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Abstract--The motion of two rigid spherical particles in an arbitrary configuration in an 
infinite viscous fluid at low Reynolds numbers is considered. The fluid is allowed to slip at the 
surfaces of the spheres and the particles may differ in radius. The resistance and mobility 
functions that completely characterize the linear relations between the forces and torques and 
the translational and rotational velocities of the particles are analytically calculated in the 
quasi-steady limit using a method of twin multipole expansions. For each function, an 
expression of power series in r-1 is obtained, where r is the distance between the particle 
centers. The agreement between these expressions and the relevant results in the literature is 
quite good. Based on a microscopic model, the analytical results for two-sphere hydrodynamic 
interactions are used to find the effect of the volume fraction of particles of each type on the 
average settling velocities in a bounded suspension of slip spheres. Our results, presented in 
simple closed forms, agree very well with the existing solutions for the limiting cases of no slip 
and perfect slip at the particles surfaces. In general, the particle-interaction effects are found to 
be more significant when the slip coefficients at the particle surfaces become smaller. Also, the 
influence of the interactions on the smaller particles is stronger than on the larger ones. © 1997 
Elsevier Science Ltd. All rights reserved 

Keywords: Two-particle hydrodynamic interactions; effects of volume fraction; slip spherical 
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1. INTRODUCTION 

The area of the moving of solid particles or fluid drops 
in a continuous medium at very small Reynolds num- 
bers has continued to receive much attention from 
investigators in the fields of chemical, biomedical and 
environmental engineering and science. The majority 
of the moving phenomena are fundamental in nature, 
but permit one to develop rational understanding of 
many practical systems and industrial processes such 
as sedimentation, floatation, coagulation, spray dry- 
ing, aerosol processing and motion of blood cells in an 
artery or vein. The theoretical study of this subject has 
grown out of the classic work of Stokes (1851) for 
a translating rigid sphere in a viscous fluid. Hadamard 
(1911) and Rybczynski (1911) have independently ex- 
tended this result to the translation of a fluid sphere. 
Assuming continuous velocity and continuous tan- 
gential stress across the interface of fluid phases, they 
found that the force exerted on a spherical drop 
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of radius a by the surrounding fluid of viscosity ~/is 
given by 

3r/* + 2 
F I°~ = - oTtr/a ~ U (1) 

where U is the migration velocity of the drop and r/* is 
the internal-to-external viscosity ratio. Since the fluid 
viscosities are arbitrary, eq. (1) degenerates to the case 
of translation of a solid sphere (Stokes' law) when 
~/* --, ~ and to the case of motion of a gas bubble with 
spherical shape in the limit r/* --* 0. 

In most practical applications, multiparticle sys- 
tems are more important than the single-particle situ- 
ation; the latter condition can represent only the 
limiting case at low dispersed phase hold-up. In 
dispersions, particle interactions can be of primary 
importance and are related to the concentration de- 
pendence of the ensemble-averaged settling velocities 
of the particles (Batchelor, 1972; Reed and Anderson, 
1980) and of the effective transport properties (Jeffrey, 
1973; Batchelor, 1976, 1977). Problems concerning the 
hydrodynamic interactions between two or more fluid 
particles with arbitrary values of r/* have been treated 
extensively in the past. Summaries for the current 
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state of knowledge in this area and some informative 
references can be found in Kim and Karrila (1991) and 
Keh and Tseng (1992). 

When one tries to solve the Navier Stokes equa- 
tions, it is usually assumed that no slippage arises at 
the solid-fluid interfaces. Actually, this is an idealiz- 
ation of occurrence of the transport processes. The 
phenomenon that the adjacent fluid (especially if the 
fluid is a slightly rarefied gas) can slip over a solid 
surface has been confirmed, both experimentally and 
theoretically (Kennard, 1938; Loyalka, 1990; Ying and 
Peters, 1991; Hutchins et al., 1995). Presumably, any 
such slipping would be proportional to the local tan- 
gential stress next to the solid surface (Basset, 1961; 
Happel and Brenner, 1983), at least as long as the 
velocity gradient is small. The constant of propor- 
tionality, f l -1  may be termed a 'slip coefficient'. The 
quantity q/fl is a length, which can be pictured by 
noting that the fluid motion is the same as if the solid 
surface was displaced inward by a distance ~l/fl with 
the velocity gradient extending uniformly right up to 
no-slip velocity at the surface. Basset (1961) has found 
that the drag force acting on a translating rigid sphere 
with a slip-flow boundary condition at its surface (e.g. 
a settling aerosol sphere) is 

(2) F~O) ~ fla + 2q .  
= --  o T t q a ~  U.  

When fl ~ oc, there is no slip at the particle surface 
and eq. (2) degenerates to Stokes' law. In the limiting 
case of fl = 0, there is a perfect slip at the particle 
surface (the particle acts like a spherical gas bubble) 
and eq. (2) is consistent with eq. (1) (taking q* = 0). 
Note that, as can be seen from eqs (1) and (2), the flow 
field produced by the migration of a "slip' solid sphere 
is the same as the external flow field generated by the 
same motion of a fluid drop with a value of q* equal 
to fla/3r I. 

In eq. (2), the slip coefficient has been determined 
experimentally for various cases and found to agree 
with the general kinetic theory of gases. It can be 
evaluated from the relation 

f l -  1 = Cm l/q (3) 

where 1 is the mean free path of a gas molecule and 
C,, is a dimensionless constant related to the mo- 
mentum accommodation coefficient at the solid sur- 
face. Although C,, surely depends upon the nature of 
the surface, examination of the experimental data 
suggests that it will be in the range 1.0-1.5 (Davis, 
1972; Talbot et al., 1980; Loyalka, 1990). Note that the 
slip-flow boundary condition is not only applicable 
for a gas-solid surface in the continuum regime 
(Knudsen number l/a ~ 1), but also appears to be 
valid for some cases even into the molecular flow 
regime (l/a >1 1). 

The hydrodynamic interactions between two solid 
particles with finite values of fla/q are different, both 
physically and mathematically, from those between 
two fluid drops of finite viscosities. Through an exact 

representation in spherical bipolar coordinates, the 
creeping motion of two rigid spheres with slip surfaces 
translating along the line of their centers was exam- 
ined by Reed and Morrison (1974) and Chen and Keh 
(1995). Numerical results to correct Basset's equation 
(2) for each particle were presented for various cases. 
It was found that the interaction effect between par- 
ticles decreases with the increase of the slip coefficients 
at the particle surfaces. This interaction effect can be 
very significant when the distance between particle 
surfaces approaches zero. The influence of the interac- 
tions between particles, in general, is far greater on the 
smaller one than on the larger one. 

The objective of the present work is to study the 
hydrodynamic interactions analytically, between two 
slip spherical particles in a general situation. The 
particles may differ in radius and have arbitrary trans- 
lational and rotational velocities (or applied forces 
and torques). A method of twin multipole expansions 
(Jeffrey and Onishi, 1984) is used to solve the problem. 
The detailed discussion of the hydrodynamic interac- 
tions between two rigid spheres is presented in Sec- 
tion 2, where we review the relevant resistance and 
mobility functions. In Section 3, the formulation of 
the method of twin multipole expansions for the arbi- 
trary motion of two slip spheres is given. In Sections 
4 and 5, the asymptotic formulas for the resistance 
and mobility functions, respectively, expressed in 
terms of the dimensionless slip coefficients, the relative 
separation distance and the size ratio of the two 
spherical particles are derived. Our results agree well 
with the existing solutions for the interactions be- 
tween two spheres in the literature. Finally, in Sec- 
tion 6, the results of two-sphere interactions obtained 
in Section 5 are employed to evaluate the effect of the 
volume fraction of particles on the average settling 
velocity in a bounded suspension of small slip spheres, 
and the general result is obtained in eqs (92) and (93). 
For the special cases of a suspension of no-slip spheres 
and of perfect-slip spheres (gas bubbles), analytical 
expressions for the average settling velocity with high 
accuracy are given in eqs (94) and (95), respectively. 

2. DEFINITION OF THE INTERACTIONS BETWEEN TWO 

RIGID SPHERES 

In this work we use the definition of two-sphere 
hydrodynamic interactions summarized by Jeffrey 
and Onishi (1984). Two rigid spheres are immersed in 
an unbounded fluid with the undisturbed velocity 
field V(x)=  Vo + o~xx. Sphere ~ has radius a=, 
angular velocity 12=, and translational velocity U~ at 
its center x=, where ~ = 1 or 2. The force and torque 
exerted by sphere ~ on the fluid about the center of the 
sphere are F~ and T~, respectively. The relations be- 
tween the quantities Us, ~=, F=, T~, Vo and ~ are the 
interactions to be determined. 

2.1. The resistance problem 
When the specified quantities are the velocities of 

the particles and of the prescribed flow, the linearity of 
the Stokes equations [given in eq. (15)] permits the 



Low-Reynolds-number hydrodynamic interactions 

expression of the forces and torques in the form 

T1 =t /LBlX B 12 C l i  c- / F U1- V(X1)] 
T2 B 21 c - j  / 

1 1 / / 
L ~2-~  d 

F U,-  V(x,)] 
[u2- v{x=)/. x/"'° / (4) [ "a l a 12 
L ~'~2 - -  tO J a 21 a 22 

x 
The square matrix of second-rank tensors in the b 11 b 12 

above equation is the resistance matrix. The recipro- Lb21 b22 

cal theorem of Lorentz (Happel and Brenner, 1983) 
shows that the resistance matrix is symmetric, i.e. 

a= C7: a= (5a-c) A;f  = AiPi ", B~f : B j , ,  = Cji . 

