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Abstract

This paper presents a combined analytical–numerical study for the Stokes flow caused by a rigid particle

of revolution translating axisymmetrically in a viscous fluid. The fluid, which may be a slightly rarefied gas,

is allowed to slip at the surface of the particle. A singularity method based on the principle of distribution of

a set of Sampson spherical singularities along the axis of revolution within a prolate particle or on the

fundamental plane within an oblate particle is used to find the general solution for the fluid velocity field

that satisfies the boundary condition at infinity. The slip condition on the surface of the translating particle

is then satisfied by applying a boundary-collocation technique to this general solution to determine the

unknown coefficients. The drag force exerted on the particle by the fluid is evaluated with good convergence
behavior for various cases. For the motion of a slip sphere, our drag results agree very well with the exact

solution. For the translation of a no-slip spheroid, prolate or oblate, along its axis of symmetry, the

agreement between our results and the analytical solutions obtained by using spheroidal coordinates is also

quite good. It is found that the normalized drag force on the translating spheroid increases monotonically

with an increase in the axial-to-radial aspect ratio of the spheroid for a no-slip or slightly-slip spheroid, and

decreases monotonically as the ratio increases for a well-slip spheroid. The drag force on a spheroid with

intermediate values of its slip coefficient is not a monotonic function of its aspect ratio. For a spheroid with

a given aspect ratio, its drag force is a monotonically decreasing function of the slip coefficient of the
particle.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Axisymmetric creeping flow; Aerosol particle of revolution; Spheroid; Slip surface; Drag force
*
Corresponding author. Tel.: +886-2-2363-5462; fax: +886-2-2362-3040.

E-mail address: huan@ntu.edu.tw (H.J. Keh).

0020-7225/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijengsci.2004.03.007

mail to: huan@ntu.edu.tw


1622 H.J. Keh, C.H. Huang / International Journal of Engineering Science 42 (2004) 1621–1644
1. Introduction

The movement of small particles in a continuous medium at low Reynolds numbers is of much
fundamental and practical interest in the areas of chemical, biomedical, and environmental
engineering and science. The theoretical treatment of this subject has grown out of the classic
work of Stokes [1] for a translating rigid sphere in an unbounded viscous fluid. Oberbeck [2]
extended this result to the translation of an ellipsoid. More recently, solutions of the creeping-flow
problem have been obtained for particles which correspond to a coordinate surface of one of the
special orthogonal coordinate systems in which the Stokes equations are simply separable [3,4]
and for long slender bodies [5,6]. Additionally, the low-Reynolds-number flow caused by the
motion of a particle of more general shape has also been treated in the literature by the truncated-
series boundary-collocation method [7], the singularity method [8], and the boundary integral
method [9–11].
When one tries to solve the Navier–Stokes equation, it is usually assumed that no slippage

arises at the solid–fluid interfaces. Actually, this is an idealization of occurrence of the transport
processes. The phenomenon that the adjacent fluid (especially if the fluid is a slightly rarefied gas)
can slip frictionally over a solid surface has been confirmed, both experimentally and theoretically
[12–14]. Presumably, any such slipping would be proportional to the local tangential stress next to
the solid surface (see Eq. (7a)), at least as long as the velocity gradient is small [15,16]. The
constant of proportionality, b�1, may be termed a ‘slip coefficient’. The quantity g=b (where g is
the fluid viscosity) is a length, which can be pictured by noting that the fluid motion is the same as
if the solid surface was displaced inward by a distance g=b with the velocity gradient extending
uniformly right up to no-slip velocity at the surface. Basset [15] has found that the drag force
acting on a translating rigid sphere of radius b with a slip-flow boundary condition at its surface
(e.g., a settling aerosol sphere) is
F ¼ �6pgbU
bbþ 2g
bbþ 3g ; ð1Þ
where U is the translational velocity of the particle. When b ! 1, there is no slip at the particle
surface and Eq. (1) degenerates to the well-known Stokes law. In the limiting case of b ¼ 0, there
is a perfect slip at the particle surface and the particle acts like a spherical invicid gas bubble.
In Eq. (1), the slip coefficient has been determined experimentally for various cases and found

to agree with the general kinetic theory of gases. It can be evaluated from the relation
b�1 ¼ Cml
g

; ð2Þ
where l is the mean free path of a gas molecule, and Cm is a dimensionless constant of the gas-
kinetic slip, which is semi-empirically related to the momentum accommodation coefficient fm at
the solid surface by Cm � ð2� fmÞ=fm [12]. Although Cm surely depends upon the nature of the
surface, examination of the experimental data suggests that it will be in the range 1.0–1.5 [17,18].
Note that the slip-flow boundary condition is not only applicable for a gas-solid surface in the
continuum regime (Knudsen number l=b	 1), but also appears to be valid for some cases even
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into the molecular flow regime (l=bP 1). The reciprocal of the factor ðbbþ 2gÞ=ðbbþ 3gÞ in
Eq. (1) is equivalent to the so-called Cunningham correction factor for the slip effect.
The slow motion of nonspherical particles with frictionally slip surfaces, such as pollen particles

in gaseous media [19], was usually estimated by an adjusted sphere approximation [20]. This
approximation comprises calculating the radius of the adjusted sphere which has the same slip
correction factor as the nonspherical particle. Recently, the axisymmetric creeping flow of a
viscous incompressible fluid past a spheroid which departs but little in shape from a sphere with
the slip boundary condition was investigated, and an explicit expression for the drag force
experienced by it was obtained to the first order in the small parameter characterizing the
deformation [21,22]. However, the problem of the slow motion of nonspherical slip particles in a
viscous fluid has not been exactly solved yet, mainly due to the fact that, if momentum slip is
included, an analytic solution is not feasible for most orthogonal curvilinear coordinate systems,
such as the prolate and oblate spheroidal coordinate systems [23,24]. In this paper we use a
method of distributed internal singularities incorporated with a boundary-collocation technique
to analyze the axisymmetric creeping flow generated by a slip particle of revolution translating
along its axis of symmetry; the particle can be either prolate or oblate. The drag force exerted on
the particle by the fluid as a function of the slip coefficient of the particle is calculated for various
cases. For the special cases of a sphere and of a no-slip spheroid, our drag results show excellent
agreement with the exact solutions. For the cases of a slip spheroid whose shape deviates slightly
from that of a sphere, our results also agree quite well with the approximate analytical solution in
the literature.
2. Mathematical description of the problem

We consider the translational motion of a general axisymmetric particle in an incompressible,
Newtonian fluid along its axis of revolution at the steady state. The fluid may slip frictionally at
the surface of the particle and is at rest at infinity. The circular cylindrical coordinates ðq;/; zÞ and
spherical coordinates ðr; h;/Þ are utilized and the particle center is chosen to be the origin of the
coordinates instantaneously, as shown in Fig. 1. The particle velocity equals Uez, where ez is the
unit vector in the positive z direction. The Reynolds number is assumed to be sufficiently small so
that the inertial terms in the fluid momentum equation can be neglected, in comparison with the
viscous terms.
The fluid flow is governed by the Stokes equations,
gr2v�rp ¼ 0; ð3aÞ
r � v ¼ 0; ð3bÞ
where v is the fluid velocity field and p is the dynamic pressure distribution. Since the flow field is
axially symmetric, it is convenient to introduce the Stokes stream function Wðq; zÞ which satisfies
Eq. (3b) and is related to the velocity components in cylindrical coordinates by
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Fig. 1. Geometrical sketch for the motion of an arbitrary axisymmetric particle along its axis of revolution.
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vq ¼ 1
q
oW
oz

