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Abstract

This study analytically examines the steady diffusioosmotic and electroosmotic flows of an electrolyte solution in a

fine capillary slit with each of its inside walls covered by a layer of adsorbed polyelectrolytes. In this solvent-permeable

and ion-penetrable surface charge layer, idealized polyelectrolyte segments are assumed to distribute at a uniform

density. The electric double layer and the surface charge layer may have arbitrary thicknesses relative to the gap width

between the slit walls. The electrostatic potential distribution on a cross section of the slit is obtained by solving the

linearized Poisson�/Boltzmann equation, which applies to the case of low potentials or low fixed-charge densities.

Explicit formulas for the fluid velocity profile due to the imposed electrolyte concentration gradient or electric field

through the slit are derived as the solution of a modified Navier�/Stokes/Brinkman equation. The results demonstrate

that the structure of the surface charge layer can lead to an augmented or a diminished electrokinetic flow (even a

reversal in direction of the flow) relative to that in a capillary with bare walls, depending on the characteristics of the

capillary, of the surface charge layer, and of the electrolyte solution. For the diffusioosmotic flow with an induced

electric field, competition between electroosmosis and chemiosmosis can result in more than one reversal in direction of

the flow over a range of the Donnan potential of the adsorbed polyelectrolyte in the capillary.

# 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The transport phenomena of fluids in porous

media are of much fundamental and practical

interest in various areas. In general, driving forces

for the fluid flow through small pores include

dynamic pressure differences between the two ends

of a capillary pore (convection), concentration

differences of an impermeable solute between the

two bulk solutions outside the pores (osmosis),

and tangential electric fields that interact with the

electric double layer adjacent to a charged pore

wall (electroosmosis). Problems of fluid transport

caused by these well-known driving forces were

studied extensively in the past.

Another driving force for the flow of liquid

solutions in a capillary pore, which has com-

manded less attention, involves concentration
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gradients of a permeable solute, that interacts with
the pore wall, along the capillary. The fluid motion

associated with this mechanism, which is termed

‘diffusioosmosis’, has been discussed for electro-

lyte solutions near a plane wall [1,2] and inside a

capillary tube [3�/5]. The interaction between the

ionic solute and the charged wall is electrostatic in

nature and its range is the Debye screening length

k�1 (defined by Eq. (4)). Electrolyte solutions with
a concentration gradient of order 1 M cm�1 along

rigid surfaces with a zeta potential of order kT /e

(�/25 mV; e is the charge of a proton, k is the

Boltzmann constant, and T is the absolute tem-

perature) can flow by diffusioosmosis at rates of

several microns per second.

The formulas for the electroosmotic [1,6] and

diffusioosmotic [2] velocities of electrolyte solu-
tions parallel to a charged plane wall can be

applied to the corresponding flow in capillary

tubes and slits when the thickness of the double

layer adjacent to the capillary wall is small

compared with the capillary radius. However, in

some practical applications involving dilute elec-

trolyte solutions in very fine capillaries, this

condition is no longer satisfied and the dependence
of the fluid flow on the electrokinetic radius kR or

kh; where R is the radius of a capillary tube and h

is the half thickness of a capillary slit, must be

taken into account. Analytical solutions for the

steady electroosmotic velocity of electrolyte solu-

tions in fine capillaries with a constant surface

potential at the walls were obtained by Burgreen

and Nakache [7] for the case of a slit with arbitrary
values of kh and surface potential as well as by

Rice and Whitehead [8] for the case of a tube with

an arbitrary value of kR and a small surface

potential. Recently, the diffusioosmosis of electro-

lyte solutions in a capillary tube or slit with an

arbitrary value of kR or kh was analyzed by the

present authors [9] for the case of small surface

potential or surface charge density at the capillary
wall. Closed-form formulas for the fluid velocity

profile and average fluid velocity on the cross

section of the capillary tube and slit were obtained.

The surface of the inside wall of a micropore is

generally not hard and smooth as assumed in

many theoretical models. For instance, polymers

are purposely attached to microporous membranes

to allow the possibility of manipulating the trans-
port rate of solvent and solutes and negating the

adverse effects of pore-size distribution on mem-

brane separation [10]. Even the surfaces of syn-

thetic porous membranes can be ‘hairy’ with a gel-

like polymeric layer extending form the bulk

material inside the pore wall [11]. In particular,

the biological surfaces are not hard smooth walls,

but rather are permeable rough surfaces with
various appendages ranging from protein mole-

cules on the order of nanometers to cilia on the

order of microns [12]. The electroosmotic flows in

capillaries with thin porous layers on the inside

walls were theoretically examined for the cases of a

slit [13,14] and a tube [15] with thin double layer.

On the other hand, a closed-form formula for the

electroosmotic velocity profile of a solution of
general electrolytes on the cross section of a

capillary tube bearing a layer of adsorbed poly-

electrolytes of arbitrary thickness on its wall was

obtained by solving the linearized Poisson�/Boltz-

mann equation for the case of an arbitrary value of

kR [16]. However, the diffusioosmotic flow of fluid

solutions with a macroscopic solute concentration

gradient in a capillary pore coated with a layer of
adsorbed polymers on its inside wall has not been

investigated yet. Even the results for the electro-

osmosis of electrolyte solutions in a capillary slit

having an arbitrary surface charge density and

covered by a layer of adsorbed polyelectrolytes of

arbitrary thickness on its walls are not available in

the literature.