The two-sphere geometry implies that any element 
tensor P of the resistance matrix obeys 

Wa(r, a l ,a2)  = p ( 3 - a ) t 3 - a ) ( _  r, a z , a l )  (6) 

where r = xz - xa = re (r = Irl and e is the unit vec- 
tor along r) is the vector from the center of particle 
1 to the center of particle 2. Finally, the axial sym- 
metry about  r implies that each tensor in the resist- 
ance matrix can be reduced to an expression involving 
no more than two scalar functions. Thus, one can 
write 

A "a = XAaee + Y~(I -- ee) (7a) 

B =# = - B ~  = Y ~  e x I (Tb) 

C ~t~ = XC:ee + Y:#(I - ee) (7c) 

where I is the unit dyadic. 
We now non-dimensionalize these tensors and their 

scalar functions so that they become functions only of 
two dimensionless variables 

2r a2 
s and 2 = - - .  (8a, b) 

at + a2 al 

The non-dimensional  resistance tensors are indicated 
by a caret with the definition 

A ~'# = 3~(a= + a#)A ~# (9a) 

B =# = n(a= + a#) 2 f~=~ (9b) 

C ~ = n(a, + aa) 3 C=o. (9c) 

Combining eqs (5)-(9), one can show that 

£Ap(s, 2) = 2~:(S, 2) = X( a _ =)(3 - ,)(s, 2 -  x) (lOa) 

Yh(s, 2) = P~=(s, 2) = Y(3̂A _ ~)(3 - fl) (S,/~ - 1) (10b) 

I~a(s, 2) = -- P(~ _ =)(3 - ~>(s, 2 -  x) (lOc) 

SC.6(s,/L) = 8~=(S,~) = ~3_~)(3_#)(S,~ -1) (lOd) 

fCa(s, 2 ) = I?~,(s, 2 ) =  Y(3̂ c _ =)(3- a)(s,2- t). (10e) 

Thus, there are 10 independent non-dimensional  scal- 
ar resistance functions to be determined for 2 ~< s 
< ~  a n d 0 < 2  <o0. 
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2.2. The  mobility problem 
When the particle forces and torques are prescribed 

in the ambient velocity field, one can write 

= r / - 1  

fi"/ F2 
C l l  C12 / Ix  

c 21 c 22 J T2 

(11) 

where the square matrix is the mobility matrix. The 
reciprocal theorem shows that this mobility matrix of 
second-rank tensors is also symmetric, i.e. 

#~ (12a-c) a ,? = , j " . r, : = b L c ,? = c j , . 

As in the resistance problem, the two-sphere sym- 
metry allows the following decompositions of the mo- 
bility tensors into scalar functions: 

a ~'a = xaa ee  + y=~(I - ee) (13a) 

= - - Y,a e x I (13b) 

e ~a = x~aee + y2a(I - ee). (13c) 

Note that the scalar mobility functions are denoted by 
lower-case letters and superscripts, in contrast to the 
upper-case letters and superscripts used for the resist- 
ance functions. 

The non-dimensionalizations of the mobility ten- 
sors are as follows, again using the caret notation: 

a ~a = 3rr(a= + a~)a =a (14a) 

I~ =# = re(a, + a#)  2 b =# (14b) 

~,a = n(a~ + a#) 3 c =#. (14c) 

Similar to the resistance problem, these non-dimen- 
sional mobility tensors and their scalar functions de- 
pend on s and ~ as defined in eq. (8). Also, relations 
between the non-dimensional  scalar mobility func- 
tions that are analogous to eq. (10) can be written 
down, showing that there will be 10 independent 
mobility functions to be determined for 2 ~< s < 
and 0 ~< 1 <oo. 

Note that the resistance matrix defined by eq. (4) 
and the mobility matrix defined by eq. (11) are reci- 
procal (inverse) of each other. The detailed trans- 
formation relations between the non-dimensional  
scalar resistance and mobility functions can be found 
in Jeffrey and Onishi (1984). 

3. METHOD OF TWIN MULTIPOLE EXPANSIONS 

We consider the slow motion of two spherical par- 
ticles in an unbounded Newtonian and incompress- 
ible fluid. The particles are allowed to differ in radius 
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and the fluid may slip at the surfaces of the particles. 
For the quasi-steady-state case, the velocity field 
v and dynamic pressure field p satisfy the Stokes 
equations, 

qV2v - Vp = 0, V. v = 0. (15a, b) 

The boundary conditions require that there be no 
relative normal flow at the surface of each sphere and 
that the tangential velocity of the fluid relative to the 
sphere at a point on its surface be proportional to the 
tangential stress prevailing at that point. If two sets 
of spherical coordinates (r,,O,,dp) are employed 
(~ = 1, 2) to describe the two-sphere geometry follow- 
ing Happel and Brenner (1983) and Jeffrey and Onishi 
(1984), the boundary conditions at the particle sur- 
faces for the general case are 

1 
G = G :  u~(0~, ¢ )  -- v --  ~-~ (I --  e~e~)e~ : T 

= U~ + a ~  x e~ (16) 

where ~ is the fluid stress tensor, e~ is the unit vector in 
the direction of G, and 1/fl, is the slip coefficient about 
the surface of sphere ~. 

The method of twin multipole expansions will be 
used to solve eqs (15) and (16). The pressure and 
velocity fields can be written as the sum of the contri- 
butions of singularities at the centers of the particles 
using Lamb's (1945) general solution: 

p = p(l~ + p(2) and v = V (1) ~- V (21 (17a, b) 

where 

. . . .  1 (=) [ a ~  "+' 
P'" = q S ~ - -  Pro. |--J Y . , . ( G ,  ¢) (18a) 

m= o .~-m a~ \ G }  

v (~) ~ V x  r ~ q ~  as  +t = Y , . . (G ,  ¢) 
m=O .=m \ G /  

+ a. V v,.. - -  gm. (G, ¢) 
k G /  

n - 2 r,2 IF (,) (a,~ "+ 
2n(2n - 1)G V LP"" \ G /  

n + l  
x Ym.(G,  Ok) + n(2n -- 1)G 

(a) } (o,t o+1 
xr~pm. - -  Y.~.(O., c~) (18b) 

2 r . /  

and Ym.(G,  ¢) = P~'(cos G)exp(im ¢) are spherical 
surface harmonics. The coefficients p~).. q ~  and 
v~. are functions only of s and 2 and are to be 
determined from the boundary conditions. 

To simplify the application of the boundary condi- 
tions, we follow Happel and Brenner (1983) and Jef- 
frey and Onishi (1984) in first constructing the follow- 
ing three scalar equations: 

e~.u, = ~ ~ Zmnt~)Ymn(O~, q~) (19a) 
m--O n=m 

- a ~ V - u . =  ~ ~ O',~Y.,.(O.,~?) (19b) 
m=O n=m 

= vJ.,. 1I,.. (G, 4)) (1%) 
m--O n=m 

where the " ~') ~'~ coefficients Z,,,, ip,.. and oJ~, ) can be evalu- 
ated from the boundary conditions given by eq. (16). 
Substituting eqs (16)-(18) into eq. (19), using the trans- 
formation rules for the two spherical coordinate sys- 
tems, and equating coefficients of Ym,(O,, ¢), one ob- 
tains the expressions for functions p~)., q~)~ and v~, in 

. (:0 terms of Z,.., ~)~ and co~).. The result includes three 
recurrence relations: 

(n + 1)(2n + 1)[1 + (2n + 1)fi~- t]  v~,~). 

-½(n  + 1)[1 +(2n + 1)fi;-1]p~). 

(n+s~ "-it~-~{-( l#m(4n z 1) 
+~=~ \ n  + m J  t" - _ 

x fl;~_~ i q ~ .  ~' t3 ~ - n(4n z - 1) fi3_~, v~ .  ~1 t~_. 

+ 2 - n - ~  1 - ~ ( 2 n +  1)xfi;_~ p~2-~tt  2 

- (2n + 1)f i32~ 

2m2( - ns + 2n + 2s - 1)-- ns(2ns - n -  s + 2) 
X 

2s(2s - 1)(n + s) 

(3 :0] 
X Pros f 

= (p~,). - [n - 1 + (2n 2 + 1)fi2 ' l  Z~. (20a) 

n + l  
]P,.. [1 + (2n + 1)fi21 I~l 

{ ( -  1#m(2n + 1)(1 + 2fi32~) X 

x i q ~ -  ~1 t 3 - ,  + n(2n + 1)(1 + 2fi32~) 

2 n + l  X ,,(3-a),2 ± I _ . ( 3 - a ) , 2  ~ . ~  ( fi . . . .  3 ~ ~ 2,,e . . . .  + 1 + 2  3 1 )  

2 m 2 ( - n s + 2 n + 2 s - 1 ) - n s ( 2 n s - n - s + 2 )  
X 

2s(2s - 1)(n + s) 

x p~s ~'} 

~,~. + (n + 2)(1 + 2nil21 I~) = )),.., (20b) 

n(n + 1)[1 + (n + 2)fi~- 1]q~). 

