
Osmophoresis of a Spherical Vesicle in a
Circular Cylindrical Pore

Huan J. Keh and Yun S. Hsu
Dept. of Chemical Engineering, National Taiwan University, Taipei 106-17, Taiwan, Republic of China

DOI 10.1002/aic.10510
Published online July 7, 2005 in Wiley InterScience (www.interscience.wiley.com).

The problem of the osmophoretic motion of a spherical vesicle along the centerline of
a circular cylindrical pore is studied theoretically in the quasi-steady limit of negligible
Reynolds and Peclet numbers. The imposed solute concentration gradient is uniform and
parallel to the pore wall, which may be either impermeable to the solute molecules or
prescribed with the far-field concentration distribution. The presence of the pore wall
causes two basic effects on the vesicle velocity: (1) the local concentration gradients on
the vesicle surface are altered by the wall, thereby speeding up or slowing down the
vesicle; (2) the wall enhances the viscous interaction effect on the moving vesicle. To solve
the equations of conservation of mass and momentum, the general solutions are con-
structed from the fundamental solutions in both cylindrical and spherical coordinates. The
boundary conditions are enforced first at the pore wall by the Fourier transforms and then
on the vesicle surface by a collocation technique. Numerical results for the osmophoretic
velocity of the vesicle, relative to that under identical conditions in an unbounded
solution, are presented for various values of the relevant properties of the vesicle as well
as the relative separation distance between the vesicle and the pore wall. The collocation
results agree well with the approximate analytical solution obtained by using a method of
reflections. The presence of the wall will enhance the vesicle velocity, although its
dependency on the ratio of vesicle-to-pore radii is not necessarily to be monotonic. In
general, the boundary effect on osmophoresis is quite significant. © 2005 American Institute
of Chemical Engineers AIChE J, 51: 2628–2639, 2005
Keywords: osmophoresis, semipermeable vesicle, circular cylindrical pore, boundary
effect, fluid mechanics

Introduction

When two solutions differing in solute concentration are
separated by a semipermeable membrane (that permits the
passage of solvent but not of solute), the solvent at the side of
lower concentration tends to pass through the membrane into
the solution of higher concentration. This is the phenomenon of
osmosis; it still occurs to a certain extent when the solute
molecules can cross the membrane but undergo more resistance
in doing so than the solvent molecules. The osmotic flow of

solvent can be prevented by applying a pressure to the solution
of higher concentration, which is greater than the pressure on
the solution at the other side by an amount equal to ���,
where �� is the difference in osmotic pressure between the
two solutions and � is a reflection coefficient characterizing the
degree to which the solute molecules are rejected from the
membrane. For a semipermeable membrane, � � 1; for a
nonselective membrane, � � 0. The osmotic pressure � is
linearly related to the solute concentration C by the van’t Hoff
law (� � CRT, where R is the gas constant and T is the
absolute temperature) for an ideal solution (with very low
solute concentration).

As a vesicle, which is a body of fluid surrounded by a
semipermeable membrane, is placed in a solution possessing a
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solute concentration gradient, one pole of the vesicle is ex-
posed to a higher solute concentration (and thus a higher
osmotic pressure) than the opposite pole. The osmotic driving
force causes the solvent to cross the vesicle’s membrane from
inside to outside at the high concentration pole, and from
outside to inside at the low concentration pole. The vesicle thus
functions as a microengine, sucking fluid into it on one side and
ejecting fluid on the other, thereby advancing toward regions of
low concentration (that is, in the direction of the solute diffu-
sion current). This phenomenon of vesicle movement is termed
osmophoresis1-3 and could play some role in the motility of
biological vesicles and cells.

Anderson3,4 analyzed in considerable detail the osmo-
phoretic motion of a spherical or ellipsoidal vesicle with a thin,
rigid membrane. He calculated the drift velocity of the vesicle
placed in an unbounded fluid with a prescribed linear solute
concentration distribution C�(x) far away from the vesicle for
a quite general case. In most physically realistic systems, the
velocity U0 of a semipermeable spherical vesicle of radius a is
related to the uniform concentration gradient �C� by the ex-
pression

U0 � �A�C� (1a)

where the vesicle’s mobility

A �
aLpRT

2 � 2�� � �
(1b)

with dimensionless parameters

� � aLpRT
C0

D
(2a)

�� � aLpRT
C�

D�
(2b)

In the above equations, Lp is the hydraulic coefficient, which
is a constant for a given membrane and solvent (equal to the
superficial fluid velocity divided by the normal stress differ-
ence across the membrane); D� and D are the solute diffusion
coefficients inside and outside the vesicle, respectively; C� is
the average internal concentration of solute; and C0 denotes the
value of C� at the position of the vesicle center. The van’t Hoff
law was used in the derivation of Eq. 1; if � is not a linear
function of C at fixed temperature, then RT must be replaced by
��/�C, evaluated at C0 in Eqs. 1b and 2a and at C� in Eq. 2b.
Typical values in aqueous solutions for the parameters in Eq. 1
are Lp � 10�8 m2s/kg, � �C� � � 105 mol/m4, and � (or �� ) of
order unity (obviously, depending on the concentrations and
diffusivities of the solutes and the size of the vesicle). Equation
1 shows that the vesicle always moves toward regions of lower
C�, irrespective of the relative values of C0 and C� . Increases in
the value of parameter � or �� have a retarding effect on the
vesicle velocity. A recent experimental work reported that
model lipid (dimyristoyl phosphatidylcholine) vesicles of a
10-�m radius in a sucrose or salt concentration gradient of 104

mol/m4 (the lipid bilayers permit passage of water molecules

but not of solute molecules) have a drift velocity of a few
micrometers per second,5 which is slightly greater than, but still
close to, that predicted by Eq. 1.