In this article we present an analysis of the
steady diffusioosmosis/electroosmosis of an elec-

trolyte solution with a constant imposed solute-

concentration/electric-potential gradient through a

capillary slit bearing permanently adsorbed or

covalently bound polyelectrolytes on its inside

walls. The charge and segment densities of ad-

sorbed polymers are assumed to be uniform

throughout the surface charge layer, and the
linearized Poisson�/Boltzmann equation for the

electrostatic potential is employed. However, no

assumptions will be made about the thickness of

the electric double layer or the thickness of the

surface charge layer relative to the gap width

between the slit walls. We shall derive explicit

formulas for the profiles of electrostatic potential,
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of space charge density, and of fluid velocity due
to the application of an electrolyte-concentration/

electric-potential gradient along the slit walls.

When there is no polymer attached to the slit

walls, our results are consistent with those ob-

tained for the diffusioosmotic/electroosmotic flow

in a polymer-free capillary slit with a constant

surface potential or surface charge density at its

inside walls. The main objective of this work is to
predict the effect of adsorbed polyelectrolytes on

the diffusioosmotic/electroosmotic velocity of an

electrolyte solution of known concentration gra-

dient in a small pore. Such information may prove

relevant in understanding the conformational

characteristics of adsorbed polymers and the

chemotactic/electrokinetic flow of fluids in phy-

siological porous media.

2. Electrostatic potential distribution

We first consider the electrostatic potential

distribution on a cross section of the narrow

channel between two large identical parallel plates

of length L at separation distance 2h with h�L;
as illustrated in Fig. 1. Each of the inside walls of

the capillary slit is covered by a layer of adsorbed,
charged polymers in equilibrium with the sur-

rounding solution of a symmetrically charged

binary electrolyte. The polymer layer is treated as

a solvent-permeable and ion-penetrable surface

charge layer of constant thickness d�h�b in

which fixed-charged groups of valence q are

distributed at a uniform density N . (Experimental

values for human erythrocytes [17], rat lympho-
cytes [18], and grafted polymer macrocapsules [19]

indicate that d ranges from 7.8 nm to 3.38 mm and
N can be as high as 0.03 M, depending on the pH

and ionic strength of the electrolyte solution.) The

prescribed electrolyte concentration gradient along

the axial (z ) direction in the capillary slit is

constant and can be expressed by a�//dC�=dz;
where C�(z) is the linear concentration distribu-

tion of the electrolyte in the bulk solution phase in

equilibrium with the fluid inside the slit. Since the
electrolyte ions can diffuse freely along the capil-

lary (inside and outside the surface charge layer),

there exists no regular osmotic flow of the solvent.

It is assumed that aL=C�(0)BB1; where z�0 is

set at the midpoint through the capillary slit. Thus,

the variation of the electrostatic potential (exclud-

ing the macroscopic electric field induced by the

prescribed electrolyte gradient, given by Eq. (19))
and ionic concentrations in the electric double

layers adjacent to the slit walls with the axial

position can be ignored.

Owing to the planar symmetry of the system, we

need consider only the half region 05y5h; where

y is the distance from the median plane between

the slit walls in a normal direction. If c(y)

represents the electrostatic potential at the position
y relative to that in the bulk solution and C�(y; z)

and C�(y; z) denote the local concentrations of

the cation and anion, respectively, of the symme-

trically charged electrolyte with valence Z (which

is positive), then Poisson’s equation gives

d2c

dy2
��

4pZe

o
[C�(y; 0)�C�(y; 0)];

if 05yBb; (1a)

d2c

dy2
��

4pe

o
fZ[C�(y; 0)�C�(y; 0)]�qNg;

if bByBh: (1b)

In the above equations, e is the charge of a proton;

o�4po0or; where or is the relative permittivity of

the electrolyte solution which is assumed to be

constant and o0 is the permittivity of a vacuum.

The local concentrations C� and C� can also be

related to the electrostatic potential c by the

Boltzmann equation,

Fig. 1. Geometrical sketch for the electrokinetic flow in a

capillary slit with each of its inside walls covered by a layer of

adsorbed polyelectrolytes.
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C9�C�exp

�
�

Zec

kT

�
: (2)

Substitution of Eq. (2) into Eqs. (1a) and (1b)

leads to the well-known Poisson�/Boltzmann equa-

tion. For small values of c (Zec=kT �1; known

as the Debye�/Huckel approximation), the
Poisson�/Boltzmann equation can be linearized

and Eqs. (1a) and (1b) becomes

d2c

dy2
�k2c; if 05yBb; (3a)

d2c

dy2
�k2c�

4pqeN

o
; if bByBh: (3b)

Here, k is the reciprocal of the Debye screening

length defined by

k�
�

8pZ2e2

okT
C�(0)

�1=2

: (4)

The boundary conditions for c are

dc

dy
(y�0)�0; (5a)

dc

dy
(y�h)�

4ps
o

; (5b)

c(y�b�)�c(y�b�); (5c)

dc

dy
(y�b�)�

dc

dy
(y�b�): (5d)

Eqs. (5c) and (5d) are the continuity requirements
for c and dc=dy at the outer edge of the surface

charge layer. Eq. (5b) is the Gauss condition at the

capillary wall, with s equal to the surface charge

density of the bare wall. It is understood that the

magnitudes of the dimensionless fixed-charge

densities

s̄�
4pZes

okkT
(6)

and

N̄�
4pZe2qN

ok2kT
�

qN

2ZC�(0)
(7)

must be small for the potential c to remain small.