+ [ l  -- (n -- l)f i~-2,] ~ (n+s~ 
s= m \ n  + m / t ~  tg_, 

x { - -  n s q ~ s - ' ) t 3 - "  + ( - - l ) ' m i p ~ 2 - ' ) }  = 

(20c) 
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where t , = a , / r ,  i = x / - 1  and /~,=fl ,  a,/q. In and 
the following analysis, /~ =/~z =/~ will be as- 
sumed. P.pq 

The drag force and torque exerted by the fluid on 
each sphere can be expressed in a Cartesian coordi- 
nate system with unit vectors (i, j, e), where the i-axis is 
chosen in the plane ~b = 0. Then 

F, = - 4ru/a,[p~)~(- 1)3-~e --P11-(~) (i + j ) ]  (21a) 

T~ = - 2 (~) 3 - a 87zt/a~ [qo,(--  1 ) e -- q(~ (i + j ) ] .  (21b) 

In the following two sections, eqs (19)-(21) will be 
applied to solve the 10 non-dimensional scalar resist- 
ance functions and the 10 mobility functions. Our 
solutions contain as special cases the solutions for two 
no-slip spheres ( / ~  ~)  presented in Jeffrey and 
Onishi (1984) and the solutions for two spherical gas 
bubbles (/~ = 0). 

4. T H E  N O N - D I M E N S I O N A L  RESISTANCE F U N C T I O N S  

4.1. X~a (s,)0 
To determine the non-dimensional resistance func- 

tion ) (~  (s, 2), it is convenient to consider two particu- 
lar problems. In the first problem, the velocities 
U~ and U2 of the two spheres are along the line 
through their centers with equal magnitudes but op- 
posite directions, i.e. 

U1 = - U2 = Ue. (22) 

For the second problem, the spheres move along the 
line of centers with identical velocities, 

U~ = Uz = Ue. (23) 

In either case, there is no particle rotation 

For the first problem, the coefficients defined in eq. 
(19) become 

~(,]). = USm06,a, ~b~), = 0, o)~,), = 0. (24a-c) 

Note that these coefficients are the same for each 
sphere. In eq. (20), only the functions for m = 0 will be 
non-zero due to the axial symmetry. Also, since the 
angular velocities are non-existent, all the functions 
q~,)~ are zero. Utilizing eqs (20) and (24), the functions 
p~), and v~, can be expanded as double power series in 
t, = a~/r: 

= ~ ~ P q (25a) ."On n(:t) 322 U Pnpq tat 3 - a  
p - O  q=O 

o~ 1 
(2Sb) ~On npq ~ot 3-or" 

= q= 

The recurrence relations for the coefficients P~,q and 
Vnp q are 

P.oo = 6n l f123 ,  Vnoo ---- 5.1flo3 (26a, b) 

1793 

n ( 2 n -  1) ~ ( n + s )  

2(n+ 1)[1 + ~ - n +  1 ) f l -1 ] s= l \  " 

~ ,  ( 2 n + l ) ( 2 n s - n - s + 2 )  

X Ps (q - s ) (p  - n + l) - -  Ps(q - s)(p n - l )  

_ 2n+l  } 
- f12o ~ Vs(q-,-21(p-. + II (27a) 

V, pq=P,, ,  (, + 1)[1 + (-2n + 1)/~-'] ~=, \ n 

{(2n+ A 1 2 n s - n - s + 2  × 1)fl- (~-s-- ]-)-~--~ 

X Ps (q - s ) (p  . + 1) 

2 - (2n + 1)2/~ - 1 
+ 2n + 3 Ps(q - s)(p - n 1) 

(4n I 1)/~- 1 

Vs(q - s  - 2)(p - n + 1)} (27b) 
2 s+  1 

where fl,m = (/~ + n)/(fl + m); P.pq = V.pq = 0 if p or 
q is negative. After the substitution of eq. (25a), the 
force equation (21a) yields 

)(~, - ½(1 + 2))(~2 = ~ ~ P,,qt~tq2. (28) 
p = 0  q=O 

For the second problem, the quantities defined in 
eq. (19) become 

X~)n = ( - -  1 ) 3 - a U ( ~ r n O t ~ n l ,  ~b(~ ) = O, a )~n  = O. 

(29a-c) 

By substituting these conditions into eq. (20), it 
is found that the functions p~.) and v~. ) can be ex- 
panded in the form of eq. (25) with coefficients 
P,pq and V.pq being replaced by ( -  l)n+p+q+~Pnv q and 
( -  1)'+P+q+'V,pq, respectively. Thus, it is easy to con- 
clude that 

Xlax + ½(1 + 2 )x IA2  ~--- ~ ~ ( - -  1)P+qPlnqt~tq2. (30) 
p = 0 q = 0  

From eqs (28) and (30) it is obvious that )~1 is 
a series only of terms in which p + q is even and )fA2 is 
a series only of terms in which p + q is odd. Their 
results as functions of s and 2 have the same form as 
that given in Jeffrey and Onishi (1984), 

)?~1 = ~ fEk(2)(1 + ~ ) - 2 k s - 2 k  (31a) 
k=O 

X ~ 2 = - - 2  f2k+~(2)(l+2)-Ek-2s-ak-~ (31b) 
k=O 

where 

k 

fk(2) = 2* ~ Pl(k_q)q2 q. (32) 
0=0  
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Explicitly, 

fo = [323, f l  = 3[323 2, J2 = 9[333 2 

f 3  = - -  4[303[3232 q- 2 7 f l 4 3 2 2  - -  4f103f12323 

f 4  = - -  24[303[3232 + 8 1 f l 5 3 ) ,  2 

+ 36(1 + 5/~ - I  + 10fl-2)[3o313o5132323 

f5 = 72(1 +5/~ -1 + 15/~ 2)/303/305[33322 + 243[36323 

+ 72(1 + 5f1-1 + 15f:l-2)[3o313os[33324 

f6 = 16132313232 + 108(1 +5/~ 1 q_ 30~-2)flO31305fl,~322 

+ (729[373 + 321323fl23 - -  480f losf123)23 

+ 648(1 + 5/~ -1 + 10/~-2)[303130s[34324 

2 
~- 5 [323([3( 2)3 - -  1013o5 + 141327)25 

f7  - -  J~4403 rar~, + 42[327 - -  5 t J23L"P ' ( -2 )3  

- 5(7 + 35/~ -1 + 46fl-z)[3ozflo313o5122 
+ 1620tl + 5/~ 1 + 12/~-2)[3o3130513~32~ 

+ 3[3223 [729fl63 + 64[323 -- 720[305[323 

+ 48(1 + 5/~ 1 + 10/~-~)(1013o~[323 _ [3L)]24 

+ 1620(1 + 5/~ -1 + 12/~ 2)[303[305[3523)°5 

d- ~A- 3 42[327 -- 5(7 35/~ t 5 flz31313t 2)3 ~- -]- 

+ 46/~- 2)[30213031305 ] 20. 

In the limit of perfect slip at the particle surfaces 
(/~ = 0 or spherical gas bubbles), 

f8 = L~3 (22 + 223 + 524 -[- 32 ~ + 326 + 27) 

f9 = 1°24(  22 -[- 323 + 624 + 825 + 626 + 327 + 28) 

f lo  = 2048( 22 -~- 323 + 924 + 1125 + 1426 + 627 

+ 428 + 29) 

= 409~ (22 f l l  + 423 + 1024 + 2025 + 2126 + 2027 

+ 1028 + 429 + 21°). 

The formulas of Js , fg , f lo  and j ]  1 for the special case of 
no-slip spheres (/~ ~ Qc) were given by Jeffrey and 
Onishi (1984). Expressions forfk(2) with higher orders 
can be explicitly derived if desired. 

Using a method of reflections, Hetsroni and Haber  
(1978) derived the explicit formulas for the resistance 
functions .~IA1, x 'A2 ,  y1A1 and )(la2 in power series of 
1/r up to O(r 5) for the case of two fluid drops with 
arbitrary radii. The above expressions agree with (and 
are much more accurate than) their results (taking the 
viscosities of the drops or r/* as zero) in the limit 
/~ = 0. It can also be found that the interaction be- 
tween two slip spheres with a finite value o f /~  is 
different from that between two fluid drops with 
a value of 3r/* equal to /~, although the flow field 
induced by an isolated slip sphere is equivalent to the 
external flow field caused by an isolated fluid drop 
under this condition. 