Equation 1 serves only for external fluids that extend to
infinity in all directions. In real situations of osmophoresis,
however, vesicles are not isolated and will move in the pres-
ence of neighboring boundaries. Using a method of reflections,
Anderson6 analytically obtained the migration velocity of a
spherical vesicle undergoing osmophoresis along the axis of a
long circular pore with an impermeable wall for the special
case of � � �� � 0. His result indicates that the vesicle velocity
increases monotonically as the ratio of vesicle-to-pore radii
increases. This behavior, which is opposite to intuition and
occurs because the flow of solvent accompanying the osmo-
phoretic vesicle is opposite to the direction of vesicle move-
ment, was also observed experimentally by Berg and Turner7

for the chemotaxis of Escherichia coli and mutants in 10- and
50-�m- diameter capillary tubes. On the other hand, the osmo-
phoretic motion of a spherical vesicle in an arbitrary direction
with respect to a plane wall was examined by Keh and Yang8

through an exact representation in spherical bipolar coordi-
nates, whereas the motion parallel to two plane walls at an
arbitrary position between them was investigated by Chen and
Keh9 using a boundary collocation method. Numerical results
of wall correction to Eq. 1 for the vesicle velocity were pre-
sented for various values of the relative separation distances
and parameters � and �� . Although the osmophoretic mobility
of the vesicle was also found to increase as the vesicle ap-
proaches the plane wall for the general cases considered in
these works, the presence of a lateral wall can reduce the
vesicle mobility in some situations.

The purpose of the present investigation is to obtain exact
numerical solutions and approximate analytical solutions for
the osmophoretic motion of an arbitrary spherical vesicle with
a thin, rigid membrane along the centerline of a long circular
cylindrical pore. The pore wall may be either impermeable to
the solute species or prescribed with the linear far-field solute
concentration distribution. The effects of fluid inertia as well as
solute convection are neglected. As will be shown from the
method-of-reflection analysis in Appendix A, for the case of a
vesicle with � �� 1 � �� undergoing osmophoresis near an
impermeable pore wall or of a vesicle with � 		 1 � ��
undergoing osmophoresis near a pore wall prescribed with the
far-field concentration distribution, the solute diffusion around
the vesicle will generate smaller concentration gradients along
the vesicle surface relative to those in an infinite medium.
These concentration gradients reduce the osmophoretic veloc-
ity, although it will be enhanced by the viscous interaction of
the migrating vesicle with the wall. Both effects of this solutal
retardation and the hydrodynamic enhancement increase as the
ratio of vesicle-to-pore radii increases. A main object of this
work is to determine which effect is overriding at various
vesicle–wall gap widths.

Analysis

We consider the axisymmetric osmophoresis of a spherical
vesicle of radius a surrounded by a thin, rigid, semipermeable
membrane along the axis of a long circular cylindrical pore of
radius b, as shown in Figure 1. Here (�, �, z) and (r, 	, �)
denote the cylindrical and spherical coordinate systems, re-
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spectively, and the origin of coordinates is chosen at the vesicle
center. A linear concentration field C�(z) with a uniform solute
gradient �E�ez (��C�) is imposed in the ambient fluid far
away from the vesicle, where ez is the unit vector in the
z-direction and E� is taken to be positive. The objective is to
obtain the correction to Eq. 1 for the vesicle velocity arising
from the presence of the pore.

To determine the osmophoretic velocity of the vesicle, it is
necessary to ascertain the solute concentration distributions
inside and outside the vesicle and the velocity field in the
surrounding fluid phase.

Solute concentration distribution

The osmophoretic motion of a vesicle can be considered
quasi-steady if the Peclet and Reynolds numbers are small. The
equations of continuity governing the solute concentration dis-
tributions for the external and internal fluids are

�2C � 0 
r 
 a� (3a)

and

�2C1 � 0 
r � a� (3b)

respectively. Because the radius of the vesicle is much greater
than the thickness of its membrane, r � a can represent both
the inner and outer membrane surfaces of the vesicle. Thus, the
concentration distribution is subject to the boundary condi-
tions3,8

r � a :
�C

�r
�

�

a
�C � C0 � 
C1 � C� � (4a)

�C1

�r
�

��

a
�C � C0 � 
C1 � C� � (4b)

where the definition of the parameters � and �� (proportional to
C0 and C� , respectively) is given by Eq. 2.

There is no solute to be transferred through the impermeable
pore wall and the solute concentration far away from the
vesicle approaches the undisturbed quantities. Thus

� � b :
�C

��
� 0 (5)

�z� 3 � : C 3 C� � C0 � E�z (6)

For the case of osmophoretic motion of a vesicle in a pore
whose wall is prescribed with a linear concentration profile
consistent with the far-field solute distribution, Eq. 5 should be
replaced by

� � b : C � C� (7)

The external concentration distribution C, which is governed
by the linear Laplace equation and antisymmetric with respect
to z after the subtraction of C0, can be expressed as the
superposition

C � Cw � Cp (8)

Here, Cw is a Fourier–Bessel integral solution of Eq. 3a in
cylindrical coordinates, representing the disturbance produced
by the pore wall plus the undisturbed concentration field, and is
given by10

Cw � C0 � E�z � E� �
0

�

R
�I0
��sin
z�d (9)

where I0 is the modified Bessel function of the first kind of
order zero and R() is an unknown function of the variable .
The second term on the right-hand side of Eq. 8, Cp, is a
solution of Eq. 3a in spherical coordinates, representing the
disturbance generated by the vesicle, and is given by an infinite
series in harmonics,

Cp � E� �
m�1

�

Tmr�m�1Pm
cos 	� 
m is odd� (10)

where Pm is the Legendre polynomial of order m and Tm are
unknown constants. Note that a solution for C of the form
given by Eqs. 8–10 immediately satisfies the boundary condi-
tion at infinity in Eq. 6. Because the solute concentration is
finite for any position in the interior of the vesicle, the solution
to Eq. 3b can be written as

C1 � C� � E�z � E� �
m�1

�

T� mrmPm
cos 	� 
m is odd�

(11)

where T� m are unknown constants. Only the terms with odd m
are included in Eqs. 10 and 11 because both the concentration
fields C � C0 and C1 � C� are antisymmetric with respect to z.

Substitution of the concentration distribution C given by
Eqs. 8–10 into the boundary condition 5 or 7 and application of
the Fourier sine transform on the variable z lead to a solution
for R() in terms of the coefficients Tm. After the substitution
of this solution into Eqs. 8–10 and use of the integral repre-
sentations of the modified Bessel functions, C can be expressed
as

Figure 1. Geometrical sketch for the osmophoresis of a
spherical vesicle along the axis of a long cir-
cular cylindrical pore.
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C � C0 � E�z � E� �
m�1

�

Tm�m

1�
r, 	 � 
m is odd� (12)

where the function �m
(1)(r, 	) is defined by Eq. B1 in Appendix

B. Applying the boundary conditions given by Eq. 4 to Eqs. 11
and 12 yields

�
m�1

�

�Tm�� �m

1�
a, 	 � � T� m
�� � m�amPm
cos 	� � �a cos 	

(13a)

�
m�1

�

�Tm���m

1�
a, 	 � � a�m


2�
a, 	 � � T� m�amPm
cos 	��

� �a cos 	 (13b)

where m is odd and the definition of the function �m
(2)(r, 	)

[���m
(1)/�r] is given by Eq. B2.