; ð4aÞ
vz ¼ � 1
q
oW
oq

: ð4bÞ
Taking the curl of Eq. (3a) and applying Eq. (4) gives a fourth-order linear partial differential
equation for W,
E4W ¼ E2ðE2WÞ ¼ 0; ð5Þ
where the axisymmetric Stokes operator E2 is given by
E2 ¼ q
o

oq
1

q
o

oq

� �
þ o2

oz2
: ð6Þ
Since the relative tangential velocity of the fluid at the particle surface is proportional to the
local tangential stress and the fluid is motionless far away from the particle, the boundary con-
ditions are
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v ¼ Uez þ
1

b
ðI� nnÞn : s on Sp ð7aÞ
and
v ! 0 as r! 1: ð7bÞ
Here, s ð¼ g½rvþ ðrvÞTÞ is the viscous stress tensor, 1=b is the frictional slip coefficient about
the particle surface which is taken to be a constant, I is the unit dyadic, and n is the unit normal
vector at the particle surface Sp pointing into the fluid.
The drag force F ez exerted by the fluid on the surface of the axisymmetric particle can be

determined from [16]
F ¼ g
2

Z Z
Sp

q2n � r 1

q2
E2W

� �
dS: ð8Þ
To solve Eqs. (5)–(7), a set of Sampson spherical singularities (also called Sampsonlets) is chosen
and distributed along the axis of revolution within a prolate particle [25] or on the fundamental
plane within an oblate particle [26,27]. The flow field surrounding the particle is approximated by
the superposition of the set of the spherical singularities and the boundary condition (7a) on the
particle surface can be satisfied by making use of the multipole collocation method. For the special
case of a spherical particle, only a single Sampsonlet which is placed at the particle center is needed.
The velocity components and stream function for the fluid motion caused by a Sampson

spherical singularity at the point q ¼ 0 and z ¼ h are [28]
vq ¼
X1
n¼2

½BnA1nðq; z� hÞ þ DnA2nðq; z� hÞ; ð9aÞ

vz ¼
X1
n¼2

½BnC1nðq; z� hÞ þ DnC2nðq; z� hÞ; ð9bÞ

W ¼
X1
n¼2

½BnE1nðq; z� hÞ þ DnE2nðq; z� hÞ; ð9cÞ
where Ain, Cin, and Ein with i ¼ 1 and 2 are functions of position defined by Eq. (A.1) in Appendix
A, and Bn and Dn are unknown constant coefficients. Note that the boundary condition (7b) is
immediately satisfied by a solution in the form of Eq. (9).
In cylindrical coordinates, the boundary condition (7a) on the particle surface for the axi-

symmetric flow can be expressed as
vq ¼ 1
b

��
1� n2q

�
nqsqq � nqn2zszz þ

�
1� 2n2q

�
nzsqz

�

vz ¼ U þ 1
b

��
1� n2z

�
nzszz � nzn2qsqq þ

�
1� 2n2z

�
nqsqz

�
9>>>=
>>>;

on Sp; ð10Þ
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where nq and nz are the local q and z components of the unit normal vector n. From Eq. (9a) and
(9b), the components of the viscous stress tensor in Eq. (10) can be obtained as
sqq ¼ g
X1
n¼2

½Bna1nðq; z� hÞ þ Dna2nðq; z� hÞ; ð11aÞ

szz ¼ g
X1
n¼2

½Bnb1nðq; z� hÞ þ Dnb2nðq; z� hÞ; ð11bÞ

sqz ¼ g
X1
n¼2

½Bnc1nðq; z� hÞ þ Dnc2nðq; z� hÞ; ð11cÞ
where ain, bin, and cin with i ¼ 1 and 2 are functions of position defined by Eq. (A.2).
Eqs. (9) and (11) for the fluid flow and stress fields caused by a Sampsonlet and boundary

condition (10) on the particle surface will be utilized in the following sections to solve for the fluid
velocity induced by the axisymmetric motion of a particle of revolution.
3. Solution for the motion of a spherical particle

In this section a Sampson singularity described in the previous section is used to obtain the
solution for the motion of a slip spherical particle of radius b. The drag results will be compared
with the exact analytical solution given by Eq. (1).
The flow field generated by the translation of a sphere can be represented by a Sampsonlet

placed at its center which is the origin of the coordinate frame. Thus, the velocity and stress
components for the fluid motion caused by the sphere are given by Eqs. (9) and (11) with h ¼ 0.
To determine the unknown constants Bn and Dn, one can apply the boundary condition (10) at the
particle surface to these velocity and stress components to yield9
P1

n¼2

�
BnA�

1nðq; zÞ þ DnA�
2nðq; zÞ

�
¼ 0

P1
n¼2

�
BnC�

1nðq; zÞ þ DnC�
2nðq; zÞ

�
¼ U

>>>=
>>>;

ðat r ¼ bÞ; ð12Þ
where
A�
inðq; zÞ ¼ Ainðq; zÞ �

g
b

��
1� n2q

�
nqainðq; zÞ � nqn2zbinðq; zÞ þ

�
1� 2n2q

�
nzcinðq; zÞ

�
; ð13aÞ

C�
inðq; zÞ ¼ Cinðq; zÞ �

g
b

��
1� n2z

�
nzbinðq; zÞ � nzn2qainðq; zÞ þ

�
1� 2n2z

�
nqcinðq; zÞ

�
; ð13bÞ
and i ¼ 1 or 2.
Substituting Eq. (9c) into Eq. (8) and applying orthogonality properties of the Gegenbauer

polynomials, one can obtain a simple formula for the drag force exerted by the fluid on the particle,
F ¼ 4pgD2: ð14Þ
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That is, only the first multipole of the Sampson singularity contributes to the hydrodynamic drag
on the particle.
To satisfy the boundary condition (12) exactly along the entire semicircular generating arc

of the sphere in a meridian plane would require the solution of the entire infinite array of
unknown constants Bn and Dn. However, the boundary-collocation technique [29,30] enforces
the boundary condition at a finite number of discrete points on the particle’s generating arc
and truncates the infinite series in Eqs. (9), (11), and (12) into finite ones. The unknown
constants in each term of the series permit one to satisfy the exact boundary condition at one
discrete point on the particle surface. Thus, if the boundary is approximated by satisfying
condition (12) at N discrete points, then the infinite series are truncated after N terms,
resulting in a system of 2N simultaneous linear algebraic equations in the truncated form of
Eq. (12). This matrix equation can be solved by any of the standard matrix-reduction
techniques to yield the 2N unknown constants Bn and Dn required in the truncated equa-
tions for the flow field. The accuracy of the truncation technique can be improved to any
degree by taking a sufficiently large value of N . Naturally, the truncation error vanishes as
N ! 1.
When specifying the points along the semicircular generating arc of the sphere where the

boundary condition is exactly satisfied, the first point that should be chosen is h ¼ p=2, since
this point defines the projected area of the particle normal to the direction of motion. In
addition, the points h ¼ 0 and h ¼ p are also important. However, an examination of the
system of linear algebraic equations for the unknown constants Bn and Dn shows that the
coefficient matrix becomes singular if these points are used. To overcome the difficulty of
singularity and to preserve the geometric symmetry of the spherical boundary about the
equatorial plane h ¼ p=2, points at h ¼ a, p=2� a, p=2þ a and p � a are taken to be four
basic collocation points [30]. Additional points along the boundary are selected as mirror–
image pairs about the plane h ¼ p=2 to divide the h coordinate into equal parts. The optimum
value of a in this work is found to be 0.01�, with which the numerical results of the drag force
on the particle can converge to at least four significant figures. In principle, as long as the
number of the collocation points is sufficiently large and the distribution of the collocation
points is adequate, the solution of the drag force will converge and the shape of the particle
can be well approximated, irrespective of the particle shape or boundary conditions. There are
a few figures of streamline patterns for the axisymmetric motion of various particles
obtained by using the boundary collocation method available in the literature [31,32], and they
all show that the contour shape of W ¼ 0 surface can approximate the shape of the parti-
cle very well with reasonable choices of the number and distribution of the collocation
points.
In Table 1, a number of numerical solutions of the dimensionless drag force �F =6pgbU for

the motion of a sphere are presented for various values of the slip parameter bb=g (reciprocal
of the dimensionless slip coefficient) using the collocation technique. All of the results were
obtained by increasing the number of collocation points N until the convergence of four sig-
nificant digits is achieved. The exact solutions for �F =6pgbU calculated using Eq. (1) are also
listed in the bottom row of Table 1 for comparison. It can be seen that the results from the
collocation method agree very well with the exact results for the desired accuracy and the rate
of convergence is rapid.