The solution to Eqs. (3a), (3b), (5a), (5b), (5c)

and (5d) is

c�
kT

Ze
A cosh(ky); if 05y5b; (8a)

c�
kT

Ze
[B cosh(ky)�C sinh(ky)�N̄];

if b5y5h; (8b)

with

A�
s̄� N̄ sinh(kd)

sinh(kh)
; (9a)

B�
s̄� N̄ cosh(kh) sinh(kb)

sinh (kh)
; (9b)

C�N̄ sinh(kb): (9c)

Note that the parameter N̄ given by Eq. (7) can

also be viewed as the nondimensionalized Donnan

potential [14,20] of the surface charge layer in the

Debye�/Huckel approximation.

If the boundary condition (5b) for the case of

constant surface charge density is replaced by the
boundary condition for the case of constant sur-

face potential,

c(y�h)�cw; (10)

then the solution in the form of Eqs. (8a) and (8b)

is also valid, with

A�
c̄w � N̄[cosh(kd) � 1]

cosh(kh)
; (11a)

B�
c̄w � N̄[sinh(kh)sinh(kb) � 1]

cosh(kh)
; (11b)

where c̄w�Zecw=kT is the dimensionless surface

potential, and C is still given by Eq. (9c). By using

Eqs. (5b), (6), (8b), (9c) and (11b), it can be found

that the relation between c̄w and s̄ for arbitrary

values of N̄; kh; and kb under the Debye�/Huckel

approximation is

c̄w sinh(kh)

� s̄ cosh(kh)�N̄[sinh(kh)�sinh(kb)]: (12)

Substituting Eqs. (8a) and (8b) into Eqs. (1a) and

(1b) or Eq. (2), one obtains the concentration

distributions of the electrolyte ions.

When there is no polyelectrolyte adsorbed on

the walls of the capillary slit, one has d�0; b�h;
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and N�0: Then, Eqs. (8a), (8b), (9a), (9b), (9c),
(11a) and (11b) reduce to

c�
kT

Ze
A0 cosh(ky); (13)

where

A0�
s̄

sinh(kh)
(14a)

for the situation of constant surface charge

density, and

A0�
c̄w

cosh(kh)
(14b)

for the situation of constant surface potential (/B�
A0 and C�0):/

When the capillary slit is filled with the poly-

electrolytes, one has d�h and b�0: Then, Eqs.

(8a), (8b), (9a), (9b), (9c), (11a) and (11b) reduce to

c�
kT

Ze
[B1 cosh(ky)�N̄]; (15)

where

B1�
s̄

sinh(kh)
(16a)

for the situation of constant surface charge

density, and

B1�
c̄w � N̄

cosh(kh)
(16b)

for the situation of constant surface potential (/A�
B1�N̄ and C�0):/

Figs. 2(a) and (b) show the results of the

normalized potential Zec=kTN̄ calculated from

Eqs. (15) and (16b) for the case of b=h�0 and

from Eqs. (8a), (8b), (9c), (11a) and (11b) for the

case of a finite value of b=h (�0:8); respectively, as

functions of the relative position y=h for several
values of the parameters c̄w=N̄ and kh: As

expected, the potential profile for any case of

given values of b=h and kh increases monotoni-

cally with an increase in c̄w=N̄: The decay of the

potential from the capillary wall (with decreasing

y=h) becomes more gentle when the value of kh is

smaller for any case. For the special case with

b=h�0 and c̄w�N̄ (or s̄�0); the potential in the

polyelectrolyte-filled capillary equals the Donnan

potential everywhere. In the limit kh�0; the

potential in the capillary is a constant equal to

the surface potential of the wall. In the other limit

with kh 0 �; the potential in the capillary

Fig. 2. Plots of the normalized potential Zec=kTN̄ in a

capillary slit with its inside walls covered by layers of adsorbed

polyelectrolytes vs. the relative position y=h: (a) b=h�0; (b)

b=h�0:8: The solid curves represent the case kh�10 and the

dashed curves denote the case kh�1:/
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becomes zero everywhere, so does the dimension-
less Donnan potential N̄ of the polyelectrolyte.

3. Fluid velocity distribution for diffusioosmosis

We now consider the steady flow of an electro-

lyte solution in a capillary slit with each of its

inside walls covered by a layer of charged poly-

mers under the influence of a constant concentra-

tion gradient of the electrolyte prescribed axially.

The momentum balances on the Newtonian fluid

in the y and z directions give

@p

@y
�Ze(C��C�)

dc

dy
�0; (17)

h
d2u

dy2
�

@p

@z
�Ze(C��C�)E;

if 05yBb; (18a)

h
d2u

dy2
�fu�

@p

@z
�Ze(C��C�)E;

if bByBh: (18b)

Here, u(y ) is the fluid velocity profile (satisfying

the equation of continuity for an incompressible

fluid) in the direction of increasing electrolyte

concentration (i.e. direction of a); p (y , z ) is the

pressure, h is the viscosity of the fluid, and f is the

friction coefficient of the polymer layer per unit

volume of the fluid; both h and f are assumed to be

constant. If the polymer segments have a uniform
number density Np and a common effective Stokes

radius a , then f �6phaNp in the free-draining

limit. Eqs. (18a) and (18b) are the Navier�/Stokes

equation and Brinkman equation, respectively,

modified by adding a term of electrostatic force.

The macroscopic electric field E in Eqs. (18a) and

(18b) arises spontaneously due to the imposed

concentration gradient of the electrolyte and the
difference in mobilities of the cation and anion of

the electrolyte. Under the condition that there is

no electric current generated by the cocurrent

diffusion of the electrolyte ions in an electrically

neutral bulk solution, this induced electric field

can be expressed as [1,2,21]

E�
kT

Ze
b

a

C�(0)
; (19)

which is a constant, where

b�
D� � D�

D� � D�

; (20)

and D� and D� are the diffusion coefficients of
the cation and anion, respectively. Eqs. (19) and

(20) are correct for the electric field induced by the

concentration gradient of the electrolyte solution

in the capillary slit, at least for the case with the

Debye�/Huckel approximation considered

throughout the present analysis.

