy = 1+ ¢/2).

Substituting eqs 16a and 36 into eq 17e, we obtain the
expression for the diffusiophoretic velocity of the particle as an
expansion in powers of the equilibrium surface potertial

- a[z pOLC+ —@2: +0(% (40)

47177

Since the solutiongy+ andy; given by eqs 26 and 31 are not
influenced by the fluid flow, the relaxation effect of the diffuse
ions in the electric double layer surrounding the particle is not
included in eq 40 up to the ordér.

Forthe reason that all of the governing equations and boundary
conditions in this analysis have been linearized, diffusiophoresis
of charged particles in an electrolyte solution can be considered
as a linear combination of two effects: (i) chemiphoresis due to
the nonuniform adsorption of counterions and depletion of co-
ions over the surface of the particle and (ii) electrophoresis due

Since the unit cell as awhole is electrically neutral, the net force to the macroscopic electric field generated by the electrolyte
exertedonits virtua_l surface mustbe zero. Applyingthis constraint concentration gradient given by eq 11e or 12b. In eq 40 for the
to the above solutions, one can obtain the leading-order termsdiffusiophoretic velocity, th€(&) term (involving parametes)

U; andU;for the diffusiophoretic velocity of the charge-regulating

results from the contribution of electrophoresis, wherea®(f8

sphere. When the Neumann-type boundary conditions in egsterm represents the chemiphoretic contribution.

11d and 11e are employed € 1 — ¢), the result is

U = (8ﬁ)1_ieﬁ—a(;—£)z\%

47nal (36)

whereW is defined by eq 16b an®; with i equal to 1 and 2
are functions ofa, La, andg given by

_g)y? _
i m("a)zwze %’peql(b)':w(i ~3(B) =
s [1 3— + 2 5’3( 3— + 5)]Gi(r) df} (372)
a

for the Happel model, and

(—8)* Zel 2
;= 9 (Ka)zwk_'? Tw‘weql(b)Fw(i—l)(b) N
1 P, a0
fa 1- 3_+2_3_§ 2—-5-+3||G(r)drp (37b)
a a

for the Kuwabara model. In eq 37

4. Results and Discussion

Before the evaluation of the diffusiophoretic mobility of
suspensions of identical charge-regulating spheres from eqs 37
and 40, it is necessary to know how the equilibrium surface
potentialZ, equilibrium surface charge densit{f®, and charge
regulation coefficient. depend on the bulk electrolyte concen-
tration n®, surface reaction equilibrium constarks and K—
(defined by eq A2), and particle volume fractipnTo perform
a typical calculation using egs 16, A4, and A8, we make the
continuous phase an aqueousllelectrolyte solution with relative
permittivity ¢, = 78.54, the particle radiua = 200 nm, the
ionogenic surface group densig = 5 x 10 site/n?, and the
system temperatur€ = 298 K. The numerical results of the
dimensionless equilibrium surface potentigquilibrium surface
charge densitg(©%, and charge regulation parametaicalculated
as functions of the variables®, Ky K- , K_/Ky, and¢ are
plotted in Figures 2 and 3. The value W{K_ is fixed at 106
M2 in Figure 2 and the value d€_/K is specified at 10* in
Figure 3. It can be seen that the point of zero charge is given
by n* = (K{K_)Y2 If n® < (K4K-)Y2, the values of ando(€®
are negative; the magnitude oflecreases monotonically with
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Figure 2. Plots of the dimensionless equilibrium surface potential
¢, equilibrium surface charge densitfe®, and charge regulation
parameteta versus the bulk concentratio® of an aqueous-t1
electrolyte solution under the condition @&= 200 nm,Ns = 5 x
10% site/n?, andK K_ = 10 ~ ® M2 The solid and dashed curves
represent the cases of the volume fractiorequal to 0.3 and O,

respectively.

an increase im® for an otherwise specified condition, whereas
o€ may have a maximal magnitude at some valugs’off n®