Table 1

Numerical results of the dimensionless drag force for a translating sphere with various values of the slip parameter

N �F =6pgbU

bb=g ! 1 bb=g ¼ 10 bb=g ¼ 1 bb=g ¼ 0
4 1.0000 0.9231 0.7500 0.6667

8 1.0000 0.9231 0.7500 0.6667

Exact solution 1.0000 0.9231 0.7500 0.6667
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4. Axisymmetric motion of prolate particles

We consider in this section the fluid motion caused by a general prolate axisymmetric particle
translating along its axis of symmetry. The fluid may slip frictionally at the surface of the particle.
A segment between points Aðq ¼ 0; z ¼ �c1Þ and Bðq ¼ 0; z ¼ c2Þ is taken along the axis of
revolution inside the particle on which a set of Sampson spherical singularities are distributed (c1
and c2 are positive constants). If the nose and the tail of the particle are round, then their centers
of curvature can be chosen as A and B. The general solution of the flow field outside the particle
can be constructed by the superposition of the Sampsonlets distributed on the segment AB, and
Eqs. (9a) and (9b) are used to result in
vq
vz

� �
¼
X1
n¼2

Z c2

�c1
BnðtÞ

A1nðq; z� tÞ
C1nðq; z� tÞ

� ��
þ DnðtÞ

A2nðq; z� tÞ
C2nðq; z� tÞ

� �
dt: ð15Þ
The corresponding expressions for the components of the viscous stress tensor can be obtained
using Eq. (11). Eq. (15) provides an exact solution for Eq. (3) that satisfies Eq. (7b), and the
unknown density distribution functions for the singularities, BnðtÞ and DnðtÞ, must be determined
from the remaining boundary condition (7a) or (10) using the collocation technique. The drag
force exerted by the fluid on the particle is obtained by the substitution of Eq. (15) into Eq. (8),
with a result similar to Eq. (14),
F ¼ 4pg
Z c2

�c1
D2ðtÞdt: ð16Þ
The density distribution functions BnðtÞ and DnðtÞ in Eq. (15) can be approximated to various
orders of precision to satisfy the boundary condition at the particle surface. In this work we
consider the constant-distribution, linear-distribution, and quadratic-distribution approxima-
tions.
4.1. Constant density distribution

In the constant density approximation, the segment AB is divided into M small segments and
the density distribution functions in each small segment are substituted by constants. Let tm�1 and
tm denote the coordinates of the two end points for the mth segment, then one has t0 ¼ �c1
and tM ¼ c2. If the length of each segment is the same, then tj ¼ �c1 þ jðc1 þ c2Þ=M for
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j ¼ 1; 2; . . . ;M � 1. In order to use the multipole collocation technique to satisfy the boundary
condition at the particle surface, the infinite series in Eq. (15) are furthermore truncated after N
terms. With these arrangements Eq. (15) becomes
vq
vz

� �
¼
XM
m¼1

XNþ1
n¼2

Bnm
A1nm1ðq; zÞ
C1nm1ðq; zÞ

� ��
þ Dnm

A2nm1ðq; zÞ
C2nm1ðq; zÞ

� �
; ð17Þ
where the functions Ainm1 and Cinm1 with i ¼ 1 and 2 are defined by Eq. (A.8) in Appendix A and
Bnm and Dnm are unknown density constants. Accordingly, the corresponding stress components
can be written as
sqq

szz
sqz

2
4

3
5 ¼ g

XM
m¼1

XNþ1
n¼2

Bnm
a1nm1ðq; zÞ
b1nm1ðq; zÞ
c1nm1ðq; zÞ

2
4

3
5

8<
: þ Dnm

a2nm1ðq; zÞ
b2nm1ðq; zÞ
c2nm1ðq; zÞ

2
4

3
5
9=
;; ð18Þ
where the functions ainm1, binm1, and cinm1 with i ¼ 1 and 2 are also defined by Eq. (A.8).
Application of the boundary condition (7a) or (10) to Eqs. (17) and (18) yields
XM
m¼1

XNþ1
n¼2

Bnm
A�
1nm1ðq; zÞ
C�
1nm1ðq; zÞ

� ��
þ Dnm

A�
2nm1ðq; zÞ
C�
2nm1ðq; zÞ

� �
¼ 0

U

� �
on Sp; ð19Þ
where the functions A�
inm1 and C

�
inm1 with i ¼ 1 and 2 are given by Eq. (13) with the subscript in of

its functions replaced by inm1. The collocation method allows the particle’s boundary to be
approximated by satisfying Eq. (19) atMN discrete values of z (rings) on its surface. This results in
a set of 2MN simultaneous linear algebraic equations, which can be solved by any matrix-
reduction technique to yield the 2MN density constants Bnm and Dnm required in Eq. (17) for the
fluid velocity field. Once these constants are determined, the drag force exerted by the fluid on the
particle can be obtained from Eq. (16), with the result
F ¼ 4pg
XM
m¼1

D2mðtm � tm�1Þ: ð20Þ
4.2. Linear density distribution

The segment AB is divided into M small segments, as we did in the previous subsection.
However, the density functions in the mth segment are now replaced by linear functions,
BnðtÞ
DnðtÞ

� �
¼ t � tm�1
tm � tm�1

Bnm
Dnm

� �
þ tm � t
tm � tm�1

Bnðm�1Þ
Dnðm�1Þ

� �
for tm�16 t6 tm: ð21Þ
Here tm�1 and tm are the coordinates of the end points of the segment, and Bnðm�1Þ, Dnðm�1Þ, Bnm, and
Dnm are the corresponding density constants at these points.
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Substituting Eq. (21) into Eq. (15) for the fluid flow field and truncating the infinite series after
N terms, one obtains
vq
vz