To satisfy the conditions in Eq. 13 exactly along the entire
surface of the vesicle would require the solution of the entire
infinite array of unknown constants Tm and T� m. However, the
collocation method9,11,12 enforces the boundary conditions at a
finite number of discrete points on the quarter-circular gener-
ating arc of the sphere (from 	 � 0 to 	 � �/2, stemming from
the symmetry of the system geometry and antisymmetry in the
solute concentration fields) and truncates the infinite series in
Eqs. 11 and 12 into finite ones. If the spherical boundary is
approximated by satisfying the conditions of Eq. 4 at M dis-
crete points on the generating arc, the infinite series in Eqs. 11
and 12 are truncated after M terms, resulting in a system of 2M
simultaneous linear algebraic equations in the truncated form
of Eq. 13. This matrix equation can be numerically solved to
yield the 2M unknown constants Tm and T� m required in the
truncated form of Eqs. 11 and 12 for the solute concentration
distribution. The accuracy of the truncation technique can be
improved to any degree by taking a sufficiently large value of
M. Naturally, as M 3 � the truncation error vanishes and the
overall accuracy of the solution depends only on the numerical
integration required in evaluating the functions �m

(1) and �m
(2) in

Eq. 13.

Fluid velocity distribution

Having obtained the solution for the solute concentration
distribution on the vesicle surface that drives the osmophoretic
migration, we can now proceed to find the flow field. Because
of the low Reynolds number, the fluid motion outside the
vesicle is governed by the quasi-steady fourth-order differential
equation for viscous axisymmetric creeping flows, as follows

E2
E2�� � 0 (14)

in which the Stokes stream function � is related to the velocity
components in cylindrical coordinates by

�� �
1

�

��

� z
(15a)

�z � �
1

�

��

��
(15b)

and the Stokes operator E2 has the form

E2 � �
�

�� �1

�

�

��� �
�2

� z2 (16)

The boundary conditions for the fluid velocity at the vesicle
surface,3,8 on the pore wall, and far from the vesicle are

r � a : v � Uez � LpRT�C � C0 � 
C1 � C� �er (17)

� � b : v � 0 (18)

�z� 3 � : v � 0 (19)

Here, er is the unit vector in the r direction and U is the
osmophoretic velocity of the vesicle to be determined.

To solve the flow field, we express the stream function,
which is symmetric about the plane z � 0, in the form

� � �w � �p (20)

Here �w is a solution of Eq. 14 in cylindrical coordinates that
represents the disturbance produced by the pore wall and is
given by a Fourier–Bessel integral10,12

�w ��
0

�

�X
��I1
�� � Y
��2I0
��cos
z�d (21)

where X() and Y() are unknown functions of . The second
part of �, denoted by �p, is a solution of Eq. 14 in spherical
coordinates, representing the disturbance generated by the ves-
icle, and is given by

�p � �
n�2

�


Bnr
�n�1 � Dnr

�n�3�Gn
�1/ 2
cos 	� 
n is even�

(22)

where Gn
�1/ 2 is the Gegenbauer polynomial of the first kind of

order n and degree �1/2; Bn and Dn are unknown constants.
Note that the boundary condition in Eq. 19 is immediately
satisfied by a solution of the form given by Eqs. 20–22.

Substituting the stream function � given by Eqs. 20–22 into
the boundary condition 18 and applying the Fourier cosine
transform on the variable z lead to a solution for X() and Y()
in terms of the coefficients Bn and Dn. After the substitution of
this solution into Eqs. 20–22 and use of Eq. 15 and the integral
representations of the modified Bessel functions, the fluid ve-
locity components can be expressed as
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�� � �
n�2

�

�Bn�n

1�
r, 	 � � Dn�n


2�
r, 	 � (23a)

�z � �
n�2

�

�Bn�n

3�
r, 	 � � Dn�n


4�
r, 	 � (23b)

where n is even and the definition of functions �n
(i)(r, 	) for i

�1, 2, 3, and 4 (which must be performed numerically) is
given by Eqs. B3–B6.

The only boundary condition that remains to be satisfied is
that on the vesicle surface. Substituting Eqs. 11, 12, and 23 into
Eq. 17, one obtains

�
n�2

�

�Bn�n

1�
a, 	 � � Dn�n


2�
a, 	 � � LpRTE� �
m�1

�

�Tm�m

1�
a, 	�

� T� mamPm
cos 	�sin 	 (24a)

�
n�2

�

�Bn�n

3�
a, 	 � � Dn�n


4�
a, 	 � � U � LpRTE� �
m�1

�

�Tm

� �m

1�
a, 	� � T� mamPm
cos 	�cos 	 (24b)

where m is odd, n is even, and the first 2M coefficients Tm and
T� m have been determined through the procedure given in the
previous subsection.

Equation 24 can be satisfied by making use of the collocation
technique presented for the solution of the solute concentration
field. At the vesicle surface, Eq. 24 is applied at N discrete
points (values of 	 between 0 and �/2) and the infinite series in
Eq. 23 are truncated after N terms. This generates a set of 2N
linear algebraic equations for the 2N unknown coefficients Bn

and Dn. The fluid velocity field outside the vesicle is com-
pletely obtained once these coefficients are solved for a suffi-
ciently large value of N.

Derivation of the vesicle velocity

The hydrodynamic force acting on the spherical vesicle can
be determined from13

F � 4��D2 (25)

where � is the fluid viscosity. This expression shows that only
the lowest-order coefficient D2 contributes to the drag force
exerted on the vesicle by the external fluid.

Because the vesicle is freely suspended in the surrounding
fluid, the net force acting on the vesicle must vanish. Applica-
tion of this constraint to Eq. 25 gives

D2 � 0 (26)

To determine the osmophoretic velocity U of the vesicle, Eq.
26 and the 2N algebraic equations resulting from Eq. 24 are to
be solved simultaneously.