The boundary conditions for u are

du

dy
(y�0)�0; (21a)

u(y�h)�0; (21b)

u(y�b�)�u(y�b�); (21c)

du

dy
(y�b�)�

du

dy
(y�b�): (21d)

In Eq. (21b), we have assumed that the shear plane

coincides with the surface of the bare wall. Eqs.

(21c) and (21d) express the continuity conditions

of u and of du=dy at the outer boundary of the

surface charge layer.

After the substitution of Eq. (2) incorporating

with Eqs. (8a) and (8b) for C9 into Eq. (17) (based
on the assumption that the equilibrium lateral

ionic distributions are not affected by the axially

induced electric field E) and the application of the

Debye�/Huckel approximation, the pressure dis-

tribution can be determined, with the result

p�p0�C�kTA2[cosh2(ky)�1];

if 05y5b; (22a)

p�p0�C�kT

f[B cosh(ky)�C sinh(ky)�N̄]2�A2g;

if b5y5h: (22b)

Here p0 is the pressure at the median plane

between the slit walls, which is a constant in the

absence of applied pressure gradient.
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Substituting the ionic concentration distribu-
tions of Eq. (2), the pressure profile of Eqs. (22a)

and (22b), and the electric field of Eq. (19) into

Eqs. (18a) and (18b), and solving for the fluid

velocity subject to the boundary conditions in Eqs.

(21a), (21b), (21c) and (21d) we obtain

u=U��g1(ky)�g1(kb)�g2(kb)

�
g2(kh) � M sinh(ld)

cosh(ld)
;

if 05y5b; (23a)

(23b)

In the above equations,

U��
2akT

hk2
�

oa

4phC�(0)

�
kT

Ze

�2

; (24)

which is a characteristic value of the diffusioos-

motic velocity,

l�
�

f

h

�1=2

; (25)

g1(x)�
1

16
A2(cosh 2x�2x2)�bA cosh x; (26a)

g2(x)�
k2

4(4k2 � l2)

� [(B2�C2) cosh 2x�2BC sinh 2x]

�
k2

k2 � l2
(N̄�b)(B cosh x�C sinh x)

�
k2

4l2
(2A2�B2�C2�2N̄2�4bN̄); (26b)

and

M�
k

l

�
A2

8
[sinh(2kb)�2kb]�bA sinh(kb)

�
k2

2(4k2 � l2)

� [(B2�C2) sinh(2kb)�2BC cosh(2kb)]

�
k2

k2 � l2
(N̄�b)

� [B sinh(kb)�C cosh(kb)]

�
: (27)

Note that the reciprocal of the parameter l has the

dimension of length and characterizes the extent of

flow penetration inside the surface charge layer.
For the surface charge layer of human erythro-

cytes [14], rat lymphocytes [18], and grafted

polymer microcapsules [19], experimental data of

1=l range from 1.35 to 3.7 nm.

When there is no polymer adsorbed on the slit

walls, one has d�0; b�h; N�0; and l�0; and

the potential profile in the slit is given by Eq. (13).

Then, Eqs. (23a) and (23b) reduce to

u=U��
A2

0

16
[2k2(h2�y2)�cosh(2kh)�cosh(2ky)]

�bA0[cosh(kh)�cosh(ky)]; (28)

where A0 was defined by Eqs. (14a) and (14b). Eq.
(28) agrees with the result obtained in a previous

article [9].

For the case of a capillary slit coated with an

uncharged polymer layer (N�0) at each of its

inside walls, Eq. (13) for the potential distribution

is also applicable and the fluid velocity distribution

can be evaluated from Eqs. (23a), (23b), (24), (25),

(26a), (26b) and (27) by setting N̄�0; B�A�A0;
and C�0:/

When l 0 � (very high segment density), the

resistance to the fluid motion inside the surface

charge layer is infinitely large. For this limiting

case, Eqs. (26b) and (27) reduce to g2(x)�0 and

M�0; and Eqs. (23a) and (23b) become

u=U��g1(ky)�g1(kb); if 05y5b; (29a)

u�0; if b5y5h: (29b)

Eqs. (29a) and (29b) show that the fluid flow in the

surface charge layer disappears and the velocity

profile of the remaining fluid is similar to that in a

polymer-free capillary slit of half thickness b with

a modified surface charge density or surface

potential at the wall.
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When l 0 0 (very low segment density), the
adsorbed polymers do not exert resistance to the

fluid motion in the capillary channel. In this limit,

Eqs. (23a) and (23b) become

u=U��g1(ky)�g1(kb)�g3(kb);

if 05y5b; (30a)

u=U��g3(ky); if b5y5h; (30b)

where

g3(x)��
1

16

�f(B2�C2)[cosh(2kh)�cosh 2x]

�2BC[sinh(2kh)�sinh 2x]g

�(N̄�b)

�fB[cosh(kh)�cosh x]

�C[sinh(kh)�sinh x]g: (31)

If the adsorbed polymers are uncharged (N�0);
the above expression for the velocity profile again

reduces to Eq. (28).

When the capillary slit is filled with the ad-
sorbed polymers, one has d�h and b�0; and the

potential distribution in the slit is given by Eq.