� �
¼
XM
m¼1

XNþ1
n¼2

Bnðm�1Þ
V1nm1ðq; zÞ
W1nm1ðq; zÞ

� ��
þ Bnm

V1nm2ðq; zÞ
W1nm2ðq; zÞ

� �
þ Dnðm�1Þ

V2nm1ðq; zÞ
W2nm1ðq; zÞ

� �

þ Dnm
V2nm2ðq; zÞ
W2nm2ðq; zÞ

� �
; ð22Þ
and the corresponding stress components are
sqq

szz
sqz

2
64

3
75 ¼ g

XM
m¼1

XNþ1
n¼2

Bnðm�1Þ

R1nm1ðq; zÞ
S1nm1ðq; zÞ
T1nm1ðq; zÞ

2
64

3
75

8><
>: þ Bnm

R1nm2ðq; zÞ
S1nm2ðq; zÞ
T1nm2ðq; zÞ

2
64

3
75þ Dnðm�1Þ

R2nm1ðq; zÞ
S2nm1ðq; zÞ
T2nm1ðq; zÞ

2
64

3
75

þ Dnm
R2nm2ðq; zÞ
S2nm2ðq; zÞ
T2nm2ðq; zÞ

2
64

3
75
9>=
>;; ð23Þ
where the functions Vinmk, Winmk, Rinmk, Sinmk, and Tinmk with i and k equal to 1 and 2 are defined by
Eqs. (A.3) and (A.4) in Appendix A. Application of the boundary condition (7a) or (10) to Eqs.
(22) and (23) can be accomplished by utilizing the collocation technique. On the particle surface,
Eqs. (10), (22) and (23) are applied at ðM þ 1ÞN discrete values of z (rings). This generates a set of
2ðM þ 1ÞN linear algebraic equations for the 2ðM þ 1ÞN unknown constants Bnm and Dnm. The
fluid velocity field is completely solved once these coefficients are determined.
The drag force exerted by the fluid on the particle can be determined by Eq. (16) with the

substitution of D2ðtÞ expressed by Eq. (21). The result is
F ¼ 2pg
XM
m¼1

½D2ðm�1Þ þ D2mðtm � tm�1Þ: ð24Þ
4.3. Quadratic density distribution

Similar to in Sections 4.1 and 4.2, the segment AB is again divided into M small segments. In
the quadratic density approximation, two end points and one middle point are taken to express
the density distribution functions in each segment. Thus,
BnðtÞ
DnðtÞ

� �
¼ ðt � tm�1Þðt ��tmÞ

ðtm � tm�1Þðtm ��tmÞ
Bnð2mÞ
Dnð2mÞ

� �
þ ðt � tmÞðt � tm�1Þ
ð�tm � tmÞð�tm � tm�1Þ

Bð2m�1Þ
Dð2m�1Þ

� �

þ ðt � tmÞðt ��tmÞ
ðtm�1 � tmÞðtm�1 ��tmÞ

Bnð2m�2Þ
Dnð2m�2Þ

� �
for tm�16 t6 tm: ð25Þ
Here �tm ¼ ðtm�1 þ tmÞ=2 is the coordinate of the center of the mth segment, and Bnð2m�2Þ, Dnð2m�2Þ,
Bnð2m�1Þ, Dnð2m�1Þ, Bnð2mÞ, and Dnð2mÞ are the corresponding density constants at the two end points
and the middle point of the segment.
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Substituting Eq. (25) into Eq. (15) and truncating the infinite series after N terms, one obtains
�

2
64
vq
vz

�
¼
XM
m¼1

XNþ1
n¼2

Bnð2m�2Þ
V 0
1nm1ðq; zÞ
W 0
1nm1ðq; zÞ

" #(
þ Bnð2m�1Þ

V 0
1nm2ðq; zÞ
W 0
1nm2ðq; zÞ

" #
þ Bnð2mÞ
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where the functions V 0
inmk,W

0
inmk, R

0
inmk, S

0
inmk, and T

0
inmk with i ¼ 1; 2 and k ¼ 1; 2; 3 are defined by Eqs.

(A.5)–(A.7). To use the collocation technique, the boundary condition (10) after the substitution of
Eqs. (26) and (27) is applied at ð2M þ 1ÞN discrete values of z along the surface of the particle. The
resulting system of 2ð2M þ 1ÞN linear algebraic equations can be solved to yield the 2ð2M þ 1ÞN
unknown constants Bnm and Dnm required in Eq. (26) for the fluid velocity components.
Substituting D2ðtÞ given by Eq. (25) into Eq. (16), the drag force exerted on the particle is

obtained as
F ¼ 2
3
pg
XM
m¼1

½D2ð2m�2Þ þ 4D2ð2m�1Þ þ D2ð2mÞðtm � tm�1Þ: ð28Þ
Note that the integrals in the functions Ainmk, Cinmk, ainmk, binmk, and cinmk defined by Eq. (A.8) can
be evaluated analytically. If numerical integrations are used for the evaluation of these functions,
the accuracy and convergence behavior of the solution of drag force given by Eqs. (20), (24) and
(28) depends on the precision of these numerical integrations.
Obviously, we can also use a cubic-distribution approximation for BnðtÞ and DnðtÞ in each small

segment. But its relevant mathematical formulas would be quite lengthy.
5. Solution for the motion of a prolate spheroidal particle

In this section the method presented in the previous section is used to obtain the solution for the
axisymmetric motion of a slip prolate spheroid. The surface of the prolate spheroid is represented
in cylindrical coordinates by
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zðqÞ ¼ �a 1
�

� q
b

� �2�1=2
; ð29Þ
where a > b > 0 and 06 q6 b (a and b are the major and minor semi-axes, respectively, of the
prolate spheroid).
For a prolate spheroidal particle with a no-slip surface (bb=g ! 1) translating with a velocity

U along its axis of revolution in an unbounded fluid, the exact solution for the drag force exerted
on the particle by the fluid is [16]
F1 ¼ �6pgbUf1; ð30aÞ
with
f1 ¼ 3

4
ðf2

�
� 1Þ1=2½ðf2 þ 1Þ coth�1 f � f

�1

: ð30bÞ
In Eq. (30b), f ¼ a=c and c ¼ ða2 � b2Þ1=2, which is the half distance between the two foci of the
prolate spheroid.
In Section 3, collocation solutions for the translational motion of a spherical particle with a slip

surface were presented and shown to be in perfect agreement with the exact solution. We now use
the same collocation scheme incorporated with the method of distribution of Sampson singu-
larities to obtain the corresponding solution for a slip prolate spheroid. In Table 2, numerical
results of the nondimensional drag force �F =6pgbU for the axisymmetric motion of a prolate
spheroid are presented for three representative cases of the aspect ratio a=b with various values of
the slip parameter bb=g. The values of �F =6pgbU are computed by applying either the linear (for
a=b ¼ 1:1 and 2) or the quadratic (for a=b ¼ 5) density distribution at each segment for different N
and M in Eqs. (22) and (26) (which shows convergence tests). For a spheroid with its aspect ratio
close to unity, a constant density distribution of Sampsonlets can usually achieve good conver-
gence behavior for the calculation of F . However, when the aspect ratio of the spheroid deviates
further from unity (especially for the case of small values of bb=g), the convergence of the constant
density approximation becomes poorer and higher-order approximations should be adopted. The
exact solution of f1 for the axisymmetric motion of a no-slip prolate spheroid (with bb=g ! 1)
given by Eq. (30b) is also given in Table 2 for comparison. It can be seen that our results from the
method of distributed Sampson singularities agree very well with the exact solution in this limit. In
general, the convergence behavior of the method of Sampsonlets is quite good, except for the case
of large aspect ratio and small slip parameter.
Palaniappan [21] and Ramkissoon [22] investigated the problem of slow axisymmetric flow of a

viscous incompressible fluid past a slip spheroid whose shape deviates slightly from that of a
sphere. Their analytical result corresponding to the drag force exerted on the particle defined by
Eq. (8), which is correct to the first order in the small parameter e characterizing the deformation,
can be expressed as
F ¼ �6pgbU
bbþ 2g
bbþ 3g

