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Abstract An analytical study is presented for the thermophoretic motion of two freely suspended aerosol 
spheres using a method of reflections. The particles are oriented arbitrarily with respect to the prescribed 
constant temperature gradient, and they are allowed to differ in radius, in thermal conductivity and in 
surface properties. The Knudsen numbers are assumed to be small so that the fluid flow is described by 
a continuum model with a thermal creep and a hydrodynamic slip at the particle surfaces. The method of 
reflections is based on an analysis of the thermal and hydrodynamic disturbances produced by a single 
sphere placed in an arbitrarily varying temperature field. The results for two-sphere interactions are correct 
to O(r~;), where r12 is the distance between the particle centers. For the special case of spheres oriented 
along the undisturbed temperature gradient, our results are in perfect agreement with the numerical 
solution obtained using bipolar coordinates. Based on a microscopic model the results for two-sphere 
interactions are used to find the effect of the volume fraction of particles of each type on the average 
thermophoretic velocity in a bounded suspension. For a suspension of identical spheres, this average 
velocity is reduced as the particle concentration is increased. In general, the effect of particle interactions on 
thermophoresis is much weaker than that on sedimentation. 

1. INTRODUCTION for the deposition of aerosol particles (soot) onto the 
Small particles suspended in a gas in which there is inner walls of the containing tube (Simpkins et al., 
a temperature gradient acquire a mean velocity rela- 1979; Weinberg, 1982). On the other hand, deposition 
tire to the gas in the direction of decreasing temper- of contaminant particles by thermophoresis on wafers 
ature. This phenomenon, known as thermophoresis of in clean rooms during manufacturing steps can be 
aerosol particles, was first described by Tyndall in a major cause of loss of product yields in the micro- 
1870 (Waldmann and Schmitt, 1966; Bakanov, 1991). electronics industry (Ye et al., 1991). In the area of 
He observed a dust-free zone in a dusty gas around nuclear safety; knowledge of thermophoresis is re- 
a hot body; this zone could be seen as a dark space if quired to calculate the deposition rates of radio- 
properly illuminated. A common example of ther- active aerosol particles released in reactor accident 
mophoresis is the blackening of the glass globe of situations where large temperature gradients exist 
a kerosene lantern; the temperature gradient estab- (Williams, 1986). 
lished between the flame and the globe drives the The thermophoretic effect can be explained in part 
carbon particles produced in the combustion process by appealing to the kinetic theory of gases (Kennard, 
toward the globe, where they deposit. 1938). The higher energy molecules in the hot regions 

Deposition by thermophoresis is of considerable of the gas impinge on the particles with greater mo- 
practical importance in many industrial applications menta than molecules coming from the cold regions, 
when hot gases containing small suspended particles thus leading to the migration of the particles in the 
flow over cool surfaces. For example, thermophoresis direction opposite to the temperature gradient. 
can be effective in removing or collecting small par- Theoretical analyses yield the following expression for 
ticles from laminar gas streams in air cleaning and the thermophoretic velocity of an isolated particle in 
aerosol sampling devices (Batchelor and Shen, 1985; a constant temperature gradient V T , :  
Sasse et al., 1994). The phenomenon has also been 

VT~ (1.1) cited as an origin for the deposition of particulate U ml= - K p ~ ( 0  ) 
matter on surfaces of heat exchangers causing scale 
formation with the attendant reduction of the heat- where the negative sign indicates that the motion is in 
transfer coefficient (Friedlander, 1977; Montassier et the direction of decreasing temperature, t/is the fluid 
al., 1991). Convincing evidence has been provided viscosity, p is the fluid density, and Too(0) is the bulk 
that, in the modified chemical vapor deposition pro- gas absolute temperature at the particle center in the 
cess for the manufacture of high-quality optical fibers, absence of the particle (or the mean gas temperature 
thermophoresis is the primary mechanism responsible in the vicinity of the particle). The thermophoretic 

coefficient K depends on the magnitude of the Knud- 
sen number, 1/a, where 1 is the mean free path of the 

*Corresponding author, gas molecules and a is the radius of the particle. Note 

3395 
CE$ 50-ZI-E 



3396 HUAN J. KEH and  SHill H. CHEN 

that pT~ is constant for an ideal gas at constant deed, in the limit f~/k -~ ~,  eq. (1.4) yields U t°) = 0, 
pressure, whereas Schadt and Cadle (1961) distinctly observed 

In the free molecule regime (l/a >> 1), the velocity and measured a tbermophoresis with sodium chloride 
distribution of the incoming gas molecules may be particles. 
taken to be uninfluenced by the small particle and The solution for thermophoretic velocity obtained 
given by the Maxwell or Chapman-Enskog distribu- by Epstein (1929) was improved by Brock (1962) using 
tions (Waldmann and Schmitt, 1966; Whitmore, the low-Knudsen-numbereffectsoftemperaturejump 
1981). Under this assumption, the thermophoretic co- at the gas-particle surface as well as hydrodynamic 
efficient was found to be (isothermal) gas slippage (in addition to the thermal 

3 creep velocity) along the particle surface. The result- 
K = (1.2) ing expression for the thermophoretic coefficient of 

4(1 + nil~8)" a suspended aerosol sphere is 

The theory adopts the usual assumption that a frac- 2Cs(k + kCt l/a) 
tion fl of the gas molecules colliding with the particle K - (1.5) 
is reflected diffusely (thermally) with a Maxwellian (1 + 2Cml/a)(2k + k + 2kC, l/a) 
distribution and the remaining fraction (1 - fl) is re- where the dimensionless coefficients Ct and Cm (nu- 
flected specularly. The value of the coefficient of dif- merical factors of order unity) account for the temper- 
fuse reflection (fl) is usually about 0.9 (Friedlander, aturejump and hydrodynamic slip, respectively, at the 
1977). Note that the thermophoretic velocity for the particle surface and must be determined experi- 
"small particle" regime is independent of particle size. mentally for each gas-solid system. Both Epstein and 
Equation (1.2) has long been known to be in agree- Brock assumed the value of Cs in eqs (1.4) and (1.5) to 
ment with experiments, be equal to the Maxwell value (C, = ¼). Note that eq. 

In the "large particle" regime (l/a ~ 1), the fluid (1.5) is applicable to the range of finite Knudsen num- 
flow may be described by a continuum model and the ber and reduces to eq. (1.4) when I/a = 0. For large 
thermophoretic force arises from an induced "thermal particles (l/a ~. 1) and f~/k~oo, eq. (1.5) yields 
creep" along the particle surface due to the existence K = 2C~C~(l/a), whereas Epstein formula (1.4) gives 
of a tangential temperature gradient at the par- K = 0. Satisfactory agreement of the prediction by 
ticle-fluid interface. Utilizing gas kinetic theory, Max- eq. (1.5) with experiments (Schadt and Cadle, 1961) 
well (1879) predicted that a tangential temperature has been obtained. The best kinetic-theory values for 
gradient V~T at a gas-solid surface would cause a thin complete thermal and momentum accommodations 
layer of gas adjacent to the surface to move, with the appear to be C~ = 1.17, Cf = 2.18 and Cm = 1.14 
relative velocity at the outer edge of the layer being (Talbot et al., 1980). The extension of Brock's (1962) 

analysis to a spheroidal particle has also been con- 
r/ V~ T (1.3) sidered by using the prolate or oblate spheroidal coor- V (s) 