H. J. Keh and S. H. Chen 

The exact (numerical) solution of the resistance 
functions xA 1 and )(A 2 was obtained by solving the 
problem of axisymmetric translational motion of two 
slip spheres using bipolar coordinates (Chen and Keh, 
1995). Table 1 gives a comparison of our asymptotic 
solution from the method of twin multipole expan- 
sions with this exact solution. For  simplicity, only the 
case of two identical spheres (al = a 2  = a  and 
[31 = [32 = [3) with equal velocities (U1 = U2 = Ue) is 
presented. In this specific case, the particles will ex- 
perience the same drag force (F1 = F2 = F) because 
xA1 = xA2 and )(A2 = xA 1. It is found from Table 1 
that the predictions of ElF (°) [ = ( ) ( A  l +)(la2) 
([3a + 2q)/([3a + 3q)] from the asymptotic solution for 
various values of fla/q are in good agreement with 
those of the exact solution. The errors in drag forces 

Table 1. The normalized drag forces F/F (°) experienced by 
two identical spheres translating with equal velocities along 

the line of their centers 

fla 2a Asymptotic solution 
- -  - -  Exact 
r/ r O(s  - 7  ) O(s -11) solution 

10 

0 0.2 0.9092 0 . 9 0 9 2  0.9092 
0.4 0.8343 0.8345 0.8345 
0.6 0.7714 0.7741 0.7742 
0.8 0.7099 0 . 7 2 6 0  0.7276 
0.9 0.6710 0 . 7 0 2 7  0.7090 
0.95 0.6466 0.6888 0.7008 
0.99 0.6235 0.6753 0.6946 
0.999 0.6178 0.6718 0.6933 
0.9999 0.6173 0.6714 0.6931 

0.2 0.8992 0.8992 
0.4 0.8189 0.8191 
0.6 0.7538 0.7575 
0.8 0.6887 0.7122 
0.9 0.6438 0.6947 
0.95 0.6142 0.6869 
0.99 0.5856 0.6811 
0.999 0.5784 0.6798 
0.9999 0.5776 0.6797 

0.2 0.8792 0.8792 
0.4 0.7889 0.7894 
0.6 0.7184 0.7262 
0.8 0.6323 0.6838 
0.9 0.5552 0.6680 
0.95 0.4988 0.6610 
0.99 0.4416 0.6559 
0.999 0.4270 0.6548 
0.9999 0.4255 0.6547 

0.2 0.8706 0 . 8 7 0 6  0.8706 
0.4 0.7763 0 . 7 7 7 2  0.7772 
0.6 0.7016 0 . 7 1 3 6  0.7140 
0.8 0.5906 0 . 6 6 1 8  0.6729 
0.9 0.4763 0.6151 0.6578 
0.95 0.3895 0.5723 0.6512 
0.99 0.3001 0.5206 0.6463 
0.999 0.2771 0.5060 0.6453 
0.9999 0.2747 0 . 5 0 4 5  0.6452 
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are less than 1.8% for cases 2a/r <~ 0.6 if the asymp- 
totic formula (31) is accurate to O(s -v) or less than 
6.5% for cases 2a/r <~ 0.9 if eq. (31) is accurate to 
O(s-1~). For the situation of two slip spheres with 
different radii, eq. (31) can also be found to agree well 
with the exact solution. In general, the accuracy of 
eq. (31) with finite terms decreases monotonically 
with the increase of fla/rl for a given value of s. 
In Section 5.1, one will see that the asymptotic results 
for the corresponding mobility problem of the same 
order of s-~ obtained from the same method are 
much more accurate than the resistance results pre- 
sented here. 

hydrodynamic interactions 

s = l  / 1 +  

{3 t x - ~ Ps(~_~)(~_.) + s Q ~ _ ~ _ , ~ _ . i .  

4.2. ~'A,(S, ) 0 
We now consider two problems of the motion of 

two spheres normal to the line of their centers. In the 
first problem, 

U 1 : - -  U 2 : Ui (33) 

and in the second problem, 

U1 = U2 = Ui (34) 

with in each case ~ = ~"~2 = 0. 
For the first problem, one has the coefficients in eq. 

(19) as 

Zt~)n=(--1)'Ut~m~6nl, #l~)n=O, o~)n=O. (35a-c) 

In eq. (20), only the functions for m = 1 will be non- 
zero now. The expansions being used this time are 

"(" =(-1)=~2U ~ ~ P.pq P q tct t 3 - ~t (36a) / / I n  
p = 0  q=O 

n~. "~) = - i U Qnvq t ,  t 3 - ~t (36b) 
p=O q-O 

v , ~ ) = ( _ I ) ~ U  ~ ~ 1 v q (36c) 
1, p=O~=O 2n + 1 Vnpqt~t3-~" 

The recurrence relations for coefficients P, pq, Q,v~ and 
V,p~, are 

P.oo = 3 n l f 1 2 3 ,  Q.oo = 0 ,  Vno 0 = 3 n l f l O  3 (37a-c) 

and 

Pnpq 
( n + l ) [ l  + ~ n + 1 ) / 3 - 1 ] ~ : 1  n + l  

2 n + l ( n + s ) ( n s + 4 ) - 2 ( n s + l )  2 
x fl2o2 n _ 1 2s(2s -- 1)(n + s) 

/1 
>( Ps(q-s)(p-n+ 1) "~- ~ Ps(q-s)(p-n-1) 

n(2n + 1) 
-~- f120 - -  ~/~(q -- s -- 2)(p -- n + 1) 

2(2s + 1) 

-- 23f12o(2n + 1)Q~a-~-l)~p-.+ll} (38a) 
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(38b) 

n 
gnpq ~ Pnpq -- 

(n + 1)[1 +(2n + 1)/~ -1]  

(n + s)(ns + 4) -- 2(ns + 1) z 
× Ps(q-s)(p-n+ 1) 

s(2s - 1)(n + s) 

2 - (2n + 1)2/~ - '  
- 2n + 3 P~(~-s)(v-,-1) 

(4n 2 -- l)l~- 1 
+ 2s + 1 Vs(q-s-2)(p-n+l) 

4(4n 2 -- 1)/~-1Q~q_s_ 1)~v_.+1)],. 
(38c) 

3 n 

The force equation (21a) now leads to 

I~(1-½(1 + ~)1~(2 = ~ ~ Plpqt~tg. (39) 
p = 0  q = 0  

By considering the second problem and comparing 
h A 

the result with eq. (39), it can be found that Yl l  
consists of the even powers of s and I2~2 of the 
odd powers of s. The explicit results can again be 
written as 

Y A  1 = ~ .  f 2 k ( , ~ ) ( 1  + ,~)-2ks-2k (40a) 
k=O 

Y~2 = - 2 ~, fzk+l(2)(1 + 2)-2k-Zs  ~2k-1. (40b) 
k=O 

Here, fk(2) is given by the form eq. (32), and the first 
few values are 

fo = flz3, f l  = ~fl~32, f2 = 9 34fl232 

f 3  2 f l O 3 f 1 2 3 ,  ~ _}_ 2 7 0 ' 4  2 2  = 8 / J 2 3  r" "[- 2 f103f123  '~'3 

~L1./~ 5 ] 2  A = 6/~o~/~,~ + 1 6 v z ~  + 1 8 ~ o ~ , ~  ~ 

f 5  63/~ ~q3 ~2  243  /~6 ] 3  6 3 / 2  /~3 ] 4  
= 2 / 3 0 3 P 2 3  ~" + 32 P 2 3  ~ -~- 2 /103/J23/~ 

f6 = 4 / ~  + 54Bo3/~h,~ ~ 

R 17~9- O 6 + , , ~  64 , , ~  + 8/~o~);~ ~ + 81/~o~/~3;~ ~ 

1 2  2 
+ 5 f 1 2 3 ( 3 f l f - 2 ) 3  + 20fl(_1~,, + 7 f 1 2 7 ) J ,  5 

fv is 3 = 5 f 1 2 3 ( 3 f l ( - 2 ) 3  + 20fl~-1~, + 7f l27  + 10f lO2f lO3) ,~  2 

D2 t 2 1 8 7  0 6  1 3 2 f l 2 3 ) , ~ 4  

+ x ° ~ # o ~ h ~  + ~ # h  

× ( 3 f l ( - 2 ) 3  + 2 0 f l ( - 1 ) 4  + 7 f l 2 7  + 1 0 f l o 2 f l o 3 ) J -  6. 
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If/~ = 0, 

Jh = ~ ( -  4022 + 524 --  8026 --  25627) 

J9 = ~ ( -  25622 - 8023 + 525 - 802~ - 2562s) 

J~o = ~ ( -  25622 - 8023 + 525 - 12027 

- 512)fl - 128029 ) 

ft~ = ~ ( -  128022 - 51223 - 1202~ + 192526 

- 1202 s - 51229 - 12802~°). 

The above expressions are consistent with and 
much more accurate than the method-of-reflections 
results obtained by Hetsroni and Haber (1978) for the 
motion of two fluid drops (taking q* = 0) in the case 
fi = 0. For  finite values of fi and r/*, the formulas of 
2 A 1 ,  AA *A Y12"A X~2, Yll  and for the motion of two slip 
spheres and for the motion of two spherical drops are 
identical up to O(r -3) if one puts fl = 3q*; however, 
this is no longer true when terms of O(r -~) are re- 

tained. 
It can be found from eq. (40) that the interaction 

effect between two spheres translating perpendicular 
to the line of their centers is more significant when the 
slip coefficients at the particle surfaces become smaller 
(or when the value of/~ becomes larger). This behavior 
is consistent with that observed for the axisymmetric 
translation of two slip spheres. 

4.3. ¢/~(s, 2) 
The two problems specified in eqs (33) and (34) in 

the preceding subsection can be used to find functions 
Y~a(s, 2). Substituting eq. (36b) into eq. (21b) and ap- 
plying the definition of the resistance functions, one 

obtains 

*B ¼(1 -~- /~)2flB 2 2 ~ ~ P q Y I I -  = Qlpqtlt2. (41) 
p=0 q-O 

When the second problem is considered, it can be 
~B found that Y ~ consists of the odd powers of s and 

Y~2 the even powers. Thus, 

flB1 = ~ f 2 k + , ( 2 ) ( l  + 2 ) - 2 k - l s  2 k - I  (42a) 
k-O 

Y~z = - 4 ~ fzd2)(1 + 2) -2k es-~k. (42b) 
k-O 

Here, 

k 

fk(2) = - 2 k+l  Z O - k - q ) q  2q 
q=O 

and some explicit expressions are 

fo = A  = o, J l  = - 6/~o3/h32,  .f~ = - 9/~o~/~132 

2._7 ~ [~3 ~2 g-  
J4 ~ --  2 /~03/J23 "~ 

~A~/~ O4 .,2 
f 5  = - -  1 2 f l g 3 f 1 2 3 2  - -  4 P03P'23 "; --  36f123f12323 

-- 72flo3f123 A .fo = - 108fl~3fli322 - J~8 flo3f153)~3 2 2 .4 

H. J. Keh and S. H. Chen 

J7 = - 189B~3/~32~ - 3/~o~( ~ z ? ~ / ~  + 160/~o3/h5)23 

-- 243f123f13324 -- 48f123(6flo2flo5 

+ 4/3(_ , , /~o4  - 7/~o7)2 5. 