"
� e

ðbbÞ2 þ 6gbbþ 6g2

5ðbbþ 3gÞ2

#
; ð31Þ



Table 2

Numerical results of the dimensionless drag force for the motion of a prolate spheroid along its axis of revolution for

various values of the aspect ratio and slip parameter of the spheroid

bb=g M N �F =6pgbU

a=b ¼ 1:1 a=b ¼ 2 a=b ¼ 5
1 3 3 1.0201 1.2039 1.7848

4 1.0201 1.2039 1.7848

5 1.0201 1.2039 1.7848

Exact solution 1.0201 1.2039 1.7848

10 4 3 0.9415 1.1163 1.6853

5 0.9415 1.1163 1.6764

6 0.9415 1.1163 1.6783

7 1.6783

Approximate solution 0.9427 1.1195 1.7089

1 4 3 0.7520 0.8141 1.1833

5 0.7520 0.8141 1.1731

6 0.7520 0.8141 1.1749

7 1.1750

Approximate solution 0.7662 0.9125 1.4000

0 4 3 0.6537 0.5635 0.3718

5 0.6537 0.5635 0.3613

6 0.6537 0.5635 0.3992

7 0.3999

Approximate solution 0.6800 0.8000 1.2000

Exact and approximate solutions are calculated from Eqs. (30) and (31), respectively.
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where e ¼ 1� ða=bÞ. The values of the dimensionless drag force �F =6pgbU calculated from this
approximate formula are also listed in Table 2 for comparison. It can be found that the solution
correct to the first order in e given by Eq. (31) agrees well with our collocation solutions for small
magnitudes of e. The errors are less than 4% for particles with 1 < a=b < 1:1. However, the
accuracy of this approximate solution begins to deteriorate, as expected, when the value of a=b
becomes greater, especially for the case of a perfectly slip spheroid.
The dimensionless drag force �F =6pgbU for the axisymmetric motion of a prolate spheroid as

a function of the aspect ratio a=b for several different values of the slip parameter bb=g is plotted
in Fig. 2. For a prolate spheroid with a no-slip surface or a slip surface having large values of bb=g
(greater than about 1), as expected, the value of �F =6pgbU increases monotonically with an
increase in the value of a=b. For a slip prolate spheroid with a small value of bb=g (less than about
0.1), however, �F =6pgbU is a monotonically decreasing function of a=b. This behavior is
understandable since the major portion of the fluid slip at the particle surface occurs in the
direction of the particle’s movement as the ratio a=b is large. Note that, for a spheroid with values
of bb=g in the intermediate range (say, equal to 0.3), the dimensionless drag on it is not a
monotonic function of a=b. When the ratio a=b is large, the effect of the increase in the surface
area (which experiences the hydrodynamic drag) of the prolate spheroid in comparison with a
sphere of radius b dominates, and the dimensionless drag increases with an increase in a=b. When
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Fig. 2. Plots of the dimensionless drag force for the motion of a prolate spheroid with a slip surface along its axis of

revolution versus the aspect ratio of the spheroid for various values of the slip parameter bb=g.
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the ratio a=b is close to unity, the effect of the fluid slip at the particle surface becomes more
significant, and the dimensionless drag decreases with an increase in a=b. On the other hand,
�F =6pgbU is a monotonically increasing function of bb=g for a given shape of spheroids, and its
dependence becomes quite sensitive when the value of a=b is large. It can be seen that the drag
force on the spheroid can be very large when both a=b and bb=g are large.
6. Axisymmetric motion of oblate particles

The axisymmetric motion of a general prolate particle with a slip surface was considered in
Section 4 and a set of Sampson spherical singularities must be distributed on a segment along the
axis of symmetry inside the particle. In this section we consider the corresponding motion of an
arbitrary slip oblate particle and the Sampsonlets should be distributed on the fundamental
surface within the particle. Since the oblate particle and the fluid motion are axisymmetric, the
fundamental surface should be a circular disk Sd normal to the z-axis and with its center at the
origin of the coordinate frame (the center of the particle).
Let Q be an arbitrary point on Sd which is expressed with the circular polar coordinates q ¼ q̂,

/ ¼ /̂, and z ¼ 0. Then the velocity disturbance at another point Pðq ¼ q;/ ¼ 0; z ¼ zÞ generated
by the Sampson singularity at Q can be obtained using Eq. (9a) and (9b),
v̂q ¼ q � q̂ cos /̂
q�

X1
n¼2

½BnA1nðq�; zÞ þ DnA2nðq�; zÞ; ð32aÞ



H.J. Keh, C.H. Huang / International Journal of Engineering Science 42 (2004) 1621–1644 1635
v̂/ ¼ q̂ sin /̂
q�

X1
n¼2

½BnA1nðq�; zÞ þ DnA2nðq�; zÞ; ð32bÞ

v̂z ¼
X1
n¼2

½BnC1nðq�; zÞ þ DnC2nðq�; zÞ; ð32cÞ
where q� is the distance from point Q to the projection of point P on the plane z ¼ 0,
q� ¼ ðq2 þ q̂2 � 2qq̂ cos /̂Þ1=2: ð33Þ
Due to the axisymmetry of the fluid motion, the singularities must be distributed uniformly on
the circles in Sd with their centers at the origin of coordinates. Hence, the unknown density
distribution coefficients Bn and Dn in Eq. (32) are functions of q̂ only.
The total disturbance of the flow field produced by the oblate particle can be approximated by

the superposition of the individual disturbances in Eq. (32) induced by the whole set of singu-
larities on the fundamental disk Sd . Thus, at an arbitrary location, we have
vq ¼
X1
n¼2

Z 2p

0

Z R

0

q � q̂ cos /̂
q� ½Bnðq̂ÞA1nðq�; zÞ þ Dnðq̂ÞA2nðq�; zÞq̂dq̂d/̂; ð34aÞ

vz ¼
X1
n¼2

Z 2p

0

Z R

0

½Bnðq̂ÞC1nðq�; zÞ þ Dnðq̂ÞC2nðq�; zÞq̂dq̂d/̂; ð34bÞ
where R is the radius of the disk Sd . The integral of v̂/ vanishes because the fluid motion is axi-
symmetric. Eq. (34) provides an exact solution for Eq. (3) that satisfies Eq. (7b), and the unknown
density distribution functions Bnðq̂Þ and Dnðq̂Þ must be determined from the remaining boundary
condition (7a) or (10) using the collocation method. In Eq. (10), the stress components can be
calculated from Eq. (34) and expressed as
sqq ¼ g
X1
n¼2

Z 2p

0

Z R

0

2q̂2 sin2 /̂

ðq�Þ3
½Bnðq̂ÞA1nðq�; zÞ

8<
: þ Dnðq̂ÞA2nðq�; zÞ

þ q � q̂ cos /̂
q�

 !2
½Bnðq̂Þa1nðq�; zÞ þ Dnðq̂Þa2nðq�; zÞ

9=
; q̂dq̂d/̂; ð35aÞ

szz ¼ g
X1
n¼2

Z 2p

0

Z R

0

½Bnðq̂Þb1nðq�; zÞ þ Dnðq̂Þb2nðq�; zÞq̂dq̂d/̂; ð35bÞ

sqz ¼ g
X1
n¼2

Z 2p

0

Z R

0

q � q̂ cos /̂
q� ½Bnðq̂Þc1nðq�; zÞ þ Dnðq̂Þc2nðq�; zÞq̂dq̂d/̂: ð35cÞ
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The drag force exerted by the fluid on the oblate axisymmetric particle can be obtained by
substituting Eq. (34) into Eq. (8) and applying the orthogonality properties of the Gegenbauer
polynomials. The result is
F ¼ 8p2g
Z R