If the vesicle velocity in Eq. 17 is disabled (that is, U � 0 is

set), then the force obtained from Eq. 25 can be taken as the
osmophoretic force exerted on the vesicle in the cylindrical
pore resulting from the solute concentration gradient �C�. This
force can be expressed as

F � 6��aU0F* (27)

where U0 is a characteristic velocity (the osmophoretic velocity
of the vesicle in the absence of the pore wall) given by Eq. 1
and F* is the normalized magnitude of the osmophoretic force.
The value of F* also equals f *U/U0, where f * is the dimen-
sionless Stokes resistance coefficient of the vesicle migrating
along the axis of the cylindrical pore driven by a body force in
the absence of the concentration gradient and U is the osmo-
phoretic velocity of the vesicle obtained from Eq. 26. This
dimensionless resistance coefficient f * is the same as that of an
impermeable solid sphere of identical radius translating along
the axis of the cylindrical pore under a body force field.12,13 To
see this, the osmophoresis problem can be deconstructed into
two subproblems: (1) the vesicle at rest under a solute concen-
tration gradient experiences a force that is exactly F given by
Eq. 27, and (2) the vesicle moving at velocity U as a result of
a body force experiences a drag force 6��aUf *, which is also
equal to F such that the net force vanishes. Such an analysis
clearly dictates that f * stands for the resistance coefficient of
the vesicle, not really an impermeable sphere. However, in the
absence of a concentration gradient, no radial fluid velocity
relative to the vesicle center exists at the vesicle surface as seen
from Eq. 17, despite a nonzero Lp. This would imply that the
drag force on a vesicle under a body force field is equal to that
on an impermeable sphere, and solvent permeation across the
membrane takes place only in the presence of a concentration
gradient.

Results and Discussion

The numerical results for the osmophoretic motion of a
spherical vesicle along the axis of a cylindrical pore, obtained
by using the boundary collocation method described in the
previous section, is presented in this section. The system of
linear algebraic equations to be solved for the coefficients Tm

and T� m is constructed from Eq. 13, whereas that for Bn and Dn

is constructed from Eq. 24. All the numerical integrations to
calculate the functions �m

(i) and �n
(i) were done by the 180-point

Gauss–Laguerre quadrature.
When selecting the points along the quarter-circular gener-

ating arc of the spherical vesicle where the boundary conditions
are to be exactly satisfied, the first point that should be chosen
is 	 � �/2, given that this point defines the projected area of
the vesicle normal to the direction of motion and controls the
gap between the vesicle and the pore wall. In addition, the point
	 � 0 is also important. However, an examination of the
systems of linear algebraic equations in Eqs. 13 and 24 shows
that the matrix equations become singular if these points are
used. To overcome this difficulty, these points are replaced by
closely adjacent points, that is, 	 � � and �/2 � �.12 Additional
points along the boundary are selected to divide the quarter-
circular arc of the vesicle into equal segments. The optimum
value of � is found by considering a succession of the solution
in which the boundary conditions are satisfied at the two basic
points only, and varying �. The result reveals that the numerical
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solutions of the vesicle velocity converge satisfactorily (to five
significant figures) for all parameters � and �� and sphere-to-
cylinder radius ratios a/b when � � 0.1°. Thus, � was taken as
0.1° in all calculations in this work.

Numerical solutions for the normalized osmophoretic force
acting on a spherical vesicle on the axis of a cylindrical pore
with an impermeable wall or a wall prescribed with the far-field
solute concentration profile caused by an axial solute gradient,
defined by Eq. 27, for the case of � � �� � 0 are given in Table
1 for various values of the spacing parameter a/b using the
collocation technique. All of these results were obtained by
choosing the number of collocation points N (�M) equal to 36,
44, and 52 to show their convergence. The rate of convergence
is rapid for small values of a/b and deteriorates monotonically
as the distance between the vesicle and the wall decreases.
Opposite to intuition, but consistent with the reflection solution
obtained by Anderson6 for an impermeable pore wall, the
results in Table 1 illustrate that the osmophoretic force exerted
on the vesicle increases monotonically and dramatically as the
parameter a/b increases. This occurs because the fluid flow
accompanying the osmophoretic vesicle is opposite to the
direction of its migration.

In Table 2, the collocation solutions for the osmophoretic
velocity of a spherical vesicle along the axis of a cylindrical
pore for different values of the parameters �, �� , and a/b are
presented for both cases of an impermeable wall and a wall
with the imposed far-field solute concentration gradient. The

velocity for the osmophoretic motion of an identical vesicle in
an infinite fluid, U0, given by Eq. 1, is used to normalize the
wall-corrected quantities. All of the results obtained under the
collocation scheme converge satisfactorily to at least the sig-
nificant figures shown in the table. Again, the accuracy and
convergence behavior of the truncation technique is principally
a function of the ratio a/b. For the most difficult case with
a/b � 0.999, the numbers of collocation points M � N � 52 are
sufficiently large to achieve this convergence. The dimension-
less Stokes resistance coefficient f * � F*/(U/U0) as a function
of a/b can be calculated using the collocation solutions pre-
sented in Tables 1 and 2 for the case of � � �� � 0, and the
results agree well with those available in the literature.12,13

In Appendix A, an approximate analytical solution for the
same osmophoretic motion as that considered here is also
obtained by using a method of reflections. The vesicle velocity
is given by Eq. A13, which is a power series expansion in �
(�a/b). The values of the wall-corrected normalized vesicle
velocity calculated from this asymptotic solution, with the
O(�8) term neglected, are also listed in Table 2 for comparison.
It can be seen that the asymptotic formula of Eq. A13 from the
method of reflections for U/U0 agrees very well with the exact
results as long as � � 0.6; the errors in all cases are 	10%.
However, the accuracy of Eq. A13 deteriorates rapidly, as
expected, when the relative spacing between the vesicle and the
wall becomes small. The formula of Eq. A13 always underes-
timates the osmophoretic velocity of the vesicle.