It can be seen that ~B = 0 for all values of s in the 
limit/~ = 0. This is expected since the torques exerted 
on gas bubbles by the surrounding fluid are zero. 

(43) 

4.4. )(C~(s, 2) 
To determine the functions )(Cp(s,2), we consider 

two problems in which the two spheres rotate about 
the line of their centers. It is convenient to express the 
rotation in terms of a surface speed U: 

a l ~ l  = ~ aef12 = Ue. (44) 

In each case, the translational velocities are zero 
(U~ = Uz = 0). When the minus sign is taken, the 
coefficients defined in eq. (19) become 

Z~. = O, ~ .  = O, o ~  = 2U5,.o3.~. (45a-c) 

The only non-zero functions in eq. (20) are ~o.,"m which 
can be expanded as 

-(~) U Q,pq t~ t 3 - ~. (46) "/On 
p=0q=O 

The recurrence relations for coefficients Qnpq are 

Q.oo = 6.1flo3 (47a) 

1- -  ,n --1,/~ -1 ~ ( n + s )  

Q"Pq=(n+l)[1 + ( n + 2 ) / ~  1]~=l n 

X s Q s ( q  s -  1)(p-n). (47b) 

After substituting eq. (46) into the torque equation 
(21b), one obtains 

~ -c  (1 + 2)33~c2 = ~ ~ Q,pqt~tq2. (48) 
82 p=0q=O 

When the plus sign in eq. (44) is considered and its 
torque result is compared with the above equation, it 
is easy to find that 

*c ~ f:,(2)(1 + 2)-ZRs :k (49a) X l l  
k=O 

)(c a = - 8 ~ f2~+1(2)(1 + 2) -2k-%-2k-1 (49b) 
k=O 

where 

{01 i f k i s  even 
fk(2) = 2 k Qltk-q)q2q+J' J = if k is odd. 

q=0 

Explicitly, 

fo = /~03 ,  f ,  = A  = 0 

f 3 =  8 i l L 2 3 ,  A = f s = 0  

f6=64f13323, f T = 0 .  

If/~ 0, Ac = X ~  = 0 as expected. 

(50) 
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4.5. ¢{ct~(s, 2) 
The functions ^ c Y,o(s, 2) are obtained from problems 

of two spheres defined by 

a l ~ l  = '}- a2~'~2 = U i  (51) 

with U~ = U2 = 0. When the plus sign is considered, 
we have 

Z~), = 0, ff~,) = 0, co~, ~ = ( -  1)'2Ufm16,~. 

(52a~z) 

The expansions (36) and the recurrence relations (38) 
can be used again in this case, but the initial condi- 
tions (37) are replaced by 

P, oo = O, Q,oo = 6,1flo3, 1/",oo = 0. (53a~z) 

From the torque exerted on a sphere given by eq. 
(21b) one finds 

(1 -}- 2 )  3 ^ 
yCll-~A yc2 ~ ~ Pq = Qlpqtlt 2. (54) 

p = O q = O  

In the standard notation, 

f c  = i f2k(2)(1 + .~)-Eks-2k (55a) 
k - O  

}3c 2 = 8 ~ fek+1(2)(1 q- ,)~) 2k-'*s-2k-1. (55b) 
k=O 

Here,fk(2) is given by the form ofeq. (50), and the first 
few values are 

fo = f103, f l  = f :  = 0 

= = 18flO3f123,~ f3 = 4fl023 "~3, .[4 12flO23f1233~, f5 2 2 4 

= 27flo3f123 z + 16f123(flo3 + 15fl25).~ 3 6 2 3 "2 

~l_A2 0 4  ] 5  ql_ 72flO33f12326.  f7 = 72f133f123 '~4 + 2 /JO3P23 "~ 

Again, ~ c Y,~ = 0 in the limit/~ = 0. 

5. T H E  N O N - D I M E N S I O N A L  M O B I L I T Y  F U N C T I O N S  

5.1. i~a(s, 2) 
We now turn to the mobility functions 2aa(s, 2) and 

consider the external forces acting on the two spheres 
given by 

(6~/al) 1F1 = - (6~qa2)- 1F2 = Ue (56) 

where U is the magnitude of velocity that either 
sphere would have when the two spheres are far away 
from each other. In addition, there is no torque 
exerted on the spheres (T1 = T2 = 0). We wish to 
calculate the motion of the spheres, which is given by 
U1 = Ule, U2 = - Uze and f l l  = ~'~2 = 0. Similar to 
the first problem considered for the resistance func- 
tions )f~a(s, 2), the quantities defined in eq. (19) for 
this problem are given by eq. (24) in which U is 
replaced by U,. Also, in eq. (20), only the functions p~.~ 
and v~, ~ with m = 0 are non-zero. The functions ,,(~) 1"On, 
v(') and the particle velocities U~ can be expanded as On 
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eq. (25) and 

U~ = U ~ ~ Upqt~tq3_,. (57) 
p = O q = O  

From eqs (21a), (25a) and (56) it is easy to know that 

Plpq = 6pofiqo. (581 

The recurrence relations for coefficients P, pq and V.pq 
in eq. (27) remain valid. Taking n = 1 and using eqs 
(24), (25) and (57), eq. (20b) gives 

~ s + l ~ "  3 p 
Upq = = 1 ~ -  ( -  ~ s(q ~)p + flo2Ps(q-~*)(p- :, 

+ ~ L(q-s-2)p (59) 

which allows us to calculate the coefficients Upq from 
using eqs (58) and (27). Using eqs (21a), (25a), (57) and 
(58), the mobility functions are related to these coeffi- 
cients by 

2)~ ~ .L 
^ _ ^a = ~.~ Upqtltz. X~l ~ x 1 2  ~ P " (60) 

p = 0 q = O  

Then, we consider the problem in which the forces 
are given by 

(6rcqal)- IFI = (6ur/a2) 1F2 = Ue. (61) 

It is easy to find that the velocities U, in this problem 
can be expanded in the form of eq. (57) with coeffi- 
cients Upq being replaced by ( -  1)P+qUpq. Thus, a re- 
lation between the mobility functions in the form 
similar to eq. (60) can be obtained. 

As in the case of resistance functions, the mobility 
functions :~1 and :~z are given by a series either of 
even powers of s-1 or of odd powers, 

2'~1 = ~ fZk(£)(1 + 2)-Zks 2k (62a) 
k - O  

1 ~ )) 2~s_2k_ 2]2 = - -  ~k__~0fZk+ 1(2)(1 + ~ , ~ (62b) 

where 

.~(2)=2k ~ q_j {~ if k is even 
q=O U(k q)q)~ ' J = if k is odd. (63) 

Explicitly, 

fo=f132, f 1 = - - 3 ,  . f z = 0  

f3 = 4flo2(1 + 22), f4 = -- 60fl253~3, .fs = 0 

f6 = 480fl05 )~3 -- ~(2fl(-3)2 -- 45fl05 + 63fl27)2 s 

f7 = -- 2400fl~5 )~3" 

If/~ = 0, 

fs = -- 38427, f9 = -- 2304( 23 + 25) 

flo = - 1536( 426 + 2 9 )  

f l l  = -- 6144( 223 + 325 + 227) • 
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The expressions offs ,  f9, f lo and fa ~ for the limiting 
situation of no-slip spheres (/~ ~ ~ )  can also be found 
in Jeffrey and Onishi (1984). 

Using the so-called connector algebra, Geigenmul- 
ler and Mazur (1986) obtained the explicit formulas 
for the mobility functions :~1, )~2, Y~I and .f~2 in 
power series of 1/r up to O(r -v) for the case of two 
identical fluid drops. The above expressions agree 
with (and are more accurate than) their results (taking 
the viscosity of the drops as zero) for the case when 
/~ = 0. Again, the interaction between two slip spheres 
with a finite value of/~ can be found to differ from that 
between two fluid drops with a value of 3r/* equal to/~. 

