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Abstract

The osmophoretic motion of two spherical vesicles in a constant gradient of solute concentration is
analyzed using a method of re¯ections. The vesicles are oriented arbitrarily with respect to the gradient,
and they are allowed to have di�erent semipermeable membranes, hold arbitrary solutes, and possess
unequal sizes. The method of re¯ections is based on an analysis of the solute concentration and ¯uid
velocity disturbances produced by a single spherical vesicle placed in an arbitrarily varying
concentration ®eld. The quasisteady results for two-vesicle interactions are correct to O(rÿ712 ), where r12
is the distance between the vesicle centers. Our analytical results are found to be in good agreement with
the numerical solution obtained using spherical bipolar coordinates. Based on a microscopic model the
results for two-vesicle interactions are used to determine the e�ect of the volume fraction of vesicles of
each type on the average osmophoretic velocity in a bounded suspension. For a suspension of identical
vesicles, this average velocity is increased as the vesicle volume fraction is increased. # 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

All biological membranes, and many synthetic ones, are to some extent semipermeable; that
is, they permit the passage of solvent and other small molecular species, but are impermeable
to all solutes whose molecules exceed a certain size. Thus, when two solutions of such larger
molecules are separated by a semipermeable membrane, with a higher concentration of solute
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on one side than on the other, the fact that the chemical potentials on the two sides will tend
to equilibrium causes solvent to ¯ow across the membrane toward the side with higher solute
concentration. This is the phenomenon of osmosis; it still occurs to a certain extent when the
solute molecules can cross the membrane but experience more resistance in doing so than the
solvent molecules. The osmotic ¯ow of solvent can be prevented by applying a pressure to the
solution of higher concentration which is greater than the pressure on the solution at the other
side by an amount equal to sDP, where DP is the di�erence in osmotic pressure between the
two solutions and s is a re¯ection coe�cient characterizing the degree to which the solute
molecules are rejected from the membrane. For a semipermeable membrane, s=1; for a non-
selective membrane, s=0. The osmotic pressure P is linearly related to the solute
concentration C by the van't Ho� law (P=CRT, where R is the gas constant and T is the
absolute temperature) for an ideal solution (with very low solute concentration).
When a vesicle, which is a body of ¯uid surrounded by a semipermeable membrane, is

placed in a solution possessing a solute concentration gradient, one pole of the vesicle
experiences a higher solute concentration (and hence a higher osmotic pressure) than the
opposite pole. The osmotic driving force causes solvent to cross the vesicle's membrane from
inside to outside at the high concentration pole, and from outside to inside at the low
concentration pole. The vesicle thus functions as a microengine, sucking ¯uid into it on one
side and ejecting ¯uid on the other, thereby advancing toward regions of low concentration.
This vesicle movement is termed osmophoresis (Gordon, 1981; Anderson, 1983, 1986), which
provides a mechanism for the motion of biological cells in response to chemical gradients, a
phenomenon known as `chemotaxis' (Devreotes and Zigmond, 1988). An example of
chemotaxis is that motile bacteria such as Escherichia coli are repelled by metabolic
intermediates such as acetate (Barton and Ford, 1997). Applications of osmophoretic motion
might also be found in the targeting of encapsulated drugs and other agents toward a
microscopic region.
Anderson (1983, 1984) analyzed the osmophoretic motion of a spherical or ellipsoidal vesicle

with a thin, rigid membrane through a constant solute gradient in considerable detail. He
calculated the drift velocity of a spherical vesicle of radius a placed in an unbounded ¯uid with
a linear solute concentration distribution C1(x) far removed from the vesicle for a quite
general case. In most physically realistic systems, the velocity U(0) of a semipermeable vesicle is
related to the uniform concentration gradient HC1 by the following expression:

U�0� � ÿ1
2
aLpRT

�
1� �k� 1

2
k

�ÿ1
rC1 �1�

with dimensionless parameters

k � aLpRTC1�x0�
D

�2a�

�k � aLpRT �C

�D
�2b�

Here, Lp is the hydraulic coe�cient which is a constant for a given membrane and solvent, D
-
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and D are the solute di�usion coe�cients inside and outside the vesicle, respectively, C
-
is the

average internal concentration of solute, and x0 denotes the position of the vesicle center. The
van't Ho� law was used in the derivation of Eq. (1); if it is not valid, then RT must be
replaced by @P/@C, evaluated at C1(x0) in Eqs. (1) and (2a) and at C

-
in Eq. (2b). Typical

values in aqueous solutions for the parameters in Eq. (1) are Lp=10ÿ9 m2 s/kg, vHC1v=105

mol/m4 and k (or �k)=2.5. Eq. (1) shows that the vesicle always moves toward regions of lower
C1, no matter what the relative values of C1 and C

-
are; that is, there exists no equilibrium

position as long as HC1 is nonzero. Loading the inside of the vesicle with solute has a
retarding e�ect on its velocity.