> (K+K-)¥2 the values of ando(€9, which are both positive,
do not increase monotonically with an increasetrand may
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Figure 3. Plots of the dimensionless equilibrium surface potential
¢, equilibrium surface charge densitfe?), and charge regulation
parametet.a versus the bulk concentratio®® of an aqueous-11
electrolyte solution under the condition @&= 200 nm,Ns = 5 x
10%site/n?, andK_/K; = 10~ The solid and dashed curves represent
the cases of the volume fractignequal to 0.3 and 0, respectively,
and the unit ofK K_ is M2,

have maxima at some valuest The magnitudes df ando(¢?
increase a¥X_/K. increases, because the concentration of the
un-ionized surface group AB decreases WthK, as inferred
fromeq A2. When the value &f, K_ increases, the concentration
of the negatively charged surface groufrAvill increase or that
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of the positively charged surface group &B will decrease o . A agp N2 4
according to eq A2; thus, the particles become more negatively v=2+p 21— ¢) + La(l + 2¢)\Ka) +Ol(ka)]
charged or less positively charged. The magnitudamdreases, (45)
while the magnitude o6(¢% decreases, as the volume fraction - _

@ increases, but these dependencies become negligible when th# the boundary conditions in eq 12 are chosen, egs 44 and 45

value ofn= is relatively high. The regulation parametexis not will still be valid as long as one takés= 0 andy = 1+ ¢/2.
a monotonic function of the characteristic variabt@sK K-, The numerical results of the dimensionless coeffic@nfor
K_/K+, andg of the suspension. a suspension of identical charge-regulating spheres calculated

Now we consider several limiting cases of the analytical from eq 37 withy =1 — ¢ as a function of the parametexs,
expressions for the diffusiophoretic velocity. In the limit of an La, andg are plotted in Figures 4 and 5 for the Happel and

infinitely dilute suspensiong — 0), eq 37 reduces to Kuwabara models, respectively. The calculations are presented
up togp = 0.74, which corresponds to the maximum attainable
0, = 1 — €9[5E,(ka) — 2E(ka)] (41a) volume fraction for a swarm of identical sphefé#t.can be seen

that®; decreases gently and monotonically with an increase in
the charge regulation parametexrfor specified values ofaand
@. This coefficient becomes independentiaf for the case of
4 a very dilute suspensions and for the situations of very large and
[Eq(ka) — Es(ka)] + ée’( [3E(k@) + 9E,(«a) — 7E5(ka) — verz smalll valﬁes oka. For given values of.a and)(/p, @gl
15E4(ka)] (41b) decreases monotonically with a decreasifor with an increase
in the double layer overlap). Whera = 0, ®1 = 2/3 asgp =
0 and®; = 0 for all finite values ofg. For the case of the
Kuwabara model@®; is a monotonic decreasing function @f
® for fixed values okaandLaand equals unity asa— o, whereas
Enx) = fl tie Tdt (42) for the case of the Happel modé); is a monotonic function
of ¢ only for a given value oka less than about unity. For any
Interestingly, these reduced results, which are the same as the&ombination ofia, La, andg, the Kuwabara model predicts a
formulas for the diffusiophoretic velocity obtained previoddly  smaller value of®; than the Happel model does. This occurs
for a single dielectric sphere in an unbounded electrolyte, do not because the zero-vorticity model yields larger energy dissipation
depend on the charge regulation parameterHowever, it is in the cell than that due to the particle drag alone for the free-
understood that the value &fin eq 40 for a charge-regulating  surface model, owing to the additional work done by the stresses
sphere is dependent on the regulation characteristics of the particleat the outer boundary.

0,=1+ %ez"a[loEG(ZKa) + 7Ey(2¢8)] — 40, (ca)

whereE, is a function defined by

and suspending electrolyte solution. In Figures 6 and 7, the coefficie®, for a suspension of
Whenka>>1, eq 37 foii = 1 can be expressed asymptotically identical charge-regulating spheres calculated from eq 37 with
as x = 1 — @ is plotted for the Happel and Kuwabara models,

respectively, as a function of the parametess La, and ¢.
0. = 3l 1— (p5’3 “140 5 Analogous to the case @1, ©, decreases monotonically with
1 _J_C rz(ps/g (@) (@) ] an increase in the charge regula_ltion paramiedefor specified
(for the Happel model) (43a) values ofca andg and becomes independentlat for the case
of very dilute suspensions and for the situations of very large
N -1 -2 and very small values ofa. However,®; is not monotonic
0,= X{ 1=¢—=3ka) "+ O[ka) I} functions of eithekaor ¢, and alocal maximum and/or minimum
(for the Kuwabara model) (43b) of each of these functions would appear, for an otherwise
unchanged condition. For a combination«ef, La, and¢ not
Again, these asymptotic results are independent of the chargetoo close to these minima, the Kuwabara model predicts a
regulation parametémato the order as listed. When the boundary somewhat smaller value @&, than the Happel model does.
conditions 11d and 11e are used (ije5 1 — ¢), the leading Whenka = 0, both models predict th&, = 0 for all values
terms in eq 43 are identical to the formulas of the electrophoretic of ¢ andLa.
mobility of a dielectric sphere in a cell derived by Levine and In Figures 8 and 9, the dependence of the diffusiophoretic
Nealé8in the limit ka — . Note that, whema — «, the value velocityU in a suspension of identical charge-regulating spheres
of ®; predicted by the Happel model can be as much as 14% on their dimensionless zeta potentide{/kT) at various values
greater (occurring atp = 0.39) than that predicted by the of the parameterga andLa calculated from eq 40 witly = 1
Kuwabara model. — @ andg = 0.1is plotted for the Happel and Kuwabara models,
Whenka < 1, eq 37 withi = 1 for the case that the boundary respectively. The magnitude of the diffusiophoretic velocity is
conditions in egs 11d and 11e apply=€ 1 — ¢) can be written normalized by a characteristic value given by