The exact (numerical) solution of the mobility func- 
tions 2~1 and 2~2 for two slip spheres was also ob- 
tained by using bipolar coordinates (Chen and Keh, 
1995). Table 2 gives a comparison of our asymptotic 
results with the exact solution for the case of two 

Table 2. The normalized velocities U/U ~°) of two identical 
spheres exerted by equal forces along the line of their centers 

fla 2a Asymptotic solution 
q r O(s -7) O(s -11) 

H. J. Keh and S. H. Chen 

identical spheres experiencing equal applied 
forces (F1 = F2 = Fe). In this case, the particles will 
translate at the same velocity (U1 = U2 = U). It 
is found in Table 2 that the predictions of U/U ~°J 
[ = (x~l + x~2)(fla + 3q)/(fla + 2q), where U ~°) is the 
translational velocity of each particle subject to the 
applied force in the absence of the other particle] from 
the asymptotic approximation for various values of 
fla/r l are in perfect agreement with those of the exact 
solution. The errors in velocities are less than 1.7% for 
cases 2a/r <<. 0.9 or 4.7% for cases 2a/r <~ 0.9999 if the 
asymptotic formula (62) is accurate to O(s-  7). For  the 
situation of two spheres differing in size, eq. (62) can 
also be found to agree very well with the exact solu- 
tion. Similar to the resistance problem considered in 
Section 4.1, the error of eq. (62) with finite terms is 
a monotonic  increasing function of fla/q for a given 
value of s. However, the results obtained from the 
method of twin multipole expansions for the mobility 
problem are much more accurate (and simpler in 
expression) than those (with the same order of s -  1 in 
the expansions) for the resistance problem. Thus, the 

Exact better way to evaluate the resistance functions 
solution through series expansions in s-1 is to calculate the 

mobility functions first and then use the reciprocal 
relations to determine the resistance functions. 0.2 1.0999 1.0999 1.0999 

0.4 1.1984 1.1984 1.1984 
0.6 1.2916 1.2917 1.2917 
0.8 1.3736 1.3746 1.3743 
0.9 1.4082 1.4115 1.4103 
0.95 1.4235 1.4293 1.4269 
0.99 1.4348 1.4436 1.4396 
0.999 1.4372 1.4469 1.4424 
0.9999 1.4375 1.4472 1.4427 

0.2 1.1121 1.1121 
0.4 1.2208 1.2208 
0.6 1.3200 1.3201 
0.8 1.4031 1.4040 
0.9 1.4375 1.4395 
0.95 1.4532 1.4558 
0.99 1.4652 1.4682 
0.999 1.4678 1.4709 
0.9999 1.4681 1.4712 

10 0.2 1.1374 1.1374 
0.4 1.2667 1.2667 
0.6 1.3769 1.3770 
0.8 1.4649 1.4624 
0.9 1.5072 1.4970 
0.95 1.5311 1.5127 
0.99 1.5532 1.5245 
0.999 1.5586 1.5271 
0.9999 1.5591 1.5274 

0.2 1.1486 1.1486 1.1486 
0.4 1.2866 1.2866 1.2866 
0.6 1.4007 1.4006 1.4006 
0.8 1.4932 1.4853 1.4861 
0.9 1.5458 1.5143 1.5202 
0.95 1.5799 1.5218 1.5356 
0.99 1.6135 1.5213 1.5472 
0.999 1.6221 1.5201 1.5497 
0.9999 1.6229 1.5199 1.5500 

5.2. 9a,(s,,~) 
We now consider the motion of two spheres per- 

pendicular to the line of their centers, and again define 
two problems. First 

(6nqax) 1F1 = - - (6nqa2) - lF2  = Ui (64) 

and, secondly, 

(6nr /a l ) - lF1 =(6nqa2) - lF2  = Ui (65) 

with in each case T1 = T2 = 0. The purpose is to find 
the translational velocities UI = U l i  and U2 = 
-T- Uzi as well as the angular velocities f~l = - f l l j  
and ~z  = -T- ~2J. 

For  the first problem, the coefficients defined in eq. 
(19) become 

Z~)n = (--1)3-~Ua6m1~nl, ~l~n = O, 

~,~, = 2a, fft,6,,t 6,1. (66a-c) 

The quantities p~,), q~,J, V~l~, ), U, and ~ ,  can be ex- 
panded as 

= P,pq ta t3 - a (67a) 
p=Oq=O 

q(x~,~ = iU ~ ~ Q,pqt:t~_~ (67b) 
p=Oq=O 

2n + 1 V"vqt't3-" (67c) 

U~ = ( - - 1 ) 3 - a U  ~ ~ Uvq,,,a'v:_, (68) 
p=Oq=O 

a ~ =  U ~, ~ I) ,v,q (69) pq~at3-at. 
p=Oq=O 
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Using eqs (21), (64) and (67a,b), one finds 

Plpq = 6pofqo, Qlpq = 0. (70a, b) 

All coefficients V,pq are calculated from the relation 

V.pq ( n + l ) [ l  +(2n+l ) /~- t ]~=~ + 1  

!n + s)(ns + 4) - 2(ns + 1) 2 

X Ps(q s}(p n+l) 

n(2n + 1) 
q- /?l 210--------'~) + 

- -  ~ ( 2 n  - -  1 ) Q ~ l q  ~ l ~ t p - . + l ~  

n (2n -  1) 1 
+ 2(2s + 1~ V~(q-~-2)(p-,+ 1)~ + 6,~/?oaUpq. 

(71) 

For n > 1, the recurrence relations for coefficients 
P.pq and Q.pq are given by eqs (38b,c). Substitution of 
n = 1 into eqs (20b,c) using eqs (66) and (67) gives 
expressions for coefficients Up~ and ~p~: 

U~q = ~ s(s + 1)~_ 3(s_~_2_) 
s= 1 2 14s(2s - 1) Ps(q-sip 

1 
- -  a / ? o z P s ( q  - s l (p  - 2) -]- Q s ( q - s  - 1)p 

4(2s + 1) V~(q-~-2)p (72a) 

3 p  f~pq= ~=,~ s (s+  1 ) { ~  s ( q - s ) ( p - 1 )  sQstq-s-~)(p-~)}. 

(72b) 

The coefficients Upq are related to the mobility func- 
tions by 

~ -  ~ = ,.., ( -1 )  Upqtlt 2. (73) 
p=0q=0  

When the second problem is considered and its 
result is compared with eq. (73), one has 

)"~ 1 = ~ f2k(~-)( 1 ~- 2) - 2ks  - 2k (74a) 
k 0 

33'~2 = ½ ~ ./~k+l(2)(1 + 2)-2ks -2k-~ (74b) 
k=O 

wherefk(2) is given by eq. (63) and the first few values 
a re  

fo=/732, f ~ = 3  f 2 = O  

A = 2 / ? o : 0  + ,~ ) ,  f ,  = f ~  = o 

f6 = - ~s(4/?~-3)2 + 60/?(_ ~,, + 21//27)25, f7 = O. 

I f /~= O, 

f s=3~s  27, ,[9=0, fao=38429 , f ~ , = 5 7 6 2  s. 
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Again, these formulas are consistent with and more 
accurate than the results obtained by Geigenmuller 
and Mazur (1986) for the motion of two identical fluid 
drops (taking r/* = 0) in the limit/~ = 0. Similar to the 
resistance problem, the expressions of 2 a ,  .~AE, 
)3~1 and 33A2 for the motion of two slip spheres and for 
the motion of two spherical drops at finite values of 
/~ and r/* are identical up to O(r -3) if one puts 
/~ = 3q*; the difference between them appears when 
terms of O(r 4) are included. 

5.3. ~2~(s, ;3 
The calculations in the preceding subsection can be 

used to find functions )3~t~(s, 2). The coefficients f~pq in 
series expansion (69) for the angular velocity of 
a sphere translating under an applied force are given 
by eq. (72). The functions )3~a are then deduced in the 
standard way with the difference that odd powers of 

^b s i in the series go to Yll and even powers to )3~2. 
The result is 

fi bll = 2 f 2k+1(2)(1 q- ~ ' ) - 2 k - l s - 2 k - 1  (75a) 
k=O 

33~2 = ¼ ~ fzk(2)(1 + 2)-2k+2s 2k. (75b) 
k=O 

Here 

fk(2)=__(__2)k ~ f~k-q,o 2q j, j = { ; i f k i s e v e n  
o=o if k is odd, 

(76) 

and some explicit expressions are 

fo  = A  = o, J i  = - 2, f3  = f4  = J'; = f~  = 0 

fv = 160fl0523 + 16(6/705 + 4/? I- 1)4 - 7/?27) 25. 

5.4. ~p(s, 2) 
In order to determine the functions ~a(s,2), we 

consider the torques acting on the two spheres given 
by 

(8nqa3)-lT1 = -T- (8nt/a3)-lT2 =f~e. (77) 

Because the translational velocities are zero (given 
F~ = F2 = 0), the only non-zero functions in eq. (20) 
are q~2. When the minus sign in eq. (77) is considered, 
q~  can be expanded as eq. (46) and the particle 
angular velocities can be expressed as eq. (69) with 
U being replaced by a~ f~ now. By the combination of 
eqs (20c), (21b) and (69), the coefficients f~pq are 
obtained from the relation 

f~q =/?30Qlpq - 
S(S + 1) 

s =  o 2 Q.~lq -~ - 111~ - ~1. ( 7 8 )  

The recurrence relation for coefficients Q,pq is 
given by eq. (47b) with the initial value Q,oo = 6,x. 
Using eqs (21b), (46), (69) and (78) and observing 
that the even and odd powers of s-x in the series 
go to the functions 2~1 and ~ 2 ,  respectively, one 
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obtains 

x ] l  = ~ f2k(2)(1 + 2)-2ks-2k (79a) 
k=0  

212 = - s  1 ~ f2k+l(2)(1 + 2)-2k+2s -2k 1 (79b) 
k=0  

where 

~, ' {02 if k is even (80) 
f k ( ' ~ )  = ~(k-q)q'~'q-J' J = if k is odd. q=O 

Explicitly, 

To = / h o ,  f~ =f~  = 0 

f 3 = l ,  f ,  = fs = f6 = fT = O. 

Note that x~t --* o% as expected, and x~2 = - 18s-3 in 
the l imit/~ = 0. 