In practical applications of osmophoresis, collections of vesicles are usually encountered, and
e�ects of vesicle interactions will be important. For example, aggregates of E. coli can result
from a purely chemotactic response in the system containing succinate gradients (Brenner et
al., 1998). Using a method of re¯ections, Anderson (1986) obtained analytically the migration
velocity of two arbitrarily oriented identical spherical vesicles undergoing osmophoresis for the
special case of k= �k=0. He also used this approximate solution for two-vesicle interactions to
evaluate the mean osmophoretic velocity in a bounded suspension of identical vesicles to the
leading order in the volume fraction of vesicles. On the other hand, the osmophoretic motion
of two arbitrarily oriented spherical vesicles in response to a constant solute concentration
gradient was examined by Keh and Yang (1992) through an exact representation in spherical
bipolar coordinates. Numerical results of correction to Eq. (1) for each particle were presented
for various values of the size ratio, relative separation, and parameters k and �k. This numerical
solution for two-vesicle interactions was also used to obtain the e�ect of the volume fraction of
vesicles on the mean osmophoretic velocity in a bounded suspension.

In the present work, the osmophoresis of two spherical vesicles in a constant solute
concentration gradient oriented arbitrarily relative to the line of vesicle centers is analyzed by
using the method of re¯ections. The vesicles may be formed from di�erent semipermeable
membranes, contain arbitrary solute species, and have unequal radii. In Section 2 we consider
the local solute concentration and ¯uid velocity ®elds produced by a single spherical vesicle
placed in a prescribed concentration ®eld whose gradient is not necessarily constant over length
scales comparable to the vesicle radius. We prove that Eq. (1) also applies to a single spherical
vesicle in a non-uniform solute gradient, provided that HC1 is evaluated at the position of the
vesicle center. These results are then used in Section 3 to alternately evaluate the e�ects of one
spherical vesicle on the other in a constant concentration gradient. The translational and
angular velocities of the osmophoretic vesicles are determined in this manner with an error of
O(rÿ812 ), where r12 is the center-to-center distance between the vesicles, and the results are given
in Eqs. (35a) and (35b). In Section 4 our method-of-re¯ection results are compared with the
numerical calculations of Keh and Yang (1992) for the special case of two identical vesicles.
Typical e�ects of the particle sizes and physical properties on the two-vesicle interactions in
osmophoresis are discussed. Finally, in Section 5, the results of two-vesicle interactions derived
in Section 3 are applied to the theory of particle concentration e�ects on transport properties
in dilute dispersions to obtain the e�ect of the volume fraction of vesicles of each type on the
mean osmophoretic velocities in a bounded suspension, and the general result is given in Eqs.
(44) and (45).
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2. A single vesicle in an arbitrary concentration ®eld

For the purpose of obtaining the interactions between two spherical vesicles undergoing
osmophoresis by the method of re¯ections, it is necessary to obtain the solution for the
migration of a single vesicle of radius a in an unbounded ¯uid solution containing a solute
species with an arbitrary concentration ®eld CA(x). The instantaneous center of the vesicle is
positioned at x0, and the relative position vector is de®ned as r=xÿx0 (=rer, where er is the
unit vector in the direction of r). Although x0 changes with time, the problem can be dealt
with as a quasisteady state if both the Peclet and Reynolds numbers are vanishingly small. It is
assumed that avHCAv/CA(x0) < <1.
Because the boundary conditions of the ¯uid velocity ®eld are coupled with the solute

concentrations at the inner and outer membrane surfaces of the vesicle, it is necessary to
determine the concentration distribution ®rst. The conservation equation governing the
concentration distribution C(x) for the external ¯uid of constant solute di�usion coe�cient D
is Laplace's equation

r2C � 0 �3a�

For the concentration distribution CÃ(x) inside the vesicle, one has

r2Ĉ � 0 �3b�

It is obvious that H2CA=0.
Since the radius of the vesicle is much greater than the thickness of its membrane, r=a can

represent both the inner and outer membrane surfaces of the vesicle. The boundary conditions
require that no solute be transferred across the semipermeable membrane of the vesicle and
that the concentration ®eld far removed from the vesicle approach the prescribed values. Thus
(Anderson, 1983; Keh and Yang, 1992),

r � a:
@Ĉ

@r
� �k

a
�Cÿ CA�x0� ÿ �Ĉÿ �C�� �4a�

@C

@r
� k

a
�Cÿ CA�x0� ÿ �Ĉÿ �C�� �4b�

r41: C4CA �5�

where the de®nition of the parameters k and �k is given by Eqs. (2a) and (2b).
A general solution to Eqs. (3a) and (3b) that satis®es Eqs. (4a), (4b) and (5) is