Csp~ dinate system (Leong, 1984; Williams, 1986). 

where T is the local gas temperature. The thermal slip Derjaguin and Yalamov (1965) challenged the ther- 
coefficient C~ was found to be 3 by Maxwell on the mal creep model and solved the hydrodynamic prob- 
assumption that the distribution function in the bulk lem of thermophoresis based on an application of 
of the gas held all the way to the solid wall. The irreversible thermodynamics and Onsager's recipro- 
thermal creep velocity v t~) is directed toward the high city relations. By taking the temperature jump at the 
temperature side. By using the Maxwellian creep velo- particle surface into account, their result for the ther- 
city equation (1.3), which gives the coupling between mophoretic coefficient is the same as eq. (1.5) with 
temperature and velocity fields, as a slip velocity Cm -- 0 and Cs = 3. Derjaguin et al. (1966, 1976) pre- 
boundary condition and solving the equation of con- sented the experimental data of thermophoretic 
tinuum fluid motion (at low Reynolds number) incor- velocities for a variety of aerosols, which are in good 
porating with the heat conduction in the gas and agreement with eq. (1.5) with Cm = 0, C~ = 3 and 
particle, Epstein (1929) derived the following equation suitable selection of coefficient Ct. These authors at- 
for the thermophoretic coefficient: tributed some of the discrepancies in the experimental 

work of other investigators to the presence of convec- 
k tive fields or the occurrence of thermo-osmosis. These 

K = 2C, 2k (1.4) discrepancies may be responsible for the view held by +£ 
some that the thermophoretic velocity determined in 

where k and /~ are thermal conductivities of the gas a "stagnant" gas is not directly applicable to a flow 
and the particle, respectively. The thermophoretic ve- system, although it is certainly possible that for the 
locity predicted by eq. (1.4), which is also independent slip flow regime, at least, the flow distorts the temper- 
of particle size, is in fair agreement with experimental ature distribution in the gas surrounding the particle 
data when the ratio k/k is not too high, less than about and thereby alters thermophoretic velocity. Accord- 
10 (as for oil droplets). But it gives much too small ing to eq. (1.5), particles with large thermal conductiv- 
thermophoretic velocities (by a factor 30 and more) ity and small Knudsen number (say, k/k = 100 and 
for particles with large thermal conductivity, for in- l/a = 0.01) will migrate by thermophoresis at velo- 
stance, sodium chloride particles with k/k ~ 100. In- cities of 10-50/tm s-  ~ in temperature gradients of 
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order 100 K cm-  1; such gradients are easily attainable concentration effects on transport properties in dilute 
in thermal boundary layers, dispersions to obtain the effect of the volume fraction 

In real situations of thermophoresis, collections of of particles of each type on the mean thermophoretic 
aerosol particles are usually encountered, and effects velocities in a bounded suspension, and the general 
of particle interactions will be important. However, result is given in eqs (5.9) and (5.10). 
most theoretical treatments have typically addressed 
the migration of a single particle. Through an exact 
representation in spherical bipolar coordinates, the 2. A SINGLE AEROSOL SPHERE IN AN ARBITRARY 
low-Knudsen-number thermophoresis of two spheri- TEMPERATURE FIELD 
cal particles in response to a constant temperature On the purpose of obtaining the interactions be- 
gradient along the line of their centers was examined tween two thermophoretic spheres by the method of 
by Reed and Morrison (1975) and the present authors reflections, it is essential to realize the thermal and 
(Chen and Keh, 1995). Numerical results of correction hydrodynamic effects caused by a single particle in an 
to eq. (1.5) for each particle were presented for various arbitrary temperature field T~(x). We consider a rigid 
cases. It was found that, for the axisymmetric ther- sphere of radius a with internal heat conductivity 
mophoresis of two identical spheres, each sphere mi- k existing in a surrounding gas where the heat con- 
grates faster than its undisturbed velocity U ~°~ given ductivity is k. All the physical properties of the par- 
by eqs (1.1) and (1.5). For  the case of two spheres with ticle and the fluid are taken to be constant, and the 
unequal radii, the particle interaction effect is stronger Knudsen number is assumed to be small. The instan- 
on the smaller particle than on the larger one. Thus, taneous center of the particle is positioned at Xo, and 
a stable distance will be developed between the the relative position vector is defined as r = x - Xo. 
spheres for the situation where the smaller sphere is Although Xo changes with time, the problem can be 
ahead, and on the contrary, both spheres will finally dealt with as a quasi-steady state if both the Peclet and 
collide (and may stick together) if the smaller sphere is Reynolds numbers are small. It is assumed that 
following. In general, the particle interactions in ther- al VTA I/TA(Xo) '~ 1. Because the boundary conditions 
mophoresis are less significant than those for the of the fluid velocity field are coupled with the temper- 
corresponding motion driven by a body force, ature gradient at the particle surface, it is necessary to 

Until now, the interactions between particles un- determine the temperature distribution first. 
dergoing thermophoresis in asymmetric configurations 
have not been investigated. The object of the present 
work is to study the thermophoretic motion of two 2.1. Temperature field 
spherical particles in a constant temperature gradient The energy equations governing the temperature 
oriented arbitrarily relative to the line of particle distribution are 
centers. The particles, which are freely suspended in 
the gaseous medium, may differ in size, in thermal V2T= 0 (2.1a) 
conductivity and in surface properties. It is assumed for the fluid and 
that the Knudsen numbers are small. A method of 
reflections is used to solve the problem. In Section V2"r= 0 (2.1b) 
2 we consider the local temperature and flow fields for the particle. It is obvious that V2TA = 0. The 
produced by a single spherical particle placed in a pre- boundary conditions at the particle surface (r = a) 
scribed temperature field whose gradient is not neces- require that the normal heat fluxes be continuous and 
sarily constant over length scales comparable to the a temperature jump which is proportional to the nor- 
particle radius. We prove that eq. (1.1) with eq. (1.5) mal temperature gradient (Kennard, 1938) occur. 
also applies to a single sphere in a non-uniform tem- Also, the fluid temperature must approach the applied 
perature gradient, provided that VTo~ is evaluated at field far from the particle and the temperature inside 
the position of the particle center. These results are the particle is finite everywhere. Thus, one has 
then used in Section 3 to alternately evaluate the k~T= fc~r 
effects of one sphere on the other in a constant tem- (2.2a) 
perature gradient. The translational and angular t~r ~ r  at r = a 
velocities of the thermophoretic particles are deter- ~ 'r  
mined in this manner with an error of O(r{2S), where T -  T = Cd ~r at r = a (2.2b) 
r~2 is the center-to-center distance between the par- 
ticles, and the results are given in eq. (3.10). In Section 7 ~ is finite for r < a (2.2c) 
4 method-of-reflections results are compared with the T--*Ta as r--.  oo. (2.2d) 
numerical calculations of Chen and Keh (1995) for the 
case of two spheres oriented parallel with the undis- In the Smoluchowski formula (2.2b), 1 is the mean 
turbed temperature gradient. Typical effects of the free path of the surrounding fluid; Ct is the dimension- 
particle sizes and physical properties on the two- less temperature jump coefficient which is semi-em- 
sphere interactions in thermophoresis are discussed, pirically related to the thermal accommodation 
Finally, in Section 5, the results of two-sphere interac- coefficient ft at the particle-fluid interface by 
tions derived in Section 3 are applied to a theory of C~ ~ ~ (2  - f t ) / f t  (Waldmann and Schmitt, 1966). 
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A general solution to eq. (2.1) that satisfies eqs r = a, substituting VTA by its Taylor expansion about 
(2.2c, d) is x = Xo, and eliminating the normal component.  The 

result is 

T = TA + Sin[ ' ]  2m (2.3a) VsT = (1 + G) (I - nn)'(VTA)o 
m = l  

ir = TA + a Sm[ ' ]  2m. (2.3b) (2.8) 
m = l  

2.2. Velocity field 
Here, the ruth-order polyadic Sm is a surface harmonic, Due to the low Reynolds number  encountered in 
defined by the thermophoresis, the fluid velocity is governed by 