H. J. Keh and S. H. Chen 

5.5. ~e(s, 2) 
The functions ~3~,a(s, 2) are to be obtained from 

problems of two spheres in the situation that  

(8zr/a~3) - 1T 1 = _+ (8~rqa3) T M  1T 2 = f2i (81) 

with FI  = F2 = 0. The recurrence relations used to 
calculate ~p  in Section 5.2 with U being replaced by 
a,f l  can be used here with only a change of initial 
conditions, 

Plvq = O, Qlpq = 5pO6qO, Vlp q = 0. (82a-c) 

As usual, we have 

Y~I = ~ f2k(~.)( 1 + ~,) -2ks-2k (83a) 
k=O 

1 oc ~') - 2 k +  2 S -  2'k- 1" 
Y]2 = ~k~=of2k+ 1(2)(1 + (83b) 

Here,fk(2) is given by the form ofeq. (80), and the first 
few values are 

/o=/ho, /~=/~=0, A = - 4 ,  / , = / ~ = 0  

f 6  = - -  2 4 ( f l o a  + 9f l25)  "~3, f7 = 0. 

As expected, ~ t l  ~ oo in the limit/~ = 0. 

6. AVERAGE S E T T L I N G  VELOCITY IN  A S U S P E N S I O N  O F  

SLIP  SPHERES 

In practical applications of sedimentation phe- 
nomena, collections of particles in bounded systems 
are usually encountered. The interaction effects be- 
tween pairs of spheres discussed in the previous sec- 
tion can be used to find how the average settling (or 
buoyantly rising) velocity of a dilute suspension of slip 
spheres is affected by the volume fraction of the par-  
ticles. Based on a microscopic model  of particle inter- 
actions in a dilute dispersion which comprises both 
statistical and low Reynolds number hydrodynamic 
concepts (Batchelor, 1972; Reed and Anderson, 1980), 
the average settling velocity of a test particle (with 
radius a,), which samples all positions in a bounded 

dispersion, is given by 

( U ' ) = U I ° ) + C { f v  v * ( r ) [ o ( r ) - l ] d r  

+ ~ . J r  > a V2 v*(r) [g(r) -- 1] dr 

~_ 2 a 1)U(O) -+- 37zat  a ( 2 f 1 2 3  - -  

+ f v W(r)g(r)dr}  +0(C2)" (84) 

Here, C is the macroscopic concentration of the 
neighboring particles (assumed to be identical, with 
radius a), Ut, °J and U (°) are the undisturbed settling 
velocities of the test particle and a neighboring par-  
ticle, respectively, g(r) is the two-particle radial distri- 
but ion function, and V denotes the entire volume of 
the dispersion, v*(r) is the velocity field at position 
r when a single neighbor particle at the origin 0 moves 
with velocity U <°), which can be expressed as (Basset, 
1961) 

r < a: v*(r) = U (°) (85a) 

(85b) 
The Laplacian of this field can be found to be 

r < a: V2v*(r) = 0, (86a) 

r > a: V2v*(r) = ~fl23 [I - 3ee ] .U  (°). 

(86b) 

W(r) in eq. (84) is a correction function needed to 
account for the per turbat ion on v* owing to the pres- 
ence of the test particle and the boundary,  and is given 
by 

W(r) = U * ( r ) -  UI °) - v*(r) - 61flo2a2V2v*(r) (87) 

where U*(r) is the actual velocity of the test particle 
located at r with respect to the origin of a single 
neighbor at 0. If all the particles have the same value 
of /~, U*(r) can be calculated using the mobili ty 
functions derived in Sections 5.1 and 5.2, 

U*(r) = [2~1U~ °) + 22 ~. U(O)]. 
1 + 2  12 j e e  

+ [;~lul °, +--L-2 "'~ u(°']/ 
1 + ,l y12 j.(I ee )  (88) 

where subscripts 1 and 2 denote the test and neighbor- 
ing particles, respectively. Substitution of eqs (85b), 
(86b) and (88) into eq. (87) shows that  the magnitude 
of W behaves as r - 4  when r >> a. 

The volume integrals in eq. (84) can be evaluated by 
assuming that  the radial  distr ibution function has the 
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following equilibrium value for rigid spheres without 
long-range pair  potential: 

g = 0 if r < a, + a (89a) 

g = 1 + O(C) i f r  > a, + a (89b) 

where O(C) is a term propor t ional  to the concentra- 
t ion of the neighbor particles. That  is, the particles 
must be sufficiently small so that  Brownian motion 
dominates any multiparticle hydrodynamic  interac- 
tions which might impart  microscopic structure to the 
dispersion. In general, it is necessary to obtain the pair  
distr ibution function as the solution of a conservation 
equation of the Fokke r -P lanck  type for a polydis- 
perse system of spheres (Batchelor, 1982). The condi- 
tions under which the assumption of local equilibrium 
is valid for a dilute dispersion comprising different 
types of particles are also discussed by Reed and 
Anderson (1980). 

Given eqs (85)-(89) and the relation U ~°) 
= UI, °) ae/a 2 (assuming that  the test particle and its 

neighbors have the same density), the integrals in eq. 
(84) can be evaluated to yield 

<Ut> = UI°)[ -l -~- ~t~ "}- O(~92)] (90) 

with 

15 a 

1 
-- --f123(4fl( 3)2 -F 20fl~-1)4 - 60flo5 

4O 

ata 2 75 2 ata3 
+ 9 1 f l 2 7 ) ~  + -~f123flZ5ia;~_a)4 (91) 

where q~ ( =  4rca 3 C/3) is the volume fraction of the 
neighbor particles. Note  that  the integral of the modi-  
fied Faxen correction involving V2v * (Felderhof, 
1976) in eq. (84) equals zero as computed from eqs 
(86b) and (89). The term inside the brackets in eq. (91) 
for ~, is obtained from the first and third terms in the 
braces of eq. (84), while the other terms in eq. (91) are 
the result of the last integral in eq. (84). Certainly, this 
expression is not exact, even given that  eq. (89) holds, 
because O(r-s )  terms are neglected in the evaluation 
of U*;  however, the error  should be small and will 
appear  only in the calculation involving the correc- 
t ion function W. In the derivation of eq. (91), all the 
neighboring particles are assumed to be identical, 
even though they are allowed to differ in radius from 
the test particle. 

F o r  a dispersion of particles that  have a distribu- 
tion in radius, a generalization of eqs (90) and (91) 
leads to 

(Ui> = U,°)[1-4- 2 o~ij~oj-t'- O((02)] (92) 
J 

hydrodynamic interactions 

where 

O~ij = -- 1 + 3fl2 3 ~// + \ai,] d 

15 / a i \ 5 / ai ~3 

1 
40f123(4fl~ 3}2 Jr- 20fl(-1) 4 -- 60flO 5 
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aia } 75 2 aia3 
+ 91f127)(a, + aj)3 I- ~f123 f125 ia~a j )  4. (93) 

Here, subscript i denotes the type of particles having 
radius a~. Note  that eqs (91) and (93) are valid only 
when all the particles have the same density and value 
of/~. 

An examination of eq. (93) indicates that  the inter- 
action coefficient ~ i  is always negative, irrespective of 
values of aj/a~ and/~. Thus, the average settling velo- 
city of a type of particles is reduced with an increase in 
the concentration of any type of particles in the sus- 
pension. Results of ~ j  calculated from eq. (93) at 
various values of aj/a~ are plotted vs/~ in Fig. 1. It can 
be seen that, as expected, the magnitude of ~ij, which 
reflects the intensity of particle interactions, increases 
monotonical ly with the increase of/? for a fixed value 
of aHai. If the value of/~ is kept constant, the magni- 
tude of e~j is a monotonic  increasing function of the 
ratio aj/ai. Namely,  the influence of the interactions 
on the smaller particles is stronger than on the larger 
ones. Note  that, in the limit aj/a~ = 0, eq. (93) predicts 
that e~j = - 2 for the case of/3 = 0 and % = - ~ [if 
more accurate values of the mobili ty functions in eq. 
(88) are used, ~ j  = - 2  ~ as indicated by eq. (94)] for 
the case of/~ --, o~. 

For  a suspension of no-slip spheres (/~--, ~ ) ,  the 
mobili ty functions in eq. (88) can be calculated to the 
order of r -  11 (Jeffrey and Onishi, 1984); thus, a more 
accurate expression for :qj than eq. (93) is obtained, 

O ~ i J  = - -  I l+3aj-ai + \aij(aJ~2~] -- 415 ( ai ~\~/i 

5 f a i "~3 11 aia } 75 aia 3 
+ ~ k ~ / I  I 8 (ai + aj) ~ 3  + 16(ai + aj) 4 

5 (  a, ~5 15 ai3 2aj 9 aia~ 

4 k ~ /  + 4 (ai + aj) 5 10 (ai + aj) 5 

5 2 3 3 5 ai@ 35 a~aj 5 a i aj 
8 (a i -l- a j) 6 8 (a i -+- a j) 6 8 (a i -}- tlj) 7 

375 4 3 21 3 4 9 aia 6 al aj ai aj 
28 (ai + aj) 7 4 (ai + aj) ~ 14 (ai + a j) 7 

25 a.5, a 3 4177 a3@ 
+ 

+ 

8 (a i+aj )  8 

25 aiaJ 
8 (a i+aj )  8" 

256 (ai + a j) 8 

(94) 
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Fig. 1. Plots of coetficient ~j calculated from eq. (93) for a bounded suspension of slip spheres vs/~ with aj/a~ 

as a parameter. 