0

D2ðq̂Þq̂dq̂: ð36Þ
Similar to the case of the motion of a prolate particle examined in Section 4, the density dis-
tribution functions Bnðq̂Þ and Dnðq̂Þ in Eqs. (34) and (35) can be approximated to various orders
to satisfy the boundary condition (7a) or (10). In order to use the boundary-collocation method,
the infinite series in Eqs. (34) and (35) are truncated after N terms. The radius of the fundamental
disk Sd is divided intoM segments, and q̂m�1 and q̂m denote the radial coordinates of the inner and
outer end points, respectively, for the mth segment. If the length of each segment is the same, then
q̂j ¼ jR=M for j ¼ 0; 1; 2; . . . ; and M .
In the constant density approximation, the density distribution functions Bnðq̂Þ and Dnðq̂Þ in

each segment are substituted by constants and the truncated form of Eqs. (34) and (35) can still be
expressed by Eqs. (17) and (18) with functions Ainm1, Cinm1, ainm1, binm1, and cinm1 being replaced by
A0
inm1, C

0
inm1, a

0
inm1, b

0
inm1, and c0inm1 defined by Eqs. (A.9)–(A.11) in Appendix A, respectively. Thus,

the collocation technique described in Section 4 can be used to satisfy the boundary condition (7a)
and to determine the 2MN density constants Bnm and Dnm required for the fluid velocity field. Since
the density functions in each segment are constant, Eq. (36) for the drag force exerted on the
oblate particle becomes
F ¼ 4p2g
XM
m¼1

D2mðq̂2m � q̂2m�1Þ: ð37Þ
When the linear density distribution of Sampsonlets is employed, the distribution functions
Bnðq̂Þ and Dnðq̂Þ in the mth segment are given by Eq. (21) with t, tm�1 and tm being replaced by q̂,
q̂m�1 and q̂m, respectively. Hence, the fluid velocity and stress components have the same form as
Eqs. (22) and (23), but the functions Ainmk, Cinmk, ainmk, binmk, and cinmk in Eqs. (A.3) and (A.4) must
be replaced by A0

inmk, C
0
inmk, a0

inmk, b0
inmk, and c0inmk, respectively. Application of the boundary con-

dition (10) to these velocity and stress components can be accomplished by using the collocation
method. After determining the 2ðM þ 1ÞN unknown constants Bnm and Dnm, the drag force exerted
on the particle by the fluid can be evaluated by the formula
F ¼ 4
3

p2g
XM
m�1

½ðq̂m þ 2q̂m�1ÞD2ðm�1Þ þ ð2q̂m þ q̂m�1ÞD2mðq̂m � q̂m�1Þ; ð38Þ
which is obtained by the substitution of D2ðq̂Þ into Eq. (36).
In the quadratic density approximation, the distribution functions Bnðq̂Þ and Dnðq̂Þ in the mth

segment are given by Eq. (25) with t, tm�1, tm, and �tm being replaced by q̂, q̂m�1, q̂m, and
�qmð¼ ðq̂m�1 þ q̂mÞ=2Þ, respectively, and the fluid velocity and stress components can also be written
in the form of Eqs. (26) and (27) (after the substitution of V 0

inmk, W
0
inmk, R

0
inmk, S

0
inmk, and T

0
inmk, defined

by Eqs. (A.5)–(A.7)) with Ainmk, Cinmk, ainmk, binmk, and cinmk being replaced by A
0
inmk, C

0
inmk, a

0
inmk, b

0
inmk,
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and c0inmk, respectively. To apply the boundary condition (10) to determine the 2ð2M þ 1ÞN un-
known constants Bnm and Dnm required for the velocity field, the collocation technique must be
used. Substituting D2ðq̂Þ into Eq. (36), one obtains the drag force on the particle as
F ¼ 4
3
p2g

XM
m¼1

½q̂m�1D2ð2m�2Þ þ 2ðq̂m þ q̂m�1ÞD2ð2m�1Þ þ q̂mD2ð2mÞðq̂m � q̂m�1Þ: ð39Þ
Analogous to the case of a translating prolate particle, the accuracy and convergence behavior
of the drag solution in Eqs. (37)–(39) depends on the precision of the numerical integrations of the
functions A0

inmk, C
0
inmk, a

0
inmk, b

0
inmk, and c0inmk defined by Eqs. (A.9)–(A.11).
7. Solution for the motion of an oblate spheroidal particle

In Section 5, numerical solutions of the drag force experienced by a prolate spheroid translating
axisymmetrically were presented. In this section the similar singularity method and collocation
technique described in the previous section will be used to solve the corresponding motion of an
oblate spheroid. The shape of the oblate spheroid can still be represented by Eq. (29), but now
with b > a > 0. In addition, the exact solution for the drag force exerted on an oblate spheroid
with a no-slip surface moving with a velocity U along its axis of symmetry in an unbounded fluid
can be expressed as Eq. (30a), with the coefficient f1 given by [16]
f1 ¼ 3

4
ðf2

�
þ 1Þ1=2½f � ðf2 � 1Þ cot�1 f

�1

; ð40Þ
where f ¼ a=c and c ¼ ðb2 � a2Þ1=2, which is the radius of the focal circle of the oblate spheroid.
The numerical solutions of the nondimensional drag force �F =6pgbU for the axisymmetric

motions of an oblate spheroid are presented in Table 3 for three representative cases of the aspect
ratio a=b with various values of the slip parameter bb=g. Either the linear (for a=b ¼ 0:9 and 0.5)
or the quadratic (for a=b ¼ 0:2) density approximation is used to calculate the values of F and to
show the convergence tests. The exact solution for the motion of a no-slip oblate spheroid along
its axis of revolution given by Eq. (40) and the approximate solution for the axisymmetric motion
of a slip spheroid whose shape deviates slightly from that of a sphere given by Eq. (31) are also
listed in Table 3 for comparison. Analogous to the case of a prolate spheroid considered in
Section 5, the convergence behavior of the method of Sampson singularities in general is satis-
factory. The agreement between our results and the exact and approximate solutions is quite
good. The errors of Eq. (31) are less than 4% for particles with 0:9 < a=b < 1; but as expected, the
accuracy of this approximate solution begins to deteriorate when the value of a=b becomes
smaller.
In Fig. 3, the dimensionless drag force �F =6pgbU for the axisymmetric motion of an oblate

spheroid as a function of the aspect ratio a=b for several different values of the slip parameter bb=g
is plotted. Similarly to the motion of a prolate spheroid discussed in Section 5, the value of
�F =6pgbU increases monotonically as the ratio a=b increases for an oblate spheroid with a no-
slip surface or a slip surface having large values of bb=g (greater than about 10), and decreases



Table 3

Numerical results of the dimensionless drag force for the motion of an oblate spheroid along its axis of revolution for

various values of the aspect ratio and slip parameter of the spheroid

bb=g M N �F =6pgbU

a=b ¼ 0:9 a=b ¼ 0:5 a=b ¼ 0:2
1 4 4 0.9801 0.9053 0.8614

5 0.9801 0.9053 0.8615

6 0.9801 0.9053 0.8615

Exact solution 0.9801 0.9053 0.8615

10 4 4 0.9052 0.8448 0.8316

5 0.9052 0.8448 0.8316

6 0.9052 0.8448 0.8316

Approximate solution 0.9034 0.8249 0.7659

1 4 4 0.7496 0.7696 0.8157

5 0.7496 0.7696 0.8157

6 0.7496 0.7696 0.8157

Approximate solution 0.7338 0.6688 0.6200

0 4 4 0.6804 0.7470 0.8126

5 0.6804 0.7470 0.8122

6 0.6804 0.7470 0.8123

Approximate solution 0.6533 0.6000 0.5600

Exact and approximate solutions are calculated from Eqs. (40) and (31), respectively.
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Fig. 3. Plots of the dimensionless drag force for the motion of an oblate spheroid with a slip surface along its axis of

revolution versus the aspect ratio of the spheroid for various values of the slip parameter bb=g.
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monotonically with an increase in a=b for a slip oblate spheroid with small values of bb=g (less
than about 1). The latter behavior is understandable since the main component of the fluid slip at
the particle surface is in the direction normal to the motion of the spheroid when the value of a=b
becomes small. Again, �F =6pgbU is not a monotonic function of a=b for slip spheroids with a
constant value of bb=g in the intermediate range (say, equal to 3) and is a monotonically
increasing function of bb=g for spheroids with a fixed value of a=b.
Examination of the curves given in Figs. 2 and 3 reveals an interesting feature. For the

translation of a slip spheroid with bb=g equal to about unity, the normalized drag force on it
decreases with an increase in a=b (the effect of the fluid slip at the particle surface dominates) from
a=b! 0, reaches a minimum in the vicinity of a=b ¼ 1, and then increases with an increase in a=b
(the effect of the increase in the surface area of the particle dominates) until a=b! 1. On the
other hand, for a spheroid having a large or small value of bb=g (>10 or <0.1), its normalized drag
force is a monotonic function of a=b in the entire range of 0 < a=b < 1.
8. Concluding remarks