C � CA �
X1
m�1

�
a

r

�m�1
Sm���lm �6a�
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Ĉ � CA ÿ CA�x0� � �C�
X1
m�1

�
r

a

�m

Sm���l̂m �6b�

Here, the mth order polyadic Sm is a surface harmonic, de®ned by

Sm � rm�1rm�rÿ1� �7�
The ®rst few ones are

S0 � 1 �8a�

S1 � ÿr

r
�8b�

S2 � 3
rr

r2
ÿ I �8c�

where I is the unit dyadic. lm and l̂m are mth order polyadic constants, and the symbol [ � ]
represents m scalar products using the inner nesting convention.
Substitution of Eqs. (6a) and (6b) into Eqs. (4a) and (4b) leads to

l1 � ÿGa�rCA�0 �9a�

l2 � 1

3
Ha2�rrCA�0 �9b�

l̂1 � ÿĜa�rCA�0 �9c�

l̂2 � 1

3
Ĥa2�rrCA�0 �9d�

where

G � 1� �kÿ k
2� 2 �k� k

�10a�

H � 2� �kÿ k
6� 3 �k� 2k

�10b�

Ĝ � ÿ2� �kÿ k
2� 2 �k� k

�10c�

Ĥ � ÿ3� �kÿ k
6� 3 �k� 2k

�10d�

and the subscript 0 to variables inside parentheses denotes evaluation at x=x0. Substituting
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Eqs. (9a)±(9d) into Eqs. (6a) and (6b) and realizing that CA satis®es Laplace's equation, we
obtain

C � CA � G

�
a

r

�3

r � �rCA�0 �H

�
a

r

�5

rr: �rrCA�0 �O�rrrCA�0 �11a�

Ĉ � CA ÿ CA�x0� � �C� Ĝr � �rCA�0 � Ĥrr: �rrCA�0 �O�rrrCA�0 �11b�
Knowing the solute concentration distributions inside and outside the vesicle, we can now

take up the solution of the ¯uid velocity ®eld. Due to the low Reynolds number encountered in
the osmophoresis, the ¯uid velocity is governed by the Stokes equations

Zr2vÿrp � 0 �12a�

r � v � 0 �12b�
where v(x) is the ¯uid velocity, p(x) is the dynamic pressure, and Z is the ¯uid viscosity.
The boundary condition for the ¯uid velocity at the surface of the vesicle is (Anderson,

1983; Keh and Yang, 1992)

r � a: v � vS � U� aOOO� er � LPRT�Cÿ CA�x0� ÿ �Ĉÿ �C��er �13�
where U and OOO are the instantaneous translational and angular velocities, respectively, of the
vesicle to be determined. The solute concentration distributions C and CÃ in Eq. (13) have been
obtained in Eqs. (11a) and (11b). Since the ¯uid is at rest far away from the vesicle, one has

r41: v40 �14�
A solution to Eqs. (12)±(14) for the velocity ®eld can be constructed from Lamb's general

solution as outlined by Brenner (1964). The ¯uid velocity is completely speci®ed when the
polyadic coe�cients aaam, bbbm and gggm in the following formulas are calculated using the value of
the velocity ®eld on the surface of the vesicle (vS):

er � vS �
X1
m�1

aaam���Sm �15a�

ÿar � vS �
X1
m�1

bbbm���Sm �15b�

aer � �r � vS� �
X1
m�1

gggm���Sm �15c�

The force and torque exerted by the surrounding ¯uid on the surface r=a are given by

F � 2pZa�3aaa1 � bbb1� �16a�
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T � 4pZa2ggg1 �16b�
Since the vesicle is freely suspended in the ¯uid, the velocities U and OOO are obtained by setting
the above expressions for F and T equal to zero.
Substitution of Eq. (13) into the left-hand side of Eq. (15c) yields

ggg1 � ÿ2aOOO �17a�

gggm � 0 for m > 1 �17b�
By setting T=0 and using Eqs. (16b) and (17b), one ®nds

OOO � 0 �18�
as the results for a prescribed solute concentration ®eld CA as long as H2CA=0.