as
eo. (kT\2
_ uU* = et (46)
5/3 3 AT a(z-g
=l e o e + Olteay] !
¢ (for the Happel model) (44a) The case that the cation and anion diffusivities are eqtia# (
PP 0) is displayed in Figures 8a and 9a. Only the results at positive
_ Ve -1_ g, 23 _ 2 4 zeta potentials are shown since the particle velocity, which is
0, 45;((5(p 9% T+ 5= g)ka)” + Ol(kay] due to the chemiphoretic effect entirely, is an even function of

(for the Kuwabara model) (44b) the zeta potential as illustrated by eq 40. Because our analysis
is based on the assumption of small surface charge density or
where zeta potential, the magnitudes£d#./kT considered are less than
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Figure 4. Plots of the dimensionless coefficiefi forasuspension  gigyre 5. Plots of the dimensionless coefficie®i for a suspension

of identical spheres calculated from eq 37a witir 1 — ¢ (using of identical spheres calculated from eq 37b wjith 1 — ¢ (using

boundary conditions 11d and 11e) for the Happel model versus the,,ngary conditions 11d and 11e) for the Kuwabara model versus

parameterga andg. The solid, dotted-dashed, and dashed curves ihe parametersaandg. The solid, dotted-dashed, and dashed curves

represent the cases of the charge regulation parariatequal to represent the cases of the charge regulation parateteqgual to

0, 5, andeo, respectively. 0, 5, ande, respectively.

0.6 0.8

2. It can be seen that, in this range &&/kT, the reduced
diffusiophoretic velocityJ/U* increases monotonically with an
increase in the magnitude @&S/KT for fixed values ofca and
La and with a decrease lra for given values oka andZeG/kT.
For the case of very large and very small valuegafU/U*

9b indicate that particles might reverse direction of movement
more than once as their zeta potential varies from negative to
positive values. The reversals occurring at the valuegokT
other than zero result from the competition between the
contributions from chemiphoresis and electrophoresis. In the
becomes independent b&. On the other hand, consistent with  limit ka= 0, the diffusiophoretic velocity vanishes for any finite
the result of®,, U/U* is not a monotonic function ofa for an value ofp, irrespective of the value &fa. Note that the situations
otherwise specified condition. There is no chemiphoretic motion associated with Figures 8a or 94+ 0) and 8b or 9bfg = —
of the patrticles for the special casesz&/kT = 0 orxa = 0. 0.2) takingZ = 1 are close to the diffusiophoresis in the aqueous
Figures 8b and 9b are drawn for the reduced diffusiophoretic solutions of KCI and NacCl, respectively.
mobility U/U* of the particles for a case that the cationand anion ~ When the boundary conditions in eq 12 are chosen for the
have different diffusion coefficientg3(= —0.2). In this case, electrostatic and electrochemical potentials at the virtual surface
both the chemiphoretic and the electrophoretic effects contribute of the unit cell, the diffusiophoretic mobility of a suspension of
to the particle’s movement, and the net diffusiophoretic velocity identical charge-regulating spheres is independent of the charge
is neither an even nor an odd function of the zeta potential. For regulation parametéra. Graphical results of the dimensionless
constant values afa andLa, the reduced particle velocity/U* coefficients®; and®, as well as the reduced diffusiophoretic
is not necessarily a monotonic function 8&/kT. When the mobility U/U* as functions of the parameteta and¢ for this
product of andZeZ/KT is negative U/U* is not a monotonic case are the same as those presented in a previouspaper
function ofka for given values oZeZ/kT andLa. The reduced the limit La = 0. For a given suspension of identical charge-
diffusiophoretic velocityU/U*, which is not necessarily to  regulating spheres, the diffusiophoretic mobility obtained by each
decrease with an increaselia for given values oka andZeZ/ cell model can be evaluated as functions of the regulation
KT, becomes independent bé for the case of very large and  characteristics of the suspension (sucim3K,, K-, Ns, a, ¢,
very small values oka. Some of the curves in Figures 8b and etc.) from eqgs 37 and 40 incorporating with eqs 16, A4, and A8.
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Figure 6. Plots of the dimensionless coefficigt for a suspension