Sra = rm+lVm(r 1); (2.4a) the Stokes equations: 

the first few ones are qV2v - Vp = 0 (2.9a) 

So = 1 (2.4b) V-v = 0 (2.9b) 

r where v(x) is the fluid velocity and p(x) is the dynamic 
S1 = - - (2.4c) pressure. Owing to the thermal creep velocity given by 

r 
eq. (1.3) and the hydrodynamic slip velocity along the 

rr  $2 = 3 ~-~ I (2.4d) particle surface as well as the fluid at rest far from the 
- particle, the boundary conditions for the velocity field 

are: 
where I is the unit dyadic. 2m and '~m are polyadic 
constants, and the symbol [ - ]  represents m scalar 1 

v = v s  = U + a t )  x n + - C m l ( I  - n n ) n : T  
products using the inner nesting convention, r/ 

Substitution ofeq. (2.3) into eqs (2.2a, b) shows that 

21 = -Ga(VTA)o (2.5a) + Cs ~ V~T at r = a (2.10a) 
p(TA)o 

22 = ½ Ha2(VVTA)o (2.5b) v ~ 0 as r ~ ~ .  (2.10b) 

21 = - (~a(VTa)o (2.5c) In eq. (2.10a), T ( =  q[(Vv) + (Vv)r]) is the viscous 
'~2 = 1 / ~ a  2 (VVTA) ° (2.5d) stress tensor; Cm is the dimensionless coefficient of the 

where gas-kinetic isothermal slip which is semi-empirically 
1 - k* + k ' C *  related to the momentum accommodation coefficient 

G = 2 + k* + 2k 'C*  (2.6a) f= at the particle-fluid interface by Cm ~-- (2 --f=)/f= 
(Kennard, 1938); U and ~ are the instantaneous 

1 - k * +  2k 'C*  translational and angular velocities, respectively, of 
H = 3 + 2k* + 6k 'C*  (2.6b) the particle to be determined. The temperature gradi- 

ent along the particle surface, VsT, has been obtained 
= 1 - k* - 2 k ' C *  (2.6c) in eq. (2.8). It is assumed that ~l/pTis constant  in spite 

2 + k* + 2k 'C*  of the variation of T with position. 
1 - k* - 3 k ' C *  A solution for the velocity field can be constructed 

/~ = (2.6d) from Lamb's general solution as outlined by Brenner 
3 + 2k* + 6k 'C*  (1964). The fluid velocity is completely specified when 

and the subscript 0 to variables inside parentheses the polyadic coefficients am, p,, and ?m in the following 
denotes evaluation at x = Xo. In eqs (2.6), C* = Cd/a formulas are calculated using the value of the velocity 
and k* = k/k. Substituting eqs (2.5) into eqs (2.3) and field on the particle surface (v~): 
realizing that TA satisfies Laplace's equation, we have 

n - v , =  ~ ~ t m [ " ] S  m (2.11a) 

T =  TA + G r'(VTA)0 , = l  

- a V - v , =  ~ flm[']Sm, (2.11b) 
0 o  

(o)' 
+ H r rr:(VVTA)o + O(VVVTA)o (2.7a)  m=l  

I"= TA + (~r-(VTA)o an ' (Vxv~)  = 2., ?m[ ' ]  Sin. (2.11c) 
m = l  

+/ t r r : (VVTA)o + O(VVVTA)o. (2.7b) The force and torque exerted by the fluid on the 
surface r = a are given by 

The tangential component  of the temperature 
gradient at the particle surface, V~T(=(I - F = 2nqa(3a~ + p~) (2.12a) 
nn)-(VT) . . . .  where n is the unit normal vector at the 

T = 47tr/aEyl. (2.12b) 
particle surface pointing into the fluid), is needed to 
evaluate the thermal creep velocity in a later deriva- Since the particle is freely suspended in the surround- 
tion. It can be obtained by differentiating eq. (2.7a) at ing fluid, the velocities U and 1"~ are obtained by 
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setting the above expressions for F and T equal to The corresponding velocity field about the ther- 
zero. mophoretic particle is determined by 

After substituting eq. (2.10a) into the left-hand side 
I 

of eq. (2.11c), one has v = VO-2 + V~b_ 3 + ~ rp_ 3 + O(VVVTA) (2.20) 
o t ~  

2an-F~= ~ ?m[--lSm (2.13a) where the solid spherical harmonic functions 
m = 1 ~D- (m + 1) and p_ (m + 1) are (Happel and Brenner, 1983): 

o r  
a 3 

?1 = -- 2al~ (2.13b) q~- 2 = ~- r -  2 (al + i l l ) ' ( -  er) (2.21a) 

?m = 0 for m > 1. (2.13c) a4 

By setting T = 0 and using eqs (2.12b) and (2.13b), we dp_ 3 = ~ r 3llz:[3e,e, - I] (2.2 lb) 
find 

P-3 = qa2r-3g/2:l-3e, er - I] ..... etc. (2.21c) 
n = 0 (2.14) 

After evaluating ~b-2, q5 3, and P-3 from al ,  t l ,  and 
as the general result for an imposed temperature field l/2, we get 
TA as long as V2TA = 0. 

The translational motion is described by the coeffi- v 3 ~ - I "(VTA)O 
cients a= and tim. It can be obtained from eqs (2.10a) = 2 \ r /  
and (2.11a) that 

{ (a']3 rrr , t  + (a )5[  2,r - 5  ~-rrrl} 
at = - U  (2.15a) +B  3 \ r  / r2 : ( V V TA)o 

am = 0 for m > 1. (2.15b) + O(VVVTA)o. (2.22) 

Finally, substituting eq. (2.10a) together with eq. (2.8) It should be noted that the leading order in v decays as 
into eq. (2.11b)and neglecting the terms of O(VVVTA) r - 3  rather than as a Stokeslet or stresslet (force 
(only t t  and P2 are needed), one has dipole). This is a characteristic of the "phoretic 

motion" which is the movement of particles caused by 
t~ - 1 + 3C* 3 C ' U -  6C~ q driving forces interacting with the surface of each 

p(TA)o particle. 
( l + k * c *  "~ Z ] 2  + k* +zK"  / For the motion of a freely suspended aerosol sphere 

x _ - g - C ,  ] (V A)O (2.16a) under arbitrarily applied temperature gradient VTa 
and velocity field VA in an unbounded fluid, the trans- 