The collocation solutions for the normalized velocity U/U0

of a spherical vesicle undergoing osmophoresis along the axis
of a cylindrical pore as a function of the ratio a/b are plotted in
Figures 2 and 3 for various values of � and �� . It can be seen
that the boundary effect of the pore wall on osmophoretic
motion is quite significant. The wall-corrected normalized mo-
bility U/U0 of the vesicle decreases with an increase in � and
with a decrease in �� for the case of an impermeable wall (the
boundary condition in Eq. 5 is used), but increases with an
increase in � and with a decrease in �� for the case of a wall
prescribed with the far-field solute concentration distribution
(the boundary condition in Eq. 7 is used), keeping each other
parameter unchanged. This decrease and increase in the vesicle
mobility becomes more pronounced as a/b increases. This
behavior is expected, knowing that the solute concentration
gradients along the vesicle surface near an impermeable wall
decrease as the ratio �/(1 � �� ) increases and these concentra-
tion gradients near a wall with the imposed far-field concen-
tration distribution increase as �/(1 � �� ) increases (see the
analysis in Appendix A). When � � 1 � �� , the two types of
pore wall will result in the same effects on the osmophoretic
motion of the vesicle. In this particular case, the effect of
solutal interaction between the vesicle and the wall disappears,
and the relative osmophoretic mobility of the vesicle is inde-
pendent of the value of either � or �� and increases monoton-
ically with a/b, attributed solely to the hydrodynamic enhance-
ment exerted by the pore wall.

Examination of the results shown in Table 2 and Figure 3
reveals an interesting feature. For the case of an impermeable
pore wall under the situation of � �� 1 � �� , the osmophoretic
mobility of the vesicle increases with an increase in a/b if a/b
is small, but decreases from a maximum with increasing a/b if
a/b is sufficiently large. This feature that U/U0 may not be a
monotonic function of a/b is understandable because the wall

Table 1. Numerical Results of the Normalized Osmophoretic
Force F* on a Spherical Vesicle Located on the Axis of a

Circular Cylindrical Pore Caused by an Axial Solute
Concentration Gradient for the Case of � � �� � 0

a/b

F*

N � M � 36 N � M � 44 N � M � 52

For an impermeable wall

0.1 1.26891 1.26891 1.26891
0.2 1.74270 1.74270 1.74270
0.3 2.66729 2.66729 2.66729
0.4 4.63709 4.63709 4.63709
0.5 9.27694 9.27694 9.27694
0.6 21.7983 21.7983 21.7983
0.7 63.0074 63.0074 63.0074
0.8 245.098 245.098 245.098
0.9 1352.57 1352.57 1352.57
0.95 3276.05 3276.05 3276.05
0.99 9991.09 9991.09 9991.09
0.995 15084.2 15085.1 15085.1
0.999 38049.3 37463.1 37369.9

For a wall prescribed with the far-field solute concentration profile

0.1 1.26764 1.26764 1.26764
0.2 1.72875 1.72875 1.72875
0.3 2.59542 2.59542 2.59542
0.4 4.34253 4.34253 4.34253
0.5 8.13570 8.13570 8.13570
0.6 17.2208 17.2208 17.2208
0.7 42.3335 42.3335 42.3335
0.8 127.265 127.264 127.264
0.9 439.761 439.761 439.761
0.95 667.882 667.882 667.882
0.99 733.556 733.556 733.556
0.995 733.622 733.626 733.626
0.999 734.564 733.263 733.056
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effect of hydrodynamic enhancement on the vesicle is in the
competition with the wall effect of solutal retardation when a
vesicle with a large value of �/(1 � �� ) is undergoing osmo-

phoretic motion near an impermeable wall. Under the situa-
tions of a small to moderate value of �/(1 � �� ), the osmo-
phoretic mobility of the vesicle near the impermeable wall is a

Figure 3. Plots of the normalized osmophoretic velocity
of a spherical vesicle with � � 10 along the axis
of a circular cylindrical pore vs. the ratio a/b
for various values of �� .
The solid curves represent the case of an impermeable wall,
and the dashed curves denote the case of a wall on which the
far-field solute concentration profile is imposed.

Table 2. Normalized Osmophoretic Velocity of a Spherical Vesicle along the Axis of a Circular Cylindrical Pore Computed
from the Exact Boundary-Collocation Solution and the Asymptotic Method-of-Reflection Solution

a/b

U/U0

� � �� � 0 � � 10, �� � 0 � � 0, �� � 10

Exact Solution Asymptotic Solution Exact Solution Asymptotic Solution Exact Solution Asymptotic Solution

For an impermeable wall

0.1 1.00494 1.00494 1.00294 1.00294 1.00494 1.00494
0.2 1.03881 1.03880 1.02241 1.02238 1.03881 1.03880
0.3 1.12807 1.12787 1.06923 1.06860 1.12809 1.12787
0.4 1.29737 1.29548 1.14322 1.13718 1.29762 1.29548
0.5 1.57533 1.56464 1.23151 1.19813 1.57673 1.56464
0.6 2.00894 1.96342 1.31266 1.18229 2.01496 1.96342
0.7 2.70070 2.53329 1.36435 0.96529 2.72339 2.53329
0.8 3.93737 3.34016 1.36982 0.34891 4.02282 3.34016
0.9 6.94877 4.48847 1.31876 �0.96016 7.35950 4.48847
0.95 11.5622 1.26908 12.8505
0.99 33.1003 1.21558 41.8625
0.995 50.1532 1.20791 66.9547
0.999 124 1.20 186

For a wall prescribed with the far-field solute concentration profile

0.1 1.00393 1.00393 1.00445 1.00445 1.00393 1.00393
0.2 1.03049 1.03047 1.03475 1.03472 1.03049 1.03047
0.3 1.09767 1.09725 1.11309 1.11267 1.09766 1.09725
0.4 1.21495 1.21139 1.25609 1.25292 1.21482 1.21139
0.5 1.38154 1.36332 1.47567 1.46041 1.38086 1.36332
0.6 1.58707 1.51999 1.78290 1.72894 1.58447 1.51999
0.7 1.81456 1.61732 2.19588 2.04041 1.80643 1.61732
0.8 2.04444 1.55219 2.75628 2.36504 2.02232 1.55219
0.9 2.25924 1.17355 3.58040 2.66238 2.20485 1.17355
0.95 2.35716 4.19822 2.27442
0.99 2.43025 4.92137 2.31569
0.995 2.43906 5.03852 2.31977
0.999 2.446 5.141 2.323

Figure 2. Plots of the normalized osmophoretic velocity
of a spherical vesicle with �� � 10 along the axis
of a circular cylindrical pore vs. the ratio a/b
for various values of �.
The solid curves represent the case of an impermeable wall,
and the dashed curves denote the case of a wall on which the
far-field solute concentration profile is imposed.
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monotonic increasing function of a/b. For any case that a linear
concentration profile is prescribed on the pore wall, which is
consistent with the far-field solute distribution, the osmo-
phoretic mobility of the vesicle is also a monotonic increasing
function of a/b.