(15). Then, Eqs. (23a) and (23b) reduce to

u=U��g4(ky)�g4(kh)
cosh(ly)

cosh(lh)
; (32)

where

g4(x)�
k2B2

1

4(4k2 � l2)
cosh 2x�

k2B1

k2 � l2

� (N̄�b) cosh x

�
k2

4l2
(B2

1�4B1N̄�4bN̄); (33)

and B1 was defined by Eqs. (16a) and (16b).

The definition of the average fluid velocity over

a cross section of the capillary slit is

hui�1

h g
h

0

u(y) dy: (34)

Substituting Eqs. (23a) and (23b) into the above
equation and performing the integration, we

obtain

hui=U��
A2

96

�
3 sinh(2kb)

kb
�4k2b2

�
�bA

sinh(kb)

kb

�
k

(k2 � l2)d
(N̄�b)

�fB[sinh(kh)�sinh(kb)]

�C[cosh(kh)�cosh(kb)]g

�
k2

4l2
(2A2

�2N̄2�B2�C2�4bN̄)�g1(kb)�g2(kb)

�
k

8(4k2 � l2)d

�f(B2�C2)[sinh(2kh)�sinh(2kb)]

�2BC[cosh(2kh)�cosh(2kb)]g

�
g2(kh)[ld � sinh(ld)] � M[ld sinh(ld) � cosh(ld) � 1]

ld cosh(ld)

(35)

In the limit that N�0 and l�0 (no polymer

adsorbed on the slit walls), Eq. (35) reduces to

hui=U��
A2

0

96

�
3 sinh(2kh)

kh
�8(kh)2�6 cosh(2kh)

�

�bA0

�
sinh(kh)

kh
�cosh(kh)

�
: (36)

It can be found by a comparison between Eqs. (35)

and (36) that the structure of the surface charge

layer can result in an augmented or a diminished

fluid velocity relative to that in a capillary with
bare walls, depending on the characteristics of the

electrolyte solution, of the surface charge layer,

and of the capillary.

It is understood that the diffusioosmosis of an

electrolyte solution in a capillary pore results from

a linear combination of two effects: (i) ‘chemios-

mosis’ due to the nonuniform adsorption of

J.H. Wu, H.J. Keh / Colloids and Surfaces A: Physicochem. Eng. Aspects 212 (2003) 27�/4234



counterions in the electric double layer over the
charged surface, which is analogous to the diffu-

sioosmosis of a nonelectrolyte solution; (ii) ‘elec-

troosmosis’ due to the macroscopic electric field

generated by the concentration gradient of the

electrolyte and the difference in mobilities of the

cation and anion of the electrolyte, given by Eq.

(19). The terms in Eqs. (23a), (23b), (28), (29a),

(29b), (30a), (30b), (32), (35) and (36) proportional
to b (and N̄) represent the contribution from

electroosmosis, while the remainder terms (pro-

portional to N̄2) are the chemiosmotic component.

Note that the order/-N̄2 contribution to electro-

osmosis vanishes only for solutions of symmetric

electrolytes.

4. Results and discussion for diffusioosmosis

The pressure distribution p(y) in a capillary slit

with each of its inside walls covered by a layer of

adsorbed polyelectrolytes is given by Eqs. (22a)

and (22b). Figs. 3(a) and (b) illustrate this result

for the cases of b=h equal to 0 and 0.8, respectively,

for various values of c̄w=N̄ and kh: It can be seen

from Figs. 2 and 3 that the normalized pressure
(p�p0)=C�kTN̄2 increases (decreases) with the

relative coordinate y=h as long as the magnitude of

the normalized potential Zec=kTN̄ increases (de-

creases) with y=h; irrespective of the values of

c̄w=N̄ and kh: This behavior is understood by an

examination of Eq. (17) for the fluid momentum

balance in the lateral direction. For the case of

c̄w=N̄�1; the value of (p�p0)=C�kTN̄2 is always
positive and increases monotonically with an

increase in the value of y=h: On the other hand,

for the case of b=h�0 and 0Bc̄w=N̄B1; the

value of (p�p0)=C�kTN̄2 is always negative, and

its magnitude is also a monotonically increasing

function of y=h:/
The diffusioosmotic velocity distribution u(y) of

an electrolyte solution in the capillary slit with
surface charge layers on the inside walls is given by

Eqs. (23a) and (23b) for the general case and by

Eqs. (28), (29a), (29b), (30a), (30b) and (32) for

several special cases. The normalized fluid velocity

u=U�N̄2 in a slit filled with adsorbed polyelec-

trolytes (b=h�0) due to chemiosmosis (b�0) is

plotted versus the relative position y=h in Fig. 4 for

different values of the parameters c̄w=N̄; kh; and

lh: For the case of c̄w=N̄�1; the magnitude of the

normalized potential Zec=kTN̄ increases mono-

tonically with an increase in y=h (acting like the

dimensionless potential field c=cw in a bare

capillary with b�h) as illustrated in Fig. 2(a),

and therefore, the chemiosmotic velocity of the

Fig. 3. Plots of the normalized pressure (p�p0)=C�kTN̄2 in a

capillary slit with its inside walls covered by layers of adsorbed

polyelectrolytes vs. the relative position y=h: (a) b=h�0; (b)

b=h�0:8: The solid curves represent the case kh�10 and the

dashed curves denote the case kh�1:/
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fluid is in the direction of decreasing electrolyte

concentration (with u=U�B0): For the case of

05 c̄w=N̄B1; the magnitude of this normalized

potential decreases monotonically with an increase

in y=h (opposite to the potential field c=cw in a

bare capillary) and the fluid velocity is in the other

direction (with u=U��0): For the case of c̄w�N̄;
the potential in the capillary is a constant equal to