In this work the creeping motion of a general axisymmetric particle with a slip surface in a
viscous fluid (e.g., a slightly rarefied gas) along its axis of revolution has been analyzed by the use
of the method of internal singularity distributions combined with the boundary-collocation
technique. For the case of the axisymmetric motion of a prolate particle, a truncated set of
Sampson singularities is distributed along the axis; while for the case of an oblate particle, the
Sampsonlets are placed on the fundamental disk of the particle. The results for the drag force
exerted on the particle by the fluid indicate that the solution procedure converges rapidly and
accurate solutions can be obtained for various cases of the particle shape. Although the numerical
solutions were presented in the previous sections only for a sphere, a prolate spheroid and an
oblate spheroid, the combined analytical and numerical technique utilized in this work can easily
provide the hydrodynamic calculations for an axisymmetric particle of other shapes, such as a
prolate or oblate Cassini oval [25–27].
If the nose and tail of an axisymmetric prolate particle are not round, for example, the particle

is a long cylinder, or if an axisymmetric oblate particle does not have a smooth surface, for
example, the particle is a short cylinder or a relatively thin disk, the problem of the motion of such
a particle will be difficult to be solved by any analytical or semi-analytical solution technique, and
it is certainly not the main target of the solution technique considered in this work. In principle,
however, the present solution technique might be better than other ones for solving this kind of
problems. The Sampson spherical singularities can still be distributed on a segment along the axis
of revolution of the prolate particle or on a fundamental disk within the oblate particle. Obvi-
ously, the choices of the end points of the segment and the radius of the fundamental disk are
somewhat indefinite for this case. One would expect that slightly different but reasonable choices
of the end points of the segment or the radius of the fundamental disk may lead to almost the
same convergent solution for a given problem. On the other hand, if an arbitrary axisymmetric
oblate particle has asymmetric surfaces with respect to the plane z ¼ 0, the fundamental surface
can still be a disk normal to the z-axis with its center at the origin. For this case, the radius of the
fundamental disk should be chosen with a compromise of the different needs between the surfaces
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with z > 0 and with z < 0. Again, one would expect that slightly different but reasonable choices
of the radius of the fundamental disk may result in almost the same convergent solution for a
given problem of this kind.
Throughout this work we have only considered the translation of a particle axisymmetrically.

However, the method of internal distribution of spherical singularities can easily be employed to
analyze the axisymmetric rotation of a particle of revolution. For example, the numerical
solutions for the Stokes flow generated by the rotation of a no-slip prolate spheroid about its
axis of symmetry were obtained by Yan et al. [33] using the method of spherical singularities
combined with the boundary-collocation technique. Moreover, the method of axisymmetric
singularity distribution can also be utilized to investigate some three-dimensional (asymmetric)
flows induced by the motion of a body of revolution, such as the translation of a prolate
spheroid in an arbitrary direction with respect to its axis of symmetry in an unbounded fluid
[34].
A different approach with continuous distributions of internal singularities was proposed by

Chwang and Wu [8] in which the Stokeslets, rotlets, stresslets, potential doublets, and some
higher-order poles were distributed in a prescribed manner along an axis of symmetry. This led to
exact solutions to a number of exterior and interior Stokes flow problems involving no-slip
spheres, prolate spheroids, and infinitely long circular cylinders, but the problems for axisym-
metric prolate particles of other shapes and oblate particles are still remained unsolved. It appears
that the slip-flow boundary condition at the particle surface given by Eq. (7a) involving the
viscous stresses makes their approach more difficult to apply than the present method of distri-
butions of Sampsonlets combined with the collocation technique.
It is generally recognized that the distributed internal singularity methods are more limited in

their range of application than the boundary integral equation method, which is much more
flexible in treating problems with complicated body shapes and boundaries. Nonetheless, the
singularity method presented herein has several advantages: (i) no singular integrals appear, since
the collocation points lie on the body surface and the singular points lie within; (ii) closed-form
recurrence formulas for the integrals in the linear algebraic equations have been obtained for the
case of a prolate axisymmetric body, eliminating the need for a numerical integration; and (iii) the
method, when it can be used, has proved to be far more accurate and efficient than the boundary
integral equation technique.
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Appendix A

For conciseness the definitions of some functions in Sections 2, 4 and 6 are listed in this
appendix. The functions appearing in Eqs. (9) and (11) in Section 2 are defined as
A1nðq; zÞ ¼ ðnþ 1Þq�1ðq2 þ z2Þ�n=2G�1=2
nþ1 ðlÞ; ðA:1aÞ
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A2nðq; zÞ ¼ q�1ðq2 þ z2Þ�ðn�2Þ=2½�2lG�1=2
n ðlÞ þ ðnþ 1ÞG�1=2

nþ1 ðlÞ; ðA:1bÞ

C1nðq; zÞ ¼ ðq2 þ z2Þ�ðnþ1Þ=2PnðlÞ; ðA:1cÞ

C2nðq; zÞ ¼ ðq2 þ z2Þ�ðn�1Þ=2½2G�1=2
n ðlÞ þ PnðlÞ; ðA:1dÞ

E1nðq; zÞ ¼ ðq2 þ z2Þ�ðn�1Þ=2G�1=2
n ðlÞ; ðA:1eÞ

E2nðq; zÞ ¼ ðq2 þ z2Þ�ðn�3Þ=2G�1=2
n ðlÞ; ðA:1fÞ

a1nðq; zÞ ¼ �2ðnþ 1Þq�2ðq2 þ z2Þ�ðnþ2Þ=2½ðnq2 þ q2 þ z2ÞG�1=2
nþ1 ðlÞ � q2lPnðlÞ; ðA:2aÞ

a2nðq; zÞ ¼ 2q�2ðz2 þ q2Þ�n=2½2ðnq2 þ z2ÞlG�1=2
n ðlÞ � ðnþ 1Þðnq2 � q2 þ z2ÞG�1=2

nþ1 ðlÞ
� 2q2z2ðq2 þ z2Þ�1Pn�1ðlÞ þ ð1þ nÞq2lPnðlÞ; ðA:2bÞ

b1nðq; zÞ ¼ 2ðq2 þ z2Þ
�ðnþ2Þ=2½nPn�1ðlÞ � ð2nþ 1ÞlPnðlÞ; ðA:2cÞ

b2nðq; zÞ ¼ 2ðq2 þ z2Þ
�n=2½�2ðn� 1ÞlG�1=2

n ðlÞ þ ðq2 þ z2Þ�1ðnq2 � 2q2 þ nz2ÞPn�1ðlÞ
� ð2n� 1ÞlPnðlÞ; ðA:2dÞ

c1nðq; zÞ ¼ q�1ðq2 þ z2Þ�ðnþ1Þ=2½�nðnþ 1ÞlG�1=2
nþ1 ðlÞ � nlPn�1ðlÞ � ðq2 þ z2Þ�1