/~2 = 2Ba(VVTA)o (2.16b) lational and angular velocities of the particle can be 
obtained by combining eqs (2.14), (2.18) and the gener- 

where alized Faxen laws for a force-free sphere with slip 
surface (Felderhof, 1977): 

~C~p(~  [ l + 2 k * C *  1 a2 
B = - )~ (1 + 5C*) (3 + 2k* + 6k'C*) U = A(VTA)o + (Va)o + 6(1 + 2C*) (Vzva)° 

(2.17) (2.23a) 

and C* = Cml/a. The force-free characteristic of this f~ = 1 
problem is used with eqs (2.12a) and (2.15a) ~(V×VA)O. (2.23b) 

(fit = -  3al = 3U), and the particle translational The superposition of the thermal and hydrodynamic 
velocity is found to be contributions in the above formulas is valid due to the 

U = A(VTA)o (2.18) linearity of the problem. 

where 
3. S O L U T I O N  FOR I N T E R A C T I O N S  BETWEEN T W O  

A = - 2Cs ~ r. 1 + k ' C *  ] THERMOPHORETIC SPHERES 
p(TA)o L(1 + 2c*) (2 + k* + 2k*C*)_l' We now consider the quasi-steady, low-Knudsen- 

number thermophoresis of two spherical particles of (2.19) 
radii al and a2. They are oriented at an arbitrary 

Equation (2.18) shows that the particle velocity is angle to the prescribed temperature gradient 
proportional to the prescribed temperature gradient Eo~ [ = VT~, where T~(x) is the undisturbed temper- 
evaluated at the particle center and is identical with ature field of the surrounding gas]. The particles, 
eq. (1.5) in the dependence on the physical properties which may be made from different materials, are sup- 
of the surrounding fluid and the particle itself. To our posed to be sufficiently close to interact thermally and 
knowledge, the result ofeq. (2.18) has heretofore only hydrodynamically with each other, but sufficiently 
been derived for constant V Ta. distant from boundary walls for the surrounding fluid 
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to be regarded as unbounded. Let e be the unit vector mined from eqs (2.23). It is found that 
pointing from the center of particle 1 to the center of / \3 
particle 2 and rl2 be the center-to-center distance [VT~I}],I= .... = Eo~- G1 [ a-L) [ 3 e e -  I ] .E~  
between the particles. E~ is assumed to be constant \ r12} 
over distances comparable to r12 and the fluid at (3.6a) 
infinity is at rest. The effects of gravity and Brownian 1 ( a l  ~3 
motion are ignored in this section, but the latter will [ ¥ ~ l ) ] r l =  . . . .  = ~ A1 ~ - - w  [3ee -- I] "E~ (3.6b) 

\ r t 2 f  
be considered in the evaluation of the average 
thermophoretic velocity of an aerosol suspension in where rl = r12e represents the position of the center 
Section 5. of particle 2. Thus, 

In thes i tua t ion (a1+az ) / r12~ l ,  ame thodo f re -  (1 ) ( a l )  3 
= - -  [ 3 e e -  I ] .E~  flections (Anderson, 1985; Chen and Keh, 1988) is U~21) A2E~o + ~ A 1 -  A2G1 \r12/ 

used to solve the two-sphere problem. Because of the 
linear characteristic of governing equations (2.1) and (3.7a) 
(2.9) as well as boundary conditions (2.2) and (2.10), l'~t21) = 0. (3.7b) 
the solution of the fluid temperature and velocity 
fields for eqs (2.1a) and (2.9) can be decomposed into Equation (3.7a) indicates that the effect of particle 
a sum of fields, which depend on increasing powers of interaction in thermophoresis is O(r{3). 
r{21: The first reflected temperature gradient field from 

particle 2, VTtz 2~, can be derived from using eqs (2.7a) 
T = T~ ~) + T2 ~2~ + T~ 3} + T2 t4) + ..- (3.1a) and (3.5a), while the first reflected velocity field from 

¥ = ¥]1) _1_ ¥(2) _~_ ¥~3) + ¥(2 4-) + . . .  (3.1b) particle 2, ¥(2 2), c a n  be evaluated from eqs (2.22) and 
(3.5). The results are 

where subscripts 1 and 2 represent the reflections from 
particle 1 and particle 2, respectively, and the super- V T  (2) = - -  G 2 3 r ~  _ I • [VT~)], 1 = .... 
script (i) denotes the ith reflection from either particle 1 r2 
surface. Hence, the particles' translational and angu- + O[r24VVT~ 1) + r2-aVVVT~ a)] (3.8a) 
lay velocities can also be expressed in the form of 

a series: vt2 2, =!h2(a2~3F3F~2-l]'[~Z~l)]rl= . . . .  

U~ = U~ °) + U~2}+ U~'}+ ... (3.2a) 2 \ r2J  k r2 

n l  = ~-~0) _~_ ~'~2) At_ ~r'~4) ql- . . .  ( 3 .2b )  + 3B2 2 • L- - - - - -1  dr, = . . . .  
r2 

Uz = U~21~ + U(23) + Ut2 s~ + "" (3.3a) 
5 ( 1  + 2C'2) (a2"]3 r2r2r2.1_~7,A1)q 

2 • L - - ' l  Arl =rl2e ~'~2 ~--- ~'~(21) -[- ~'~(3) _[_ ~'~(25} _[_ . . .  ( 3 .3b )  2(1 + 5 C ' 2 ) \ ~ - 2 /  rz  

where U~ i) and ~]i) are related to Tt2 i) and vt2/) by eqs + O[r24(VVT~ 1~ + Vv] 1)) 
(2.23) for i = 2, 4, 6 ..... while U~ i) and ~t2i} are related 
to T~ ° and v~ ~) for i = 1, 3, 5 .... Obviously, the unper- + r23(VVVT~ 1) + VVv~I})]. (3.8b) 

turbed linear temperature field gives Substituting eqs (3.8) into eqs (2.23) with Ta = T2 t2} 

U] °) = A~E~ (3.4a) and V A = V(22), one obtains the contribution to the 
~o)  = 0. (3.4b) velocity of particle 1 due to the reflected fields from 

particle 2, 
Hereinafter, we use A j, Bj and Gj to represent the 
values of A, B and G, respectively, defined by eqs U~2)= ( 1 / \ /  \ ) (ar--~)3 
(2.19), (2.17) and (2.6a) for the particle j (j = 1 or 2). \~  A2 - A 1 G 2 ~ , . , ,  [3ee - I ] -E~ 

The initial temperature gradient VT~I) and vel°city { (  1 ) 
field v~ 1}, which correspond to the thermophoresis of + AaG1G2 - ~ A2G 1 [3ee + I] 
particle 1 isolated in an unbounded fluid under the 

[ 15(1+2C'2) 1 }a;a3  Eoo prescribed field VT~, are easily obtained from eqs - 18B2G1 + 2(1+5C'2) A~ ee 12 .  
(2.7a) and (2.22) for rl > al as: 

[ r l r l  ] r 2 +0(r128) i- 15(1 + 2C'2) ]a3a 3 (3.9a) V T ~ I ' = E ~ - G ~ _ a ~  3 3 - - - I  'Eoo(3.5a) 
\ r l /  