the Donnan potential of the polyelectrolyte and

the chemiosmotic flow disappears. For the case of
c̄w=N̄B0 (which is not graphically presented here

for conciseness), the chemiosmotic velocity of the

fluid may be in the direction of decreasing

electrolyte concentration if the parameter kh has

a relatively small value (since the magnitude of

Zec=kTN̄ may increase with an increase in y=h);
and in the opposite direction if the value of kh is

relatively large. As expected, the fluid flow rate in
general increases with an increase in the value of

kh (although the local velocity at a given relative

position close to the median plane between the slit

walls may not be a monotonically increasing

function of kh) and decreases with an increase in

the value of lh for an otherwise specified condi-

tion. In the limiting situations that kh�0 or lh 0
�; the fluid velocity vanishes at any position in the
capillary. It can be seen in Fig. 4 that the fluid

velocity is not necessarily a monotonic function of

the position, and can have a maximum in magni-

tude at some value of y=h"0: If the parameter kh

or lh has a larger value, this maximum occurs at a

position closer to the wall (with larger value of

y=h):/
In Fig. 5, the normalized chemiosmotic velocity

u=U�N̄2 of a fluid in a capillary slit with its inside

walls covered by finite layers of adsorbed poly-

electrolytes (with b=h�0:8) as a function of the

relative coordinate y=h is plotted for various

values of the parameters c̄w=N̄; kh; and lh:
Essentially, the magnitude of the normalized

potential Zec=kTN̄ for this case increases with

an increase in y=h as shown in Fig. 2(b); thus, the
chemiosmotic velocity of the fluid is in the

direction of decreasing electrolyte concentration

(with u=U�B0): When c̄w=N̄]0; the magnitude

of the normalized fluid velocity in the slit for given

values of kh; lh; and y=h is a monotonically

increasing function of c̄w=N̄: The fluid flow rate

increases with an increase in the value of kh and

decreases with an increase in the value of lh for an
otherwise specified condition. For the case of

c̄w=N̄B0 (which is not plotted here), the magni-

tude of u=U�N̄2 in general increases with an

increase in the absolute value of c̄w=N̄ and this

magnitude at a fixed relative position not too close

to the slit walls may not be a monotonically

increasing function of kh: In the limit lh 0 �;

Fig. 4. Plots of the normalized fluid velocity u=U�N̄2 due to

chemiosmosis (/b�0) in a capillary slit filled with adsorbed

polyelectrolytes (/b=h�0) vs. the relative position y=h: (a) kh�
10; (b) lh�1: The solid curves represent the case c̄w=N̄�0 and

the dashed curves denote the case c̄w=N̄�2:/
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the fluid velocity vanishes in the surface charge

layer but can be finite at other locations in the

capillary. On the other hand, the fluid does not

flow anywhere in the capillary for the limiting case

of kh�0:/
In Fig. 6, the dependence of the normalized

average diffusioosmotic velocity hui=U� of a fluid

in a capillary slit filled with adsorbed polyelec-

trolytes on the dimensionless fixed-charge density

(Donnan potential) N̄ at a fixed value of kh and

various values of c̄w=N̄; lh; and b calculated from

Eq. (35) is exhibited. Because our analysis is based

on the assumption of small electrostatic potentials,

the magnitudes of N̄ considered are less than 8.

Fig. 6. Plots of the normalized average diffusioosmotic velocity

u=U� in a capillary slit filled with adsorbed polyelectrolytes (/

b=h�0) vs. the dimensionless charge density N̄ with kh�10 :

(a) b�0; (b) b��0:2: The solid curves represent the case

c̄w=N̄�0 and the dashed curves denote the case c̄w=N̄�2:/

Fig. 5. Plots of the normalized fluid velocity u=U�N̄2 due to

chemiosmosis (/b�0) in a capillary slit with its inside walls

covered by layers of adsorbed polyelectrolytes vs. the relative

position y=h as b=h�0:8 : (a) kh�10; (b) lh�1: The solid

curves represent the case c̄w=N̄�0 and the dashed curves

denote the case c̄w=N̄�2:/
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Fig. 6(a) is plotted for the case of an electrolyte
whose cation and anion diffusivities are equal (/b�
0): Only the results at positive values of N̄ are

shown because the fluid velocity, which is due to

the chemiosmotic effect entirely, is an even func-

tion of N̄ as indicated by Eqs. (32), (33), (16a) and

(16b). It can be found that the magnitude of

hui=U� increases monotonically with an increase

in either jN̄j or kh and with a decrease in lh for a
constant value of c̄w=N̄: There is no chemiosmotic

motion of the fluid for the special case of

c̄w�N̄�0:/
Fig. 6(b) is drawn for the normalized average

diffusioosmotic velocity hui=U� as a function of N̄

for the case of an electrolyte that the cation and

anion have different diffusion coefficients (/b�
�0:2 is chosen). In this case, both the chemiosmo-
tic and the electroosmotic effects contribute to the

fluid flow, and the net diffusioosmotic velocity is

neither an even nor an odd function of N̄: It can be

seen that the fluid velocity is not necessarily a

monotonic function of N̄ given fixed values of

c̄w=N̄; kh; and lh: Some of the curves in Fig. 6(b)

illustrate that the fluid might reverse direction of

flow more than once as N̄ varies from negative to
positive values. The reversals occurring at the

values of N̄ other than zero result from the

competition between the contributions from che-

miosmosis and electroosmosis. Again, for given

values of c̄w; N̄; and kh; the magnitude of hui=U�
decreases monotonically with an increase in lh:/

Note that the situations associated with Fig. 6(a)

and (b) taking Z�1 are close to the diffusioos-
mosis of the aqueous solutions of KCl and NaCl,

respectively [22,23].