For the osmophoretic motion of a spherical vesicle of radius
a situated at the center of a spherical cavity of radius b, the
normalized vesicle mobility can be determined analytically as

U

U0
�

1 � 5�3 � 6�5


1 � G�3�
1 � �5�
(28)

where

G �
1 � �� � �

2 � 2�� � �
(29)

and � � a/b. Obviously, �1 � G � 1/2, with the upper and
lower bounds occurring at the limits � 		 1 � �� and � �� 2(1
� �� ), respectively. To obtain Eq. 28, the solute concentration
at the cavity wall is taken as the distribution giving rise to the
constant gradient E� in the cavity when the vesicle does not
exist. This normalized osmophoretic mobility, which depends
on one parameter G composed of � and �� , increases monoton-
ically from unity at � � 0 to 3/(1 � G) as �3 1. A comparison
of the collocation results for the osmophoretic mobility of the
vesicle in a corresponding cylindrical pore with Eq. 28 is
presented in Figure 4. It can be seen that the boundary effects
on osmophoresis in cylindrical and spherical pores are quite
similar and the mobility enhancement in the cylindrical pore
can be greater or smaller than that in the spherical cavity with
the same values of �, �� , and a/b. The agreement between the
numerical values of the two wall-corrected mobilities for the

case of G � 0 (the osmophoretic mobility of the vesicle along
the axis of the cylindrical pore becomes independent of the
absolute values of � and �� in this case) is quite good, with the
difference being within 5.5%. The similarity in the boundary
effects in these pore geometries reflects the fact that the defor-
mation of solute flux field and the viscous enhancement in the
cylindrical pore are greatest at the point of closest approach of
the vesicle to the pore wall, with the geometry of this region
being analogous to that of a vesicle in the spherical cavity.
Note that the osmophoresis of a vesicle in a spherical cavity
might represent a real system of the chemotactic movement of
a vesicle in a biological cell.

Concluding Remarks

The exact numerical solution and approximate analytical
solution for the quasi-steady osmophoretic motion of a spher-
ical vesicle with a thin, rigid membrane along the axis of a
cylindrical pore have been obtained in this work by using the
boundary-collocation technique and the method of reflections,
respectively. Both the cases of an impermeable wall and of a
wall with the imposed far-field solute concentration distribu-
tion were examined in the limit of vanishingly small Reynolds
and Peclet numbers. It has been found that the agreement
between the collocation solution and the reflection solution is
quite good, and the boundary effect on osmophoretic motion of
a vesicle is significant and complicated. The osmophoretic
mobility of a vesicle in the pore is generally, but not necessar-
ily, a monotonic increasing function of the separation param-
eter a/b. For the case of an impermeable pore wall with � ��
1 � �� , the vesicle mobility may increase with an increase in a/b
if a/b is small, and then decrease with an increase in a/b if a/b
becomes large. This behavior reflects the competition between
the hydrodynamic enhancement exerted by the pore wall on the
vesicle migration and the possible osmotic retardation arising
from the solutal interaction between the vesicle and the wall.

The osmophoretic mobility of a spherical vesicle on the
median plane between two parallel plane walls was calculated
in a previous work9 for various values of the parameters �, �� ,
and a/b, where b is the distance between the center of the
vesicle and each of the plane walls. It was also found that, for
the case of impermeable walls under the situation of � �� 1 �
�� , the vesicle mobility first increases and then decreases with
increasing a/b. When the gaps between the vesicle and the
plane walls turn thin, however, the vesicle can even migrate
slower than it would if a/b � 0 (by as much as 22% for an
example of � � 10, �� � 0, and a/b � 0.999). Exactly the same
tendency of the dependency of U/U0 on a/b can be observed for
the case in which the two plane walls are prescribed with the
far-field solute concentration profile under the situation of � 		
1 � �� . This difference between the boundary effects on osmo-
phoresis in a circular cylindrical pore and in a slit pore is
striking, suggesting that the effect of viscous interactions is
stronger or the effect of solutal interactions is weaker in a
circular pore than in a slit pore. In general, and quite surpris-
ingly, the net boundary effect on osmophoresis of a vesicle is
very much stronger in a circular pore than in a slit.

The membranes of different types of vesicles can vary in
physicochemical properties such as the deformability and
strength. In this paper, the membrane of the vesicle has been
assumed rigid during the osmophoretic motion, and the possi-

Figure 4. A comparison of the normalized osmophoretic
velocities of a spherical vesicle with �� � 0
along the axis of a circular cylindrical pore
(solid curves) and located at the center of a
spherical pore (dashed curves) for various val-
ues of a/b and � (or G).
The solute concentration at the pore wall is taken as the
distribution giving rise to the constant gradient E� in the
absence of the vesicle.
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ble effects of local and total membrane deformations as well as
the development of stress gradients in the membrane were not
considered. Zinemanas and Nir14 theoretically examined the
unsteady osmophoresis of a deformable vesicle in an un-
bounded fluid accounting for the temporal changes in the
volume and concentration of the encapsulated solution result-
ing from vesicle shrinking and swelling (occurring when the
vesicle is placed in high and low osmotic pressure environ-
ments, respectively). It was found that the osmophoresis of
deformable vesicles has a transient dynamics and is ultimately
halted, given that the surface tractions eventually balance the
osmotic load.
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Notation

a � radius of the vesicle, m
A � osmophoretic mobility defined by Eq. 1b, m5 s�1

b � radius of the pore, m
Bn, Dn � coefficients in Eq. 22 or Eq. 23 for the flow field, mn�2 s�1,

mn s�1

C � solute concentration field outside the vesicle, m�3

C0 � value of C� at the position of vesicle center, m�3

C1 � solute concentration field inside the vesicle, m�3

C� � average solute concentration inside the vesicle, m�3

C� � prescribed solute concentration field defined by Eq. 6, m�3

er, ez � unit vectors in r and z directions
E� � � �C� �, m�4

F* � normalized osmophoretic force on the vesicle defined by Eq.
27

G � dimensionless parameter defined by Eq. 29
Gn

�1/ 2 � Gegenbauer polynomial of the first kind of order n and
degree �1/2

In, Kn � modified Bessel functions of the first and second kinds
Lp � hydraulic coefficient of the vesicle membrane, m2 s kg�1

Pm � Legendre polynomial of order m
r � radial spherical coordinate, m
R � the gas constant, J K�1]