~[2) = _ [9B2G1 + 4(1+5C'2)  A l l  -~V-exE~ 
1 A 1 ( a l ~ 3 [  rlrl 1 d ra2 3 ~ - I "E~o (3.5b) 

v~) = 2 \ r : /  + O(r~9). (3.9b) 

where r~ is the position vector relative to the center of The O(r?2 s) and O(r{ 9) interactions in eqs (3.9) could 
particle 1 and r~ = [r~ 1. Note that v~ ~ is irrotational be obtained by more detailed calculations of VT2 t2~ 
and satisfies Laplace's equation. The contributions of and vt22) and their derivatives at the position 
VT~ 1} and v~ ~} to the velocity of particle 2 are deter- r2 = - ra2e (the center of particle 1), but the numer- 
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ical significance would be small unless the gap be- changing the subscripts. Note that, the particle-inter- 
tween the particles approaches zero. action coefficients M~) v) and M~] ) are independent of 

Obviously, U~ 4) and 1"~ 4) will be of the orders the thermal slip coefficient Cs. 
O(r~ 9) and O(ri-21°), respectively. With the addition of 
eqs (3.4) and (3.9), the translational and angular velo- 
cities of particle 1 can be expressed as: 4. DISCUSSION ON INTERACTIONS BETWEEN 

T W O  SPHERES (1 
U1 = A1Eo~ + ~ A 2 - - A t G 2  \rl--~2/ [ 3 e e - I ] - E ~  The interaction between two aerosol spheres in 

a temperature gradient field, given by eqs (3.10), re- 
{ (  1 ) sults from three phenomena. First, each particle dis- 

+ A1GIG2 - ~ A zGI [3ee + I] turbs the local temperature field experienced by the 
other. Second, the movement of each particle drags 

I 15(1 +2C'2)  A ] ~ a3a 3 ~ surrounding fluid (hydrodynamic slip at the particle 
- 18B2G1 -F ~ - ~  1] ee; r1-~2" ~ surface is allowed though) that convects and rotates 

the other. Third, the thermal creep effect occurred at 
+ O(ri-2 8) (3.10a) the surface of each particle causes a reverse tangential [ 33 15(1 + 2C'2) ] ala2 fluid velocity that affects the motion of the other. The 

111 = - 9B2GI -~ 4(1 + 5C'2) A1 | ..--5--e x E~ leading term of the interaction for particle translation 
_J r12 

is O(r;3), because both the temperature gradient and 
+ O(r~9). (3.10b) velocity disturbances in the fluid phase produced by 

U2 and 112, the velocities of particle 2, can be ob- an isolated thermophoretic sphere decay like r-3,  as 
tained from the above equations by interchanging the shown in eqs (2.7a) and (2.22). For  thermophoretic 
subscripts 1 and 2 in all variables and replacing e spheres that allow free rotation, the leading term of 
by - e. As expected, both particles will move with the the angular velocity is of O(r~-~). Thus, the interaction 
velocity that would exist in the absence of the other between particles undergoing thermophoresis is much 
(without rotation) for any arbitrary orientation of the weaker than that between sedimenting particles, since 

the leading terms of particle interaction for the trans- particles as r12 ~ ~ .  It should be noted from eq. 
(3.10a) that the direction of thermophoresis of each lational and angular velocities of two slip spheres 
sphere is deflected by the other, unless the temper- driven by body forces are of O ( r ~ )  and O(r~) ,  re- 
ature gradient is prescribed either parallel or perpen- spectively. 
dicular to the line of centers of the particles. The exact (numerical) solution of the mobility para- 

The result of eq. (3.10a) can be expressed in terms of meters ~'-11,~¢v) "-12,~tlv~ M~z]~ and ~'-22~¢v) was obtained by 
dimensionless mobility tensors M~ defined as follows: solving the problem of axisymmetric thermophoretic 

motion of two spheres using bipolar coordinates 
2 

U i =  ~ Mij "ly(°) --j  , i = 1 or 2 (3.11) (Chen and Keh, 1995). Table 1 gives a comparison of 
= 1 our asymptotic results from the method of reflections 

where UJ °) is computed from eq. (3.4a). A comparison with this exact solution. For  simplicity, only the case 
between eqs (3.10a) and (3.11) gives of two identical spheres (al = a2 = a, k* = k* = k*, 

c~1 = C~2 = C~, c *  = C ~  = C* ,  c ' 1  = C ' 2  = C* ,  

Mij= MijtP)ee + Mijt") [ I - -  eel (3.12) U~ °) = U~ °) = U ~°~ = [Ut°)[) is presented. In this 
with specific case, the particles will migrate at the same 

velocity ( U I = U 2 = U )  because M]~ '"~ ~ttv,,~ " " 2 1  ' 
( a 2 ~  3 M ~  'n)-- ~'*22AA'(P'n)' and U~ °) = Ut2 °). It is found in Table 

M]~ ) = 1 - 2G2 \ r12]  1 that the predictions of U/U ~°~ ( = M ~  ) + ~ttvh from "'* 12,' 
the asymptotic approximation for various values of 

[ 1 ai°  + 461G2 15(1+2(7"2) 3 3 2(1 + 5C'2) ] r ~ -  + O(r[-~) k*, C* and C* are in perfect agreement with those of 
the exact solution. The errors in velocities are less 

(3.13a) than 0.1% for cases 2a/r12 <<. 0.6 or 1.2% for cases 
2a/r~z <~ 0.8, indicating that the higher terms such as 

M ~  a2 3 B2 3 3 
= - -  -- 2G1 + 18 G1 - -  + O(r~z s) O ( r ~ )  in eqs (3.10) or eqs (3.13) are not important 

\r12// A22 r162 unless the particles are nearly touching. Note that the 
(3.13b) value of M~] ~ + ---12~tcv~ evaluated from eqs (3.13a) and 

M'"' 1 + Gz(a~2~ 3 a~a32 + (3.13b) always underestimates the interaction effect 
11 = \r~2/' + G1G2 r6 ~ -  O(r;2 a) (3.13c) between the particles. For the case of two spheres 

differing in size and/or in physical properties, eqs 
(3.13a) and (3.13b) can also be found to agree well with 

ala2 O (r ~-2s). (3.13d) The translational and rotational velocities for vari- 
1t4'") 1_ ( a z  "~3 1 3 3 the exact solution. 

ous cases of two spherical particles evaluated from eqs 
The corresponding coefficients M~P)zz, MtV)2t, -'-2~¢") and (3.10) are shown in Figs 1-3. In the cases of Figs 1 and 
M ~  can easily be derived from the above formulas by 3, the velocity of a particle normalized by the value 
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Table 1. Normalized thermophoretic velocities U/U ~°~ of two identical spheres with their line 
of centres aligned with applied temperature gradient 

Ctl/a = 0.2 Cml/a = 0.1 Ctl/a = 0.02 C,,l/a = 0.01 

2a Asymptotic Exact Asymptotic Exact 
k* - -  solution solution solution solution 

/'12 

1 0.2 1.0009 1.0009 1.0010 1.0010 
0.4 1.0067 1.0067 1.0074 1.0074 
0.6 1.0199 1.0200 1.0214 1.0216 
0.8 1.0342 1.0372 1.0336 1.0392 
0.9 1.0353 1.0452 1.0300 1.0471 