� ð2nq2 þ 2q2 � nz2ÞPnðlÞ; ðA:2eÞ

c2nðq; zÞ ¼ q�1ðq2 þ z2Þ�ðnþ1Þ=2½�2ðnq2 � nz2 þ 2z2ÞG�1=2
n ðlÞ � ðn2 � n� 2Þ

� ðq2 þ z2ÞlG�1=2
nþ1 ðlÞ � ðnq2 � 4q2 þ nz2ÞlPn�1ðlÞ � nð2q2 � z2ÞPnðlÞ; ðA:2fÞ
where l ¼ zðq2 þ z2Þ�1=2, G�1=2
n is the Gegenbauer polynomial of the first kind of order n and

degree )1/2, and Pn is the Legendre polynomial of order n.
The functions appearing in Eqs. (22), (23), (26) and (27) in Section 4 are defined as
Vinm1ðq; zÞ
Winm1ðq; zÞ
Rinm1ðq; zÞ
Sinm1ðq; zÞ
Tinm1ðq; zÞ

2
666664

3
777775 ¼ 1

tm � tm�1
tm

Ainm1ðq; zÞ
Cinm1ðq; zÞ
ainm1ðq; zÞ
binm1ðq; zÞ
cinm1ðq; zÞ

2
66664

3
77775

8>>>><
>>>>:

�

Ainm2ðq; zÞ
Cinm2ðq; zÞ
ainm2ðq; zÞ
binm2ðq; zÞ
cinm2ðq; zÞ

2
66664

3
77775

9>>>>=
>>>>;
; ðA:3Þ

Vinm2ðq; zÞ
Winm2ðq; zÞ
Rinm2ðq; zÞ
Sinm2ðq; zÞ
Tinm2ðq; zÞ

2
66664

3
77775 ¼ �1

tm � tm�1
tm�1

Ainm1ðq; zÞ
Cinm1ðq; zÞ
ainm1ðq; zÞ
binm1ðq; zÞ
cinm1ðq; zÞ

2
66664

3
77775

8>>>><
>>>>:

�

Ainm2ðq; zÞ
Cinm2ðq; zÞ
ainm2ðq; zÞ
binm2ðq; zÞ
cinm2ðq; zÞ

2
66664

3
77775

9>>>>=
>>>>;
; ðA:4Þ
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V 0
inm1ðq; zÞ
W 0
inm1ðq; zÞ
R0
inm1ðq; zÞ
S 0inm1ðq; zÞ
T 0
inm1ðq; zÞ

2
66664

3
77775 ¼ 2

ðtm � tm�1Þ2
tm�tm

Ainm1ðq; zÞ
Cinm1ðq; zÞ
ainm1ðq; zÞ
binm1ðq; zÞ
cinm1ðq; zÞ

2
66664

3
77775

8>>>><
>>>>:

� ðtm þ�tmÞ

Ainm2ðq; zÞ
Cinm2ðq; zÞ
ainm2ðq; zÞ
binm2ðq; zÞ
cinm2ðq; zÞ

2
66664

3
77775

þ

Ainm3ðq; zÞ
Cinm3ðq; zÞ
ainm3ðq; zÞ
binm3ðq; zÞ
cinm3ðq; zÞ

2
66664

3
77775

9>>>>=
>>>>;
; ðA:5Þ
V 0
inm2ðq; zÞ
W 0
inm2ðq; zÞ
R0
inm2ðq; zÞ
S 0inm2ðq; zÞ
T 0
inm2ðq; zÞ

2
6666664

3
7777775
¼ �4

ðtm � tm�1Þ2
tmtm�1

Ainm1ðq; zÞ
Cinm1ðq; zÞ
ainm1ðq; zÞ
binm1ðq; zÞ
cinm1ðq; zÞ

2
6666664

3
7777775

8>>>>>><
>>>>>>:

� ðtm þ tm�1Þ

Ainm2ðq; zÞ
Cinm2ðq; zÞ
ainm2ðq; zÞ
binm2ðq; zÞ
cinm2ðq; zÞ

2
6666664

3
7777775

þ

Ainm3ðq; zÞ
Cinm3ðq; zÞ
ainm3ðq; zÞ
binm3ðq; zÞ
cinm3ðq; zÞ

2
6666664

3
7777775

9>>>>>>=
>>>>>>;
; ðA:6Þ
V 0
inm3ðq; zÞ
W 0
inm3ðq; zÞ
R0
inm3ðq; zÞ
S 0inm3ðq; zÞ
T 0
inm3ðq; zÞ

2
6666664

3
7777775
¼ 2

ðtm � tm�1Þ2
tm�1�tm

Ainm1ðq; zÞ
Cinm1ðq; zÞ
ainm1ðq; zÞ
binm1ðq; zÞ
cinm1ðq; zÞ

2
6666664

3
7777775

8>>>>>><
>>>>>>:

� ðtm�1 þ�tmÞ

Ainm2ðq; zÞ
Cinm2ðq; zÞ
ainm2ðq; zÞ
binm2ðq; zÞ
cinm2ðq; zÞ

2
6666664

3
7777775

þ

Ainm3ðq; zÞ
Cinm3ðq; zÞ
ainm3ðq; zÞ
binm3ðq; zÞ
cinm3ðq; zÞ

2
6666664

3
7777775

9>>>>>>=
>>>>>>;
; ðA:7Þ
where m ¼ 1; 2; . . . ;M , n ¼ 2; 3; . . . ;N þ 1, and i ¼ 1; 2. In Eqs. (17) and (18), and (A.3)–(A.7),
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Ainmkðq; zÞ
Cinmkðq; zÞ
ainmkðq; zÞ
binmkðq; zÞ
cinmkðq; zÞ

2
66664

3
77775 ¼

Z tm

tm�1

tk�1

Ainðq; z� tÞ
Cinðq; z� tÞ
ainðq; z� tÞ
binðq; z� tÞ
cinðq; z� tÞ

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;
dt; ðA:8Þ
where k ¼ 1, 2, and 3. The above five integrals can be evaluated analytically using Eqs. (A.1) and
(A.2).
The following are the definitions of some functions used in Section 6:
A0
inmkðq; zÞ

c0inmkðq; zÞ

� �
¼
Z 2p

0

Z q̂m

q̂m�1

q̂k
q � q̂ cos /̂

q�
Ainðq�; zÞ
cinðq�; zÞ

� �
dq̂d/̂; ðA:9Þ

C0
inmkðq; zÞ

b0
inmkðq; zÞ

� �
¼
Z 2p

0

Z q̂m

q̂m�1

q̂k
Cinðq�; zÞ
binðq�; zÞ

� �
dq̂d/̂; ðA:10Þ

a0
inmkðq; zÞ ¼

Z 2p

0

Z q̂m

q̂m�1

q̂k
2q̂2 sin2 /̂

ðq�Þ3
Ainðq�; zÞ

2
4 þ q � q̂ cos /̂

q�

 !2
ainðq�; zÞ

3
5dq̂d/̂; ðA:11Þ
where q� is defined by Eq. (33), n ¼ 2; 3; . . . ;N þ 1, m ¼ 1; 2; . . . ;M , i ¼ 1; 2, and k ¼ 1; 2; 3. The
integrations in Eqs. (A.9)–(A.11) can be performed numerically after the substitution of Eqs.
(A.1) and (A.2).
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