of identical spheres calculated from eq 37a witls 1 — ¢ (using
boundary conditions 11d and 11e) for the Happel model versus the
parameterga andg. The solid, dotted-dashed, and dashed curves
represent the cases of the charge regulation parametequal to

0, 5, ande, respectively.

Figure 7. Plots of the dimensionless coefficigdt for a suspension

of identical spheres calculated from eq 37b witlr 1 — ¢ (using
boundary conditions 11d and 11e) for the Kuwabara model versus
the parametersaandg. The solid, dotted-dashed, and dashed curves
represent the cases of the charge regulation paramatequal to

0, 5, andeo, respectively.

These functions are quite complicated for most situations and around the Charge_regu|ating Sphere in a unit cell. Comparing
cannot be predicted systematically by simple general rules.  our results of the coefficier®, with the numerical solution for
the electrophoretic mobility of a charged sphere in unbounded
5. Concluding Remarks KCI solutions obtained by O’Brien and Whifevalid for an

Inthis work, the steady-state diffusiophoresis inathomogeneousarb'trary value of zgta potential, one can 'f|nd. that eq 41a for a
charged sphere with a low zeta potential in an unbounded

suspension of identical charge-regulating spheres in an electrolyte T . .
solution with arbitrary values of the parametees La, and¢ electrolyte solution is also quite accurate for reasonably high

(and of the regulation characteristics of the suspension) is analyzedzeta P°te“t'?"5 (with errors Iessthgn A% GeKT <2). Th_erefore,

by employing the Happel and Kuwabara cell models. Solving °Y' re_sults in eqs 37 and_ 40 mlgh_t be uset_i tentatively for the
the linearized electrokinetic equations applicable to the system situation of reasonably _h'gh electric pot(_antlals._

of a sphere in a unit cell by a regular perturbation method, we Wg.note that th? unit cell models with various boundary
have determined the electrochemical potential energydistributionSCQndltlons at the virtual surface of the cell Igad to somewhat
of the electrolyte ions, the electrostatic potential profile, and the different results of the effeCt of c_harge regulatlon at the particle
fluid flow field through the use of a linearized charge regulation surfaces on th_e_ d|ffg$|c_>phoret|c velocity. Neither of the_se
model. The requirement that the net force exerted on the unit cell Poundary condmon_s IS rigorously correct, for the sgrroundm_g
is zero leads to eqs 37 and 40 for the diffusiophoretic velocity spheres affec'g the ionic concentrations, e]ectrosta’uc potential,
of the charged sphere correct to the orgfetith the use of the and fluid velocity at this surface. Mathematically, the concentra-

Neumann-type boundary conditions in eqs 11d and 11e at thetion’ potential, and flow fields i_n thg surrc_)unding ’.“at”x should
virtual surface of the unit cell, the normalized diffusiophoretic be coupled to the corresponding fields in the unit cell through

mobility is a monotonic decreasing functioniatfor fixed values appropriate compatibility conditions (as opposed to boundary
of ka and¢ conditions), and specification of boundary conditions at the virtual

Equation 40 with eq 37 are derived on the basis of the Debye (43) O'Brien, R. W.; White, L. RJ. Chem. Soc., Faraday Trans1878 74,
Huckel approximation for the equilibrium potential distribution  1607.
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Figure 8. Plots of the reduced diffusiophoretic mobility in a Figure 9. Plots of the reduced diffusiophoretic mobility in a
suspension ofidentical spheres versus the dimensionless zeta potentiglyspension of identical spheres versus the dimensionless zeta potential
at fixed values ofa calculated from eq 40 witly = 1 — ¢ (using at fixed values ofa calculated from eq 40 with = 1 — ¢ (using
boundary conditions 11d and 1le) apd= 0.1 for the Happel  poundary conditions 11d and 11e) apd= 0.1 for the Kuwabara
model: (a)s = 0; (b) f = —0.2. The solid, dotted-dashed, and model: (a)g = 0; (b) 5 = —0.2. The solid, dotted-dashed, and
dashed curves represent the cases of the charge regulation parametggshed curves represent the cases of the charge regulation parameter
La equal to 0, 5, andb, respectively. La equal to 0, 5, ande, respectively.