Similarly, for a suspension of perfect-slip spheres or 
spherical gas bubbles (/~ = 0), ccij can be evaluated by 
the following formula of the same accuracy: 

~ij=__[1..~ - 2(lj_~_(f l j)21 ai 1 aia 2 
al \ a i /  A ai + aj 4 (al + aj) 3 

1 aia 3 3 aia~ 1 a i3 a j3 
t- 

2 (al + a j) 4 25 (ai + aj) 5 2 (ai + aj) 6 

1 aia~ 4 a i4 a j3 1 aia 6 

2 (al + aj) 6 7 (ai + aj) 7 14 (a i + aj) 7 

1 a~a 3 51 a i3ajs 1 aia] 

2 (ai + ay) ~ + 64 (ai + a j) ~ + 2 (ai + aj) s" (95) 
+ 

To our knowledge, analytical expressions for ~ij ana- 
logous to eqs (94) and (95) have never been derived 
before. 

When all the particles in the dispersion are identi- 
cal, eqs (92) and (93) reduce to 

<U> = U¢°)[1 + ~o + O(~oZ)] (96) 

= - (2 + 3//23) - 8L'5-f123f125 ± - -  320f123(4fl(- 3)2 

+ 20fl~_ 1)4 - 160flo5 + 91fl27) + 75rc256/J23/~25 . 0 2  (97) 

On the other hand, the average settling velocity in 
a suspension of identical fluid drops can be deter- 
mined in the same procedure using the connector- 
algebra results for 2~1, 2~2, J311 and j3] 2 accurate to 
O ( r - v )  obtained by Geigenmuller and Mazur (1986). 

The coefficient ~ for this case is 

4 + 5 q *  ( 2 + 3 r / * ) ( 2 + 5 q * )  

1 + q* 8(1  + r/*) a 

24 + 55q* - 144q .2 - 27q .3 

192(1 + q*)/(4 + q*) 

(2 + 3r/*)(2 - 5q*) 2 
-~ 256(1 + q,)3 (98) 

In eqs (97) and (98), all terms except the first one are 
the contribution from the integral involving the cor- 
rection function W. It can be found that eqs (97) and 
(98) are equivalent for the limiting cases of a suspen- 
sion of no-slip particles (/~ --, ~ ,  q* ~ ~ )  and of per- 
fect-slip bubbles (/~ --* 0, q* ~ 0). 

The accuracy of the value of c0 in eq. (96) depends on 
the accuracy of W(r) defined by eq. (87) or U*(r) given 
by eq. (88) being used in the calculation. Table 3 lists 
the results of ~ for the limiting cases of/~ ~ ~ and 
/~ = 0 when the mobility functions 2~1, X~Z, J~ l  and 
3~] z in eq. (88) are calculated to various accuracies of 
order of r -1 from O(r -3) to O(r -11) using eqs (94) 
and (95). All the previous calculations of u for a sus- 
pension of identical solid or fluid spheres in these 
limits using numerical solutions for the mobility func- 
tions are also given in this table for comparison. 
It can be seen that the convergence of our results of 
c¢ is not perfect yet even if the accuracy of O(r-11)  is 
achieved; nevertheless, the agreement between these 
results and those predicted by Batchelor (1972), Reed 
and Anderson (1980) and Keh and Tseng (1992) is 
quite good. 
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Table 3. The results of coefficient a defined by eq. (96) for 
a suspension of identical spheres for the limiting cases of no 

slip ( / ~  ~)  and perfect slip (/~ = 0) 

Accuracy of the - 
mobility functions 

used in eq. (88) /~ --, oo /~ = 0 

O (r- 3 ) 5.000 4.000 
O(r 4) 6.875 4.500 
O(r 5) 6.875 4.500 
O(r 6) 6.734 4.531 
O(r- 71 6.441 4.500 
O(r -8) 6.391 4.504 
O(r -9) 6.411 4.488 
O(r -1°) 6.514 4.493 
O (r- 11 ) 6.553 4.486 

Batchelor (1972) 6.55 --- 
Reed and Anderson (1980) 6.53 4.54 

Keh and Tseng (1992) 6.49 4.44 

7. CONCLUDING REMARKS 

In this work, an analytical study for the slow 
motion of two slip spheres in an infinite fluid is pre- 
sented using a method of twin multipole expansions. 
The spheres may have different radii and arbitrary 
translational and rotational velocities (or applied for- 
ces and couples). The resistance and mobility func- 
tions that relate the forces and couples to the transla- 
tional and rotational velocities have been derived in 
Sections 4 and 5 in the form of power series of s -  t, 
where s is the dimensionless distance between the 
centers of the spheres defined by eq. (8a). The present- 
ed results include the hydrodynamic interactions be- 
tween two no-slip spheres and between two perfect- 
slip spheres (spherical gas bubbles) as special cases. It a 
is found that the particle interaction effects decrease a, b, ~ e 
with the increase of the slip coefficients at the particle A, B, B, C 
surfaces. Ying and Peters (1989) also used the twin C 
multipole expansion method to treat the problem of 
the fluid dynamic interactions of two spheres in e 
a slightly rarefied gas. In their analysis, the boundary  
condition applied at the particle surfaces was deter- e~ 
mined from a perturbation expansion of the linearized F 
Boltzmann transport  equation for the gas molecules. 
Their results for the resistance and mobility matrices 9 
of the two-sphere system were obtained at small but 
finite Knudsen numbers and shown to recover Jeffrey I 
and Onishi's (1984) solution when the Knudsen i, j, e 
number  is zero. 

Our solution for the interactions between pairs of p 
spheres has also been utilized to calculate the mean pro,, q,,,, vm, 
settling velocity in a bounded dispersion of slip r 
spheres. An analytical expression of this mean velocity 
in the general case is given by eqs (92) and (93). For  the r 
limiting cases of no slip and perfect slip at the particle r,, 0,, ~b 
surfaces, our results, expressed by eqs (94) and (95) 
respectively, are found to agree well with the numer- s 
ical solutions available in the literature. The mean t 
settling velocity is always reduced as the concentra- T 
tion of particles in the suspension is increased. Again, 
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this effect of retardation is less significant if the slip 
coefficients at the particle surfaces are increased. 

The general construction of the resistance and mo- 
bility relations for the motion of two rigid spheres 
involves the forces, torques, and stresslets exerted by 
the spheres on the fluid, and the translational and 
angular velocities of the spheres in the ambient  velo- 
city field U(x) = Uo + f~ x x + E. x, where E is a con- 
stant rate-of-strain dyadic (Kim and Mifflin, 1985; 
Kim and Karrila, 1991). Thus, the complete (grand) 
resistance and mobility matrices are 6 x 6 matrices of 
tensors of second, third and fourth ranks. The axisym- 
metry about  the axis through the sphere centers im- 
plies that each tensor can be decomposed into an 
expression involving no more than three scalar func- 
tions. Using the consequences of the stresslets and 
E being symmetric and traceless, the reciprocal the- 
orem and the two-sphere symmetry, it can be shown 
that there will be another 12 independent scalar func- 
tions (in addition to the 10 functions considered in 
Section 2) to be determined for either a resistance 
problem or a mobility problem. For the special case 
of two no-slip spheres, these 12 resistance functions 
were calculated using the method of twin multipole 
expansions by Jeffrey (1992). This analysis can be 
extended without difficulty to the general case of two 
slip spheres. 
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NOTATION 

particle radius, m 
mobility tensors defined by eq. (11) 
resistance tensors defined by eq. (4) 
number  density of particles in suspen- 
sion, m 3 
unit vector pointing from particle 1 to 
particle 2 
unit vector in the direction of r~ 
force exerted by a particle on the fluid, 
N 
two-particle radial distribution func- 
tion 
unit dyadic 
unit vectors in rectangular coordinate 
system 
dynamic pressure, N m -  2 
coefficients defined by eq. (18), ms  1 
vector pointing from particle 1 to par- 
ticle 2, m 
equal to I r], m 
spherical coordinates with respect to 
particle 
[ =  2r/(al + a2)] 
(=  a/r) 
torque exerted by a particle on the fluid, 
N m  
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U 

U 

(u )  

¥ 

V 

V 

W 

X 

gmn 

velocity at particle surface, m s- 
translational velocity of a particle, 

- 1  
m s  

ensemble-averaged sedimentation velo- 
city, m s- 1 

fluid velocity field, m s- 1 
volume of the suspension of particles, 
m 3 

undisturbed velocity field of fluid, 
m s - I  
correction function defined by eq. (87), 
m s  - 1  

position vector, m 
dimensionless mobility functions de- 
fined by eqs (13) and (14) 
dimensionless resistance functions de- 
fined by eqs (7) and (9) 
spherical surface harmonics 

Greek letters 
O~ 

rl 

2 
~o 

zm.,O~,., 
(Dmn 

OJ 

particle interaction coefficient of O(~o) 
in suspension 
reciprocal of the slip coefficient at par- 
ticle surface, kg m-  2 s - 1 

(= ~af~l) 
[ = (~ + n)t(~ + m)] 
fluid viscosity, kg m - 1 s -  1 

internal-to-external viscosity ratio of 
a liquid drop 
( = az/al ) 
volume fraction of particles in suspen- 
sion 
coefficients defined by eq. (19), m s -  

constant vorticity vector of fluid, s- 1 
angular velocity of a particle, s-  i 

Subscripts 
0 particle center 
1, 2 particles 1, 2 
i,j particle types i, j 
t test particle 
~, fl particles ~, 

Superscripts 
(0) infinite dilution 
a, b, c tensors a, b, e 
A, B, C tensors A, B, 12 
(~) particle 
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