10 0.2 1.0019 1.0019 1.0024 1.0024 
0.4 1.0143 1.0143 1.0185 1.0185 
0.6 1.0431 1.0432 1.0558 1.0565 
0.8 1.0776 1.0830 1.1011 1.1140 
0.9 1.0848 1.1028 1.1115 1.1499 

100 0.2 1.0021 1.0021 1.0028 1.0028 
0.4 1.0161 1.0161 1.0214 1.0214 
0.6 1.0481 1.0482 1.0629 1.0633 
0.8 1.0851 1.0908 1.1052 1.1173 
0.9 1.0908 1.1102 1.1039 1.1419 

1000 0.2 1.0021 1.0021 1.0029 1.0029 
0.4 1.0163 1.0163 1.0216 1.0216 
0.6 1.0486 1.0488 1.0620 1.0621 
0.8 1.0857 1.0915 1.0960 1.1059 
0.9 1.0910 1.1105 1.0834 1.1153 

that prevails in the absence of the other is plotted vs this situation, the thermophoretic velocity of each of 
the separation parameter (a~ + a2)/r12. It can be seen these two identical spheres (which can be arbitrarily 
that the effect of particle interactions on the nor- oriented) is unaffected by the presence of the other, as 
malized thermophoretic velocities in general is in- predicted by eq. (3.10); this phenomenon is similar to 
creased with the increase in (a~ + a2)/r~2, that observed for the thermocapillary motion of two 

For the situation of two identical spheres oriented identical gas bubbles (Meyyappan and Subramanian,  
along the prescribed temperature gradient, the inter- 1984; Anderson, 1985). 
action effect makes each particle move faster than its In Fig. 3, the normalized translational and rota- 
undisturbed value, as illustrated in Figs l(a) and 2(a). tional velocities (of particle 1) for the thermophoresis 
On the other hand, the normalized migration velocity of two unequal-sized spheres with the same physical 
of two identical spheres undergoing thermophoresis properties (k*, Cs, C~ and Cm) are plotted vs 
normal to the line of their centers is a monotonic  (a~ + a2)/r~2 with the ratio a2/a~ as a parameter. 
decreasing function of the separation parameter Again, this figure indicates that the migration velocity 
2a/r12 and the conductivity ratio k*, as illustrated in of the first sphere in general is enhanced if the second 
Figs l(b) and 2(b). A careful examination of the sur- sphere is oriented along the prescribed temperature 
rounding fluid recirculation pattern generated by the gradient (with some exceptions when a2/al is small) 
thermophoretic motion of a single spherical particle and is reduced if the second one is oriented perpen- 
(Chen and Keh, 1995) shows why the particle interac- dicular to the gradient. It can be seen that the effect of 
tions cause the enhancement or retardation in the particle interactions on the normalized ther- 
particle velocity. In Figs l(c) and 2(c), the normal- mophoretic mobility is far greater on the smaller 
ized angular velocities of two identical spheres particle than on the larger one. For example, when the 
(ill = - f~2 = fl) undergoing thermophoresis normal to large sphere has a radius five times that of the smaller 
the line of their centers are plotted, respectively, vs one, the migration velocity of the smaller sphere (with 
2a/r~2 with k* as a parameter and vs k* with C* and (a~ + a2)/rl2 = 0.8) can be increased by as much as 
C* as parameters. For  two spheres aligned with the 71% (if the temperature gradient is prescribed parallel 
prescribed temperature gradient, the flow is axisym- to the line of particle centers) or decreased by 36% (if 
metric and the angular velocities of particles vanish, the gradient is imposed perpendicular to the line of 
Figures 1 and 2 indicate that the particle interaction particle centers), while the migration velocity of the 
effect in general is more significant if the value of k* large sphere can hardly be influenced even when the 
becomes greater or the values of C* and C* become two particles are nearly touching. Interestingly, as 
smaller (with some exceptions). In the limit k* = 0 or shown in Fig. 3(c), a maximum of the angular velocity 
in the limit C* ~ ~ ,  eqs (2.6a), (2.17) and (2.19) give of particle 1 (to the accuracy of O(r~7)) exists for the 
G = ½ and B/A = - 5(1 + 2C*)/6(1 + 5C*). Under  case of az/al = ~ when the parameter (al + a2)/r12 is 
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Fig. 2. Normalized translational and rotational velocities of 
Fig. 1. Normalized translational and rotational velocities of two identical spheres vs the conductivity ratio k* with 
two identical spheres vs the separation parameter 2a/r12 C* and C~* as parameters (2a/r12 = 0.8): (a) temperature 
with k* as a parameter (Cz* = 0.02, C,,* = 0.01): (a) temper- gradient prescribed parallel to the line of particle centers; (b) 
ature gradient prescribed parallel to the line of particle and (c) temperature gradient prescribed perpendicular to the 
centers; (b) and (c) temperature gradient prescribed perpen- line of particle centers. Curve a: C~* = 0.2 and C~ = 0.1; 

dicular to the line of particle centers, curve b: C~* = 0.02 and C* = 0.01; curve c: C~* = C~ = 0. 
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1.7 . . . . . .  kept constant. This behavior, which can also be dem- 

o r / o /  onstrated by using eq. (3.10b), is understandable 
knowing that  the value of r12/al increases linearly 
with 02/01 for a fixed (01 + 02)/r12. 

1.5 In practical applications of thermophoresis,  collec- 
tions of aerosol particles are usually encountered. It is 

U1 therefore necessary to determine the dependence of 
-~10)1.3 / ~ j  the thermophoret ic  mobili ty on particle concentra- 

tion. The interaction effects between pairs of particles, 
obtained in the previous section, can be extended to 
the evaluation of the mean thermophoret ic  velocity in 

1.1 
a suspension of aerosol particles. In the following 

0.5 section, formulas for this mean velocity correct to the 
0.a order of first power of the volume fraction of the 

0.g ' ~ ' ~ ° .Is ' particles will be presented. 
0 .0  0 .2  0 . 4  0 0 .8  

(a,+a2)/r ,2 (a) 
5. C O N C E N T R A T I O N  D E P E N D E N C E  O F  

T H E R M O P H O R E T I C  V E L O C I T Y  

1.1 Fo r  a bounded suspension of aerosol spheres, it is 
no longer possible to define the particle velocity rela- 

~.o a t / ' a i - o . z  tive to the distant fluid, as the particles are spread 
0.5 through the entire space and there is no distant fluid. 