surface is, at best, an approximation. Nonetheless, the analysis Acknowledgment. This research was supported by the
presented here provides meaningful information for the volume National Science Council of the Republic of China.
fraction effects on the diffusiophoretic mobility in concentrated

suspensions of particles. In many other electrokinetic phenomena, ) ) i )
Following the previous studiéd2*we consider a general model

the Dirichlet approach given by eq 12 has been shown to bef he ch lati " hich | . h
better than Neumann’s (better agreement with the ensemble- or the charge-regulating surface which develops surface charges

averaged predictions and experiments as regards electrophoretig Ir%uassso'?hat;ﬂzrl]/r (fjéscseof::é?ignesq#:!brt?eif r'ggggder;g surface
mobility and electric conductivity, compatibility with Onsager groups. y P

Appendix: Model for a Charge-Regulating Surface

reciprocity laws connecting different phenomena, etc., for 7+ z+
instance), probably due to the fact that the angular components AB,;” —AB+B (Ala)
of the concentration and potential gradients at the virtual surface AB < AZ + BZ* (Alb)

of the unit cell are not specified in eqs 11d and 11e. The results

of our analysis show that the regulation mechanism for the surface,yhere AB represents the associable/dissociable functional group
charge is of minor importance if the Dirichlet option is chosen. on the surface, B denotes the ion to determine the status of
The relevant experimental data (such as if the diffusiophoretic charges on the surface groups (the potential-determining ion),
mobility in a concentrated suspension is enough sensitive to theand the positive integef is the valence of ionization. For the
changes of the charge regulation parameter), which are notcase of an amphoteric surfaces*Bs usually the hydrogen ion
available in the literature yet, would be needed for confirming H*. The equilibrium constants for the reactions in eq Al are
the validity of each approach of the cell model at various situations. given by
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K, =[AB][B “'1J[AB,""] (A2a) dus is the deviation in electrochemical potential of‘Enext to
the surface from the equilibrium state defined by eq 6, athd
K_ =[AZ][B%J[AB] (A2b) is the concentration of B in the bulk solution where the

equilibrium potential is set equal to zero. Equation A6 is the

where [B*]sis the concentration of 8 next to the surface. The ~ Nernstequation relatinglt/he Nernst potenfiglto the isoelectric
surface dissociation constakts andK_ are taken to be functions ~ POint [with n = (K. K-)']. It can be seen from eq A4, which

of temperature only. acts as an equation of the electric state of the surface, that the
For Ns ionizable surface groups per unit area, the net surface S9N 0fo is opposite to that of s — y at equilibrium (withous
charge density is =0). The surface charge density approaches the saturation values
+ZeNs when the difference between the surface potential and
[AB 22+] — [AZ—] its Nernst value becomes large [e.g., when the valugtK
o=ZeN; o . K-)Y2 approaches zero or infinity and the valueygfis finite].
[AB] + [AB,™"] + [A™] With the relationship betweemands given by eq A4, the
241 2 charge regulation capacitance of the surface at equilibrium can
= ZeN, [B™]s" — K K. be written as
K, [B* s+ [B*]" + K K_ do €
(A3) 5 = (A7)
dyg pemt 4

By the substitution of the Boltzmann distribution for the
equilibrium concentration of B and the utilization of the concept ~ where( is the value ofys at equilibrium and
of electrochemical potential energy, eq A3éaran be expressed

in terms of the surface potentigis as L= 47Z°EN{ O + coshZe(y§? — £)/kT]} A8)
o SN [Ze(y, — 1o + dug/KT} ekT{ 1+ 6 coshpe(y$? — O)/KT]}?
o=172e (A4) ] . ]
1+ 0 cosH [Ze(yy — ¥o) + Oudl/KT} The reciprocal of the positive quantitycan be regarded as the
characteristic length controlling the charge regulation condition
where atthe surface. The limiting valueslof= 0 andL — « correspond
1 tothe cases of constant surface charge density and constant surface
0=2(K_/K,) (A5) potential, respectively. Note thitis small when the difference
. between the equilibrium surface potential and its Nernst value
W le n (A6) is large.

=2n
1/2
Ze (K,K)) LA061517C