5. Electroosmosis

Considered in this section is the steady electro-

osmotic flow of an electrolyte solution in a

capillary slit with each of its inside walls covered
by a layer of adsorbed polyelectrolytes, as shown

in Fig. 1, when a uniform external electric field E�

is applied in the z direction (to replace the

electrolyte concentration gradient a): The electro-

lyte concentration in the bulk phase C� in

equilibrium with the solution in the slit is constant

(not a function of z ). Again, in the solvent-
permeable and ion-penetrable porous surface layer

of constant thickness d�h�b; fixed-charged

groups of valence q and hydrodynamic frictional

segments are distributed at uniform densities N

and Np, respectively.

The analysis for the electrostatic potential and

ionic concentration distributions on a cross section

of the capillary slit presented in Section 2 remains
valid here, but the concentrations C�(y); C�(y);
and C� become independent of z . The fluid

velocity field satisfies Eqs. (18a) and (18b) for

the momentum balance in z direction with E

replaced by E� and @p=@z�0 as well as the

boundary conditions given by Eqs. (21a), (21b),

(21c), (21d) and (17); Eqs. (22a) and (22b) are

trivial now. The solution for the fluid velocity can
still be expressed by Eqs. (23a) and (23b), but with

only the terms proportional to E (or b) retained;

namely, Eqs. (24), (26a), (26b) and (27) reduce to

U��
okT

4phZe
E�; (37)

g1(x)�A cosh x; (38a)

g2(x)�
k2

k2 � l2
(B cosh x�C sinh x)

�
k2

l2
N̄; (38b)

M�
k

l

�fA sinh(kb)�
k2

k2 � l2

� [B sinh(kb)�C cosh(kb)]g: (39)

Note that this result for electroosmosis correct to

the order N̄ can also be applied to a solution of

arbitrary electrolytes (with

k� [(4pe2=okT)
X

i

z2
i Ci�]1=2

to replace Eq. (4), where Ci� and zi are the bulk

concentration and valence, respectively, of type i

ions).

When there is no polymer adsorbed on the

capillary walls, the fluid velocity distribution

reduces to
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u��U�A0[cosh(kh)�cosh(ky)]; (40)

where A0 was given by Eqs. (14a) and (14b). This
formula is consistent with the electroosmotic

velocity obtained by Burgreen and Nakache [7]

for the general case without using the Debye�/

Huckel assumption.

In the limiting situations of l 0 �; of l 0 0;
and of b�0; the fluid velocity distributions due to

electroosmosis can also be written as Eqs. (29a),

(29b), (30a), (30b) and (32), respectively, but now
the functions g3(x) and g4(x) become

g3(x)��B[cosh(kh)�cosh x]

�C[sinh(kh)�sinh x]; (41)

g4(x)�
k2B1

k2 � l2
cosh x�

k2

l2
N̄: (42)

If we consider the situation that kb 0 � and

lb 0 � (which also imply that kh 0 � and lh 0
�); the fluid velocity at a large distance from the

walls of the slit [i.e. k(b�y) 0 �] can be eval-
uated from Eqs. (23a), (37), (38a), (38b) and (39)

noting that c(y) 0 0 far from the polyelectrolyte-

coated walls. The result for this electroosmotic

velocity, Ue, is

Ue=U��� sech(ld)

�
�

k2

k2 � l2
(s̄�N̄[e�kd �cosh(ld)])

�
l2

k2 � l2
[cosh(ld)

�
k

l
sinh(ld)]

�
s̄e�kd �

N̄

2
(1�e�2kd)

��

�
k2

l2
N̄[1�sech(ld)] (43)

for the case of constant surface charge density, and

Ue=U��� sech(ld)

�
�

k2

k2 � l2
(c̄w�N̄[1�cosh(ld)])

�
l2

k2 � l2
[cosh(ld)

Fig. 7. Plots of the normalized electroosmotic velocity u=U�N̄

in a capillary slit filled with adsorbed polyelectrolytes (/b=h�0)

vs. the relative position y=h: (a) kh�10; (b) lh�1: The solid

curves represent the case c̄w=N̄�0 and the dashed curves

denote the case c̄w=N̄�2:/
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�
k

l
sinh(ld)]

�
c̄we�kd �

N̄

2
(1�e�kd )2

��

�
k2

l2
N̄[1�sech(ld)] (44)

for the case of constant surface potential (Eq. (12)

reduces to c̄w� s̄�N̄(1�e�kd)): Eq. (43) is

consistent with the result obtained by Ohshima
and Kondo [14] for the electroosmotic flow

between two parallel plates covered by surface

charge layers with s�0: Also, Eqs. (43) and (44)

are identical to the formulas derived by Keh and

Liu [16] for the corresponding electroosmotic

velocity in a circular capillary with a surface

charge layer. Note that, in the limits of kd�0 or

ld�0 (a very thin surface charge layer), Eqs. (43)
and (44) reduce to the Helmholtz expression,

Ue��ocwE�=4ph:/
In Fig. 7, the normalized electroosmotic velocity

u=U�N̄ in a capillary slit filled with adsorbed

polyelectrolytes (/b=h�0) calculated from Eqs.