Instead, the particle velocity should be calculated for 
0.9 a reference frame in which the net particle and fluid 

U1 flux is zero and Eo~ is the volume average of the 
~olo) temperature gradient field over the entire suspension. 

a.a Thus, 

0.7 -~ v(x)dx = 0 (5.1a) 

o.6 and 
0.0  0 .2  0 .4  0 .6  O.B 

(b) ( o , + 0 2 ) / r , 2  1 fvVT(x)d  x = E~ (5.1b) 

0 . 0 2 0  , , , , 

where V denotes the entire volume of the suspension. 
Due to the existence of particles, gaseous medium, 
and a temperature jump at the surface of each particle, 

o.o12 a ~ / o l =  0.75 eq. (5.1b) can be further expressed as 

_ a l f l t  0.2 E~o = ~ VT(x)dx + VTj(x)dx 
u~O) 

2 +fsj(T(x)-T~(x))nAS]} (5.2) 0 . 0 0 4  0.1 ' 

where Vj and S t are the volume and surface area of 
o o r  .0  particle j, respectively; V, = V - yq Vj is the volume 

--o.tm , , ~ , occupied by the continuous medium, nj is the unit 
0.3 0.4 0.5 0.6 0.7 O.a normal vector at the surface of particle j pointing into 

(ol  + 0 2 ) / r 1 2  the fluid. The last integral in eq. (5.2) accounts for the 
(c) temperature gradient on the surface of particle j,  

Fig. 3. Normalized translational and rotational velocities of which is singular. 
particle 1 for the system of two spheres of identical thermal Based on a microscopic model of particle interac- 
conductivities and surface properties (k* = 100, C,l/al tions in a dilute dispersion which involves both sta- 
= 0.02, C,l/al = 0.01) vs the separation parameter tistical and low Reynolds number hydrodynamic  con- 

(al + aa)/rlz with a2/al as a parameter: (a) temperature 
gradient prescribed parallel to the line of particle centers; (b) cepts (Batchelor, 1972; Reed and Anderson, 1980), the 
and (c) temperature gradient prescribed perpendicular to the mean thermophoret ic  velocity of a "test" particle (sub- 

line of particle centers, script t), which samples all positions in the suspen- 
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sion, is given by tion function as the solution of a conservation equa- 
( e tion of Fokker-Planck type for a polydisperse system 

(Ut) = U~ °~ + C t Jv v*(r) [g(r) - 1] dr of spheres (Batchelor, 1982). The conditions under 
which the assumption of local equilibrium is valid for 

fv a dilute dispersion consisting of different types of 
a'2 vZv*(r)g(r) dr particles are also discussed by Reed and Anderson + 6(1 + 2C*,) 

(1980). 
fv Given eqs (3.5) or eqs (5.4) for E* and v*, eq. (3.11) 

+ At [E*(r) -- E~ ] [g(r) -- 1] dr for U*, eq. (5.5) for W and eqs (5.6) for g, the integrals 
in eq. (5.3) are evaluated incorporating eq. (5.2) to 

+ fvW(r)g(r)dr} + O(C2). (5.3) obtain 

(U,)  = U~ °) [1 + ct,~p + 0(~o2)] (5.7) 
Here, U~°)= AtE~, which is the undisturbed ther- 
mophoretic velocity of the test particle, g(r) is the with 
radial distribution function describing the two-par- A [ A ~ 
ticle configurational probability, and C is the macro- ~t~ ~ G + 2GtG - Gt-~ - 6Gt 
scopic concentration of the neighboring particles 
(assumed to have identical radius and physical prop- 5(1 + 2C*)q ( as ")3 
erties and to have no particle agglomeration). E*(r) 2(1 + 5 C * ) / \ a - - ~ /  (5.8) 
and v*(r) are the temperature gradient and velocity 
fields, respectively, at position r when a single neigh- where ~p = 4rcaaC/3 is the volume fraction of the 
boring sphere at the origin 0 moves due to the pre- neighbor particles. The three terms in the expression 
scribed temperature gradient E~, which are expressed (5.8) for ct, are obtained in order of the contributions 
by eq. (3.5) (eliminating the superscripts and sub- from the first, third and fourth integrals in eq. (5.3). 
scripts) for r > a. Inside the neighboring sphere This result is not exact, even given that eqs (5.6) hold, 
(r < a), E* and v* can be obtained using eqs (2.7b) and because O(r- s) terms are neglected in U*; however, 
(2.18). the error should be small and will appear only in the 

calculation involving the correction function W. In 
E* = (1 + t~) Eo~ (5.4a) the derivation of eq. (5.8), all the neighboring particles 
v* = AEoo; (5.4b) were assumed to be identical, even though they are 

allowed to differ from the test particle. 
both are constant. Note that E* is singular with a tern- For a dispersion of particles that have a distribu- 
perature jump at r = a. W(r) is a correction function tion in radius and physical properties, a generaliz- 
needed to account for the perturbation on v* owing to ation of eqs (5.7) and (5.8) leads to 
the presence of the test particle, and is given by 

W ( r )  = U t , ( r )  _ U~O, _ v , ( r )  (Ui)=U~°)[IW~QtijqgjWO(q)2)l (5.9) 
J 

at2 VZv*(r) -A,[E*(r)  - Eoo] (5.5) where 

6(1 +2C*,) Aj Gi+[2GIGi_G. AJ 6G,_~i 
where U*(r) is the actual velocity of the test particle ~ij = A~ ' A~ -- . 
located at r with respect to the origin of a single 
neighbor at 0. U*(r) can be calculated from eq. (3.11), 5 ( l + 2 C * j ) l (  a, ~3 
taking subscripts 1 and 2 to denote the test and 2 ( l ~ J \ ~ /  " (5.10) 

neighboring particles, respectively. Note that the term Here the subscript i denotes the type of particles 
of modified Faxen's correction involving V2v*, which having radius al and physical properties k*, Csi, 
has appeared in eqs (5.3) and (5.5), equals zero as 
computed from using eq. (3.5b). Ca and Cml. Equation (5.10) predicts that ct o can be 

positive or negative depending on the sizes and phys- 
To evaluate the volume integrals in eq. (5.3), we ical properties of particles of types i and j. 

assume that the radial distribution function has the In a Suspension of identical particles, the expression 
following equilibrium value for rigid spheres without for the mean thermophoretic velocity can be reduced 
long-range pair potential: from eqs (5.9) and (5.10) to 

g = 0  i fr<at+a (5.6a) ( U )  = U~°) [1 + ~ttp + O(tp2)] (5.11) 

i s g = l + O ( C )  if term proportional to theconcentra_(5.6b) c t = - l - G + ~ l [ - 2  2 ( t _  ] G - I + 6 B )  G - 5 ( I + 2 C * ) I  where O (c) 
tion of neighbors. In other words, the particles must (5.12) 
be sufficiently small so that Brownian motion domin- 
ates any multiparticle hydrodynamic interactions that For the limiting situation of k* = 0 or C* ~ oo, we have 
might impart microscopic structure to the suspension. ~t = - ~ and the contribution from the correction 
In general, it is necessary to obtain the pair distribu- function W to ~ vanishes. Note that ~t is non-zero in 
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bounded suspension the volume-averaged flow is zero 
(this contributes - 1  to ~t) and the volume-averaged NOTATION 
temperature gradient is Eo~ (this contributes - ½ to ct), a particle radius, m 
as required by eqs (5.1). For  the case of large particles A, B coefficients defined by eqs (2.17) and 
(l/a ,~ 1) with k* ~ 0% eqs (2.6a), (2.17) and (2.19) give (2.19), m 2 s-  1 K -  t 
G= - landB/A  = -~ ; theneq . (5 .12)y ie lds~  = - ~ .  C number  density of particles in suspen- 
On the other hand, for the case of l/a = 0 and k* >> 1, sion, m -  3 
one has G = - 1  and B/A =- -~- ;  then eq. (5.12) Cm dimensionless coefficient accounting for 
gives ct = - ~  [and eq. (1.5) yields K = 2Cs/k*]. In the hydrodynamic slip 
both of these two limiting cases, G = - 1  and the C* equal to Cml/a 
contribution to ct is entirely due to the correction C~ dimensionless coefficient accounting for 
function W. Results of ct calculated from eq. (5.12) for the thermal slip 
a suspension of particles at various values of C* and Ct dimensionless coefficient accounting for 
C* are plotted vs k* in Fig. 4. It can be found in each the temperature jump 
case that the mean thermophoretic velocity is reduced C* equal to Cd/a 
with an increase in the particle concentration (with e unit vector pointing from particle 1 to 