T � absolute temperature, K
Tm, T� m � coefficients in Eqs. 10–12 for the solute concentration field,

mm�2, m�m�1

U, U � osmophoretic velocity of the vesicle, m s�1

U0, U0 � osmophoretic velocity of an isolated vesicle defined by Eq.
1, m s�1

v � velocity field of the fluid, m s�1

z � axial cylindrical coordinate, m

Greek letters

�n
(i) � functions of r and 	 defined by Eqs. B3–B6, m�n�1 or

m�n�1

�m
(1), �m

(2) � functions of r and 	 defined by Eqs. B1 and B2, m�m�1,
m�m�2

� � viscosity of the fluid, kg m�1 s�1

	, � � angular spherical coordinates
�, �� � dimensionless parameters defined by Eq. 2

� � a/b
� � radial cylindrical coordinate, m

� � Stokes stream function for the fluid flow, m3 s�1

Subscripts

p � vesicle
w � wall
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Appendix A: Analysis of the Osmophoresis of a
Spherical Vesicle in a Circular Cylindrical Pore by
a Method of Reflections

In this appendix, we analyze the quasi-steady osmophoretic
motion of an arbitrary spherical vesicle with a thin, rigid
membrane along the axis of a long circular cylindrical pore, as
shown in Figure 1, by a method of reflections. The effect of the
pore wall on the osmophoretic velocity U of the vesicle is
sought in an expansion of �, which equals a/b, the ratio of
vesicle-to-pore radii.

For the osmophoresis of a vesicle in a pore with an imper-
meable wall, the governing Eqs. 3a and 14 must be solved by
satisfying the boundary conditions 4–6 and 17–19. The
method-of-reflection solution consists of the following series,
whose terms depend on increasing powers of �

C � C0 � E�z � Cp

1� � Cw


1� � Cp

2� � Cw


2� � · · · (A1a)

v � vp

1� � vw


1� � vp

2� � vw


2� � · · · (A1b)

where subscripts w and p represent the reflections from wall
and vesicle, respectively, and the superscript (i) denotes the ith
reflection from that surface. In these series, all the expansion
sets of the solute concentration and fluid velocity for the
solution phase outside the vesicle must satisfy Eqs. 3a and 14.
The advantage of this method is that it is necessary to consider
boundary conditions associated with only one surface at a time.

According to the system of Eq. A1, the velocity of the
vesicle can also be expressed in a series form as
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U � U0ez � U
1� � U
2� � · · · (A2)

In this expression, U0 � AE� is the osmophoretic velocity of an
identical vesicle suspended freely in the unbounded solution
phase given by Eq. 1; U(i) is related to �Cw

(i) and vw
(i) by15

U
i� � �A��Cw

i�0 � �vw


i�0 �
a2

6
��2vw


i�0 (A3)

where the subscript 0 to variables inside brackets denotes
evaluation at the position of the vesicle center.

The solution for the first reflected fields from the vesicle is

Cp

1� � �GE�a3r�2cos 	 (A4a)

vp

1� � �U0a

3r�3
2 cos 	er � sin 	e	� (A4b)

where G was defined by Eq. 29. The velocity distribution
shown in Eq. A4b is identical to the irrotational flow surround-
ing a rigid sphere moving with velocity �2U0ez.

The boundary conditions for the ith reflected fields from the
wall are derived from Eqs. 5, 6, 18, and 19, as follows

� � b :
�Cw


i�

��
� �

�Cp

i�

��
(A5a)

vw

i� � �vp


i� (A5b)

�z� 3 � : Cw

i� 3 0 (A5c)

vw

i� 3 0 (A5d)

The solution of Cw
(1) is obtained by applying Fourier sine

transforms on the variable z in Eqs. 3a and A5a and A5c
(taking i � 1), with the result

Cw

1� � �

2

�
GE�a�2 �

0

�


K1
�

I1
�
I0��

b
�sin�z

b
�d (A6a)

where In() and Kn() are modified Bessel functions of the first
kind and second kind, respectively, of order n. vw

(1)can be
solved by applying Fourier cosine transforms twice to the
Stokes Eq. 14 and boundary conditions A5b and A5d, which
results in

vw

1� � �

2

�
U0�

3 �
0

� ���
�
�

b
I0��

b
�

� �
�I1��

b
�	sin�z

b
�e� � �2�
�I0��

b
�

� �
�
�

b
I1��

b
� � �
�I0��

b
�	cos�z

b
�ez
d (A6b)

where

�
� � ��I1
�2 � I0
�I2
���1 (A7a)

�
� � 2�I1
� K1
� � I0
� K2
��
� (A7b)

The contributions of Cw
(1) and vw

(1) to the vesicle velocity are
determined by using Eq. A3

Us

1� � �A��Cw


1�r�0 � d1G�3U0ez (A8a)

Uh

1� � �vw


1� �
a2

6
�2vw


1�	
r�0

� 
d2�
3 � d3�

5�U0ez (A8b)

U
1� � Us

1� � Uh


1� � �
d2 � d1G��3 � d3�
5U0ez (A8c)

where

d1 �
2

� �
0

�

2
K1
�

I1
�
d � 1.59365 (A9a)

d2 �
2

� �
0

�

��
� � 2�
�d � 4.17338 (A9b)

d3 �
2

3� �
0

�

2�
�d � 3.79264 (A9c)

Equation A8a shows that the reflected solute concentration
field from the impermeable wall can increase (if G � 0 or � 	
1 � �� ) or decrease (if G 	 0 or � � 1 � �� ) the osmophoretic
velocity of the vesicle, whereas Eq. A8b indicates that the
reflected velocity field is to increase this velocity; the net effect
of the reflected fields is expressed by Eq. A8c, which can
enhance or retard the movement of the vesicle, depending on
the combination of the values of G (or � and �� ) and �. When
G � 0 (or � � 1 � �� ), the reflected concentration field makes
no contribution to the osmophoretic velocity. Equation A8c
indicates that the wall correction to the vesicle velocity is
O(�3), which is weaker than that obtained for the correspond-
ing sedimentation problem, in which the leading boundary
effect is O(�). Note that the necessary condition for the wall
retardation on the osmophoretic motion to occur is � �� 1 �
�� and a value of � close to unity such that the relation d3�5 �
(d2 � d1G)�3 is warranted.