(32), (37) and (42) as a function of the relative

position y=h is plotted for several values of the

parameters c̄w=N̄; kh; and lh: As expected, for all
cases of c̄w=N̄]0; the electroosmotic velocity of

the fluid in the slit is in the direction of the applied

electric field if the polyelectrolytes (and slit walls)

are negatively charged and in the opposite direc-

tion if the polyelectrolytes are positively charged

(with u=U�N̄B0): The magnitude of the normal-

ized fluid velocity for fixed values of kh; lh; and

y=h increases monotonically with an increase in
c̄w=N̄: Similar to the case of diffusioosmosis

discussed in the previous section, the electroosmo-

tic flow rate is a monotonically increasing function

of kh and a monotonically decreasing function of

lh for an otherwise specified condition. On the

other hand, the magnitude of the normalized fluid

velocity for constant values of c̄w=N̄; kh; and lh

decreases monotonically with an increase in y=h;
from a maximum at the midplane (with y�0) of

the capillary slit to zero at the slit walls (with y�
h); which is different from some cases of chemios-

mosis illustrated in Fig. 4. Again, the fluid velocity

vanishes at any position in the capillary for the

limiting situations of kh�0 or lh 0 �:/

The normalized electroosmotic velocity u=U�N̄

in a capillary slit with each of its inside walls

covered by a finite layer of adsorbed polyelec-

trolytes (with b=h�0:8) is plotted versus the

relative position y=h in Fig. 8 for various values

of c̄w=N̄; kh; and lh: Again, for all cases of

c̄w=N̄]0; u=U�N̄ is negative and its magnitude

increases monotonically with an increase in c̄w=N̄;

Fig. 8. Plots of the normalized electroosmotic velocity u=U�N̄

in a capillary slit with its inside walls covered by layers of

adsorbed polyelectrolytes vs. the relative position y=h as b=h�
0:8 : (a) kh�10; (b) lh�1: The solid curves represent the case

c̄w=N̄�0 and the dashed curves denote the case c̄w=N̄�2:/
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with an increase in kh; and with a decrease in lh

for an otherwise specified condition. For the case

of c̄w=N̄B0 (which is not plotted here), the value

of u=U�N̄ may be either positive or negative,

depending on the relative position and relevant

parameters. Analogous to the chemiosmotic flow

in the slit exhibited in Fig. 5, the electroosmotic

velocity is zero in the surface charge layer but can
be finite at other positions in the capillary for the

limit of lh 0 �; and this velocity disappears

everywhere in the capillary for the limit of kh�0:/
Fig. 9 shows the result of the normalized

electroosmotic velocity Ue=U�N̄ calculated from

Eq. (44) for various values of the parameters

c̄w=N̄; kd; and ld: Again, Ue=U�N̄50 for all

cases of c̄w=N̄]0: For specified values of c̄w=N̄

and kd; the magnitude of Ue=U�N̄ decreases

monotonically with an increase in ld: For constant

values of c̄w=N̄ and ld; however, the magnitude of

Ue=U�N̄ is not necessarily a monotonic function

of kd: When the values of kd and ld are large, the

dependence of this magnitude on c̄w=N̄ becomes

weak. When kd�0 or ld�0; Fig. 9 shows that

Ue=U���c̄w as expected.

6. Concluding remarks

In this paper, the steady diffusioosmotic and

electroosmotic flows of an electrolyte solution in a

narrow capillary slit bearing a layer of adsorbed

polyelectrolytes on each of its inside walls is

analytically studied. The polyelectrolyte layer is
treated as a solvent-permeable and ion-penetrable

surface charge layer of constant thickness in which

fixed-charged groups and frictional segments are

distributed at uniform densities. The electric

double layer and the surface charge layer may

have arbitrary thicknesses relative to the spacing

between the slit walls. Solving the linearized

Poisson�/Boltzmann equation and the modified
Navier�/Stokes/Brinkman equation applicable to

the system, the electrostatic potential distribution

and the fluid velocity profile under the influence of

a constant gradient of the electrolyte concentra-

tion or a uniform electric field are obtained in

closed forms. This analysis applies to a solution of

general electrolytes for electroosmosis to the order

N̄ and to a solution of symmetric electrolytes for
diffusioosmosis to the order N̄2; knowing that the

order-/N̄2 contribution to electroosmosis disap-

pears for symmetric-electrolyte solutions.

It is worth repeating that our analytical solu-

tions for the diffusioosmotic and electroosmotic

velocities of electrolyte solutions in a capillary slit

Fig. 9. Plots of the normalized electroosmotic velocity

Ue=U�N̄ in a capillary slit with its inside walls covered by

layers of adsorbed polyelectrolytes with thickness d vs. the

dimensionless parameters kd and ld as kb 0 � and lb 0 �:

The solid curves represent the case c̄w=N̄�0 and the dashed

curves denote the case c̄w=N̄�2:/
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with layers of adsorbed polyelectrolytes are ob-
tained on the basis of the Debye�/Huckel approx-

imation for the potential distribution in the double

layer. This means that these results are satisfactory

when used for low values of cw and N; but that

they can only be used tentatively for higher values

of cw and N: Moreover, the decay of the density

distributions of polymer segments and fixed

charges in the surface charge layer with the
distance from the capillary wall has not been

considered in our calculations. In order to see

whether our theory can be reasonably extended to

the higher values of cw and N or to the nonuni-

form density distributions of polymer segments

and charges, we propose to obtain a numerical

solution of the Poisson�/Boltzmann equation and

Navier�/Stokes/Brinkman equation allowing the
use of arbitrary distributions of fixed-charge and

fluid-drag components in the surface layer along

the direction normal to the capillary wall and

compare it with the approximate solution.
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