13 - - ~  <~ ct ~< - ~ ) .  Although the magnitude of ct in particle 2 
general decreases with the increase of k*, the depend- er equal to r/r 
ence is not necessarily monotonic. Note that the effect Eoo uniform applied temperature gradient, 
of interactions between two particles (in an un- K m 
bounded fluid) is to reduce the magnitude of ~. Also, fm momentum accommodation coefficient 
the magnitude of ct in thermophoresis is always small f, thermal accommodation coefficient 
relative to what is found for sedimentation of spheri- F force exerted on particle by the fluid, N 
cai particles (Reed and Anderson, 1980), where the T torque exerted on particle by the fluid, 
value of ~t ranges from - 4 . 5  (for the case C* --+ o0) to N m 
- 6 . 5  (for the case C* = 0). The larger magnitude of g two-particle radial distribution function 

ct for sedimentation is due to the O(r~) hy- G, (~, coefficients defined by eq. (2.6) 
drodynamic interactions, which are much stronger H, 
than the O(r~23) interactions for thermophoresis. I unit dyadic 

For regular practical aerosol systems with low k thermal conductivity of the fluid, 
Knudsen numbers, it is reasonable to have W m - 1  K -  
2a/R < 0.6, where R is the mean inter-particle dis- /~ thermal conductivity of the particle, 
tance. This condition leads to ~0 < 0.12. Thus, the W m -1 K -~ 
results of our analysis neglecting the O(r~-28) and O(tp 2) k* equal to fc/k 
effects should be quite accurate and useful in real K thermophoretic coefficient defined by eq. 
applications. (1.1) 

l mean free path of the gas molecules, m 
IVl o dimensionless mobility tensors defined 

by eq. (3.11) 
M (~'p) dimensionless mobility coefficients de- 

1.4 - ' - i j  
fined by eq. (3.12) 

n unit normal vector at particle surface 
pointing into the fluid 

1.0 p dynamic pressure, N m -  2 
p - ,  solid spherical harmonics, kg m-~ s -2 

--OC r position vector relative to sphere center, 
m 

o.e r equal to [r[, m 
r12 vector pointing from particle 1 to particle 

2 ,  m 

r~2 center-to-center distance between par- 
o.2 ' -~1 ' ~ ' ~ ' ticle 1 and particle 2, m 

- I a s S surface area of the particle, m 2 
LOg k ° Sm mth-order polyadic surface harmonics 

defined by eq. (2.4) 
Fig. 4. Coefficient ct calculated from eq. (5.12) for a suspen- T temperature distribution in the fluid, K 
sion of identical spheres vs k*. Curve a: C* = 0.2 and 
C* = 0.1; curve b: C* =0.02 and C~ = 0.01; curve c: 7~ temperature distribution inside the par- 

C* = C,* = 0. ticle, K 
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To uniform applied temperature field, K mophoretic motion of two spheres. J. Aerosol Sci. 26, 
U thermophoret ic  velocity, m s -  1 429-444. 
( U )  ensemble-averaged thermophoretic velo- Derjaguin, B. V., Rabinovich, Ya. I., Storozhilova, A. I. and 

city, m s -  1 Shcherbina, G. I., 1976, Measurement of the coefficient of 
thermal slip of gases and the thermophoresis velocity of 

v fluid velocity field, m s-1 large-size aerosol particles. J. Colloid Interface Sci. 57, 
v ~) thermal slip velocity defined by eq. (1.3), 451-461. 

m s -  1 Derjaguin, B. V., Storozhilova, A. I. and Rabinovich, Ya. I., 
vs fluid velocity at particle surface, m s -  1 1966, Experimental verification of the theory of ther- 

mophoresis of aerosol particles. J. Colloid Interface Sci. 21, 
V volume of the dispersion system, m 3 35-58. 
W correction function defined by eq. (5.5), Derjaguin, B. V. and Yalamov, Yu., 1965, Theory of ther- 

m s -  1 mophoresis of large aerosol particles. J. Colloid Sci. 20, 
555-570. 

x position vector, m Epstein, P. S., 1929, Zur Theorie des Radiometers. Z. Phys. 
54, 537-563. 

Greek letters Felderhof, B. U., 1977, Hydrodynamic interaction between 
interaction coefficient for O(~p) two spheres. Physica A 88, 373-384. 

aM,, pro, 7,, polyadic coefficients defined by eq. (2.11), Friedlander, S. K., 1977, Smoke, Dust and Haze. Wiley, New 
m s -  1 York. 

r/ fluid viscosity, kg m - t  s - t  Happel, J. and Brenner, H., 1983, Low Reynolds Number 
Hydrodynamics. Martinus Nijhoff. Dordrecht. 

2,~, ,~m polyadic coefficients defined by eq. (2.3), Kennard, E. H., 1938, Kinetic Theory of Gases. McGraw- 
K Hill, New York. 

p fluid density, kg m -  3 Leong, K. H., 1984, Thermophoresis and diffusiophoresis of 
T viscous stress tensor of the fluid, N m -  2 large aerosol particles of different shapes. J. Aerosol Sci. 

~p-, solid spherical harmonics, m 2 s-1 15, 511-517. 
Maxwell, J. C., 1879, On stresses in ratified gases arising 

~p volume fraction of particles in suspension from inequalities of temperature. Phil. Trans. R. Soc. 170, 
angular velocity of particle, s-~ 231-256. 

Meyyappan, M. and Subramanian, R. S., 1984, The ther- 
Subscripts mocapillary motion of two bubbles oriented arbitrarily 

relative to a thermal gradient. J. Colloid Interface Sci. 97, 
0 particle center 291-294. 
1 particle 1 Montassier, N., Boulaud, D. and Renoux, A., 1991, Experi- 
2 particle 2 mental study of thermophoretic particle deposition in 
A arbitrary applied field laminar tube flow. J. Aerosol Sci. 22, 677-687. 
i /-type particle Reed, C. C. and Anderson, J. L., 1980, Hindered settling of 

a suspension at low Reynolds number. A.LCh.E. J, 26, 
j j- type particle 816-827. 
t test particle Reed, L. D. and Morrison, F. A., Jr, 1975, Particle interac- 

tions in low Knudsen number thermophoresis. J. Aerosol 
Superscripts Sci. 6, 349-365. 

Sasse, A. G. B. M., Nazaroff, W. W. and Gadgil, A. J., 1994, 
(0) infinite dilution Particle filter based on thermophoretic deposition from 
(i) ith reflection natural convection flow. Aerosol Sci. Technol. 20, 227-238. 
* unbounded fluid Schadt, C. F. and Cadle, R. D., 1961, Thermal forces on 

aerosol particles. J. phys. Chem. 65, 1689-1694. 
Simpkins, P. G,, Greenberg-Kosinski, S. and MacChesney, 
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