The solution for the second reflected fields from the vesicle
is

Cp

2� � �E��d1G

2�3a3r�2cos 	 � O
�5a5� (A10a)

vp

2� � �U0�d1G�3a3r�3
2 cos 	er � sin 	e	� � O
�5a3�

(A10b)

The boundary conditions for the second reflected fields from
the wall are obtained by substituting the results of Cp

(2) and vp
(2)
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into Eq. A5, with which Eqs. 3a and 14 can be solved as before
to yield

Cw

2� � d1

2G2�6E�z � O
�7� (A11a)

vw

2� � d1d2G�6U0ez � O
�7� (A11b)

The contribution of the second reflected fields to the velocity
of the vesicle is obtained by combining Eqs. A3 and A11,
which gives

U
2� � �
d1d2G � d1
2G2��6 � O
�8�U0ez (A12)

The error for U(2) is O(�8) because the O(�7) terms in the
expansions of �Cw

(2) and vw
(2) vanish at the position of the

vesicle center.
Obviously, U(3) will be O(�9). With the substitution of Eqs.

A8c and A12 into Eq. A2, the vesicle velocity can be expressed
as U � Uez with

U � U0�1 � 
d2 � d1G��3 � d3�
5 � 
d1d2G � d1

2G2��6

� O
�8� (A13)

For the special case of � � �� � 0 or G � 1/2, Eq. A13 is
exactly the same as the result obtained by Anderson.6 Note that
the normalized osmophoretic mobility U/U0, correct to O(�6),
depends on one parameter G composed of � and �� .

For the case that a linear solute concentration profile is
prescribed on the pore wall, which is consistent with the
far-field solute distribution (that is, the boundary condition 5 is
replaced by Eq. 7), the series expansions A1 and A2, the
solution of Cp

(1) and vp
(1) in Eq. A4, and the boundary conditions

for Cw
(i) and vw

(i) in Eqs. A5b–A5d are still valid, although Eq.
A5a becomes

� � b : Cw

i� � �Cp


i� (A14)

The solution of Cw
(1), satisfying Eqs. 3a, A14, and A5c, is

Cw

1� �

2

�
GE�a�2 �

0

�


K0
�

I0
�
I0��

b
�sin�z

b
�d

(A15)

whereas the solution of vw
(1) is unchanged from Eq. A6b. The

results of the following reflected fields and of the vesicle
velocity are also obtained from Eqs. A8–A13 by replacing d1

by �d� 1 and d1
2 by �d� 1

2, where

d� 1 �
2

� �
0

�

2
K0
�

I0
�
d � 0.411822 (A16)

Thus, contrary to the effect of an impermeable pore wall, the
reflected concentration field from a wall with the imposed
far-field concentration distribution reduces the osmophoretic
velocity of the vesicle if G � 0 or � 	 1 � �� and enhances this

velocity if G 	 0 or � � 1 � �� . When G � 0 or � � 1 � �� ,
the two types of pore wall will produce the same effects (with
no contribution from the reflected solute concentration field) on
the osmophoretic motion of the vesicle and the normalized
vesicle velocity becomes independent of the absolute values of
� and �� . Correct to O(�5), the net effect of the pore wall
prescribed with the far-field solute concentration distribution
always enhances the osmophoretic migration of a vesicle.

Appendix B: Definitions of Some Functions in the
Analysis Section

The functions �m
(1) and �m

(2) in Eqs. 12 and 13 are defined by

�m

1�
r, 	 �

�
2
�1�
m�2v�1�/ 2

�m! �
0

�

m
Kv
b�

Iv
b�
I0
r sin 	�sin
r cos 	�d

� r�m�1Pm
cos 	� (B1)

�m

2�
r, 	 � �

2
�1�
m�2v�1�/ 2

�m! �
0

�

m�1
Kv
b�

Iv
b�

�I1
r sin 	�sin
r cos 	�sin 	 � I0
r sin 	�

� cos
r cos 	�cos 	d � 
m � 1�r�m�2Pm
cos 	� (B2)

where I� and K� are the modified Bessel functions of the first
and second kinds, respectively, of order �; � � 1 if Eq. 5 is
used for the boundary condition of the solute concentration
field at the pore wall and � � 0 if Eq. 7 is used.

The functions �n
(i) for i � 1, 2, 3, and 4 in Eqs. 23 and 24 are

defined, respectively, by

�n

1�
r, 	 � � �

0

�

�S1
�I0
r sin 	�r sin 	

� S3
�I1
r sin 	� sin
r cos 	�d

� r�n�1
n � 1�Gn�1
�1/ 2
cos 	�csc 	 (B3)

�n

2�
r, 	 � � �

0

�

�S2
�I0
r sin 	�r sin 	

� S4
�I1
r sin 	� sin
r cos 	�d � r�n�1�
n

� 1�Gn�1
�1/ 2
cos 	�csc 	 � 2Gn

�1/ 2
cos 	�cot 	 (B4)

�n

3�
r, 	 � � �

0

�

�S1
��2I0
r sin 	� � I1
r sin 	�r sin 	

� S3
�I0
r sin 	�� � cos
r cos 	�d � r�n�1Pn
cos 	�

(B5)

�n

4�
r, 	 � � �

0

�

�S2
��2I0
r sin 	� � I1
r sin 	�r sin 	
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� S4
�I0
r sin 	��cos
r cos 	�d

� r�n�1�2Gn
�1/ 2
cos 	� � Pn
cos 	� (B6)

In Eqs. B3–B6,

S1
� �
An


1�
�I0
b� � An

3�
�I1
b�

bI0
2
b� � 2I0
b�I1
b� � bI1

2
b�

(B7)

S2
� �
An


2�
�I0
b� � An

4�
�I1
b�

bI0
2
b� � 2I0
b�I1
b� � bI1

2
b�

(B8)

S3
� �
An


1�
� � bI0
b�S1
�

I1
b�
(B9)

S4
� �
An


2�
� � bI0
b�S2
�

I1
b�
(B10)

where

An

1�
� � �
�1�n/ 2

2n

�n!
K1
b� (B11)

An

2�
� � 
�1�n/ 2

2n�2

�n!
�
n � 2�
n � 3�K1
b�

� 
2n � 3�bK0
b� (B12)

An

3�
� � 
�1�n/ 2

2n

�n!
K0
b� (B13)

An

4�
� � 
�1�n/ 2

2n�2

�n!
�
2n � 3�bK1
b�

� n
n � 1�K0
b� (B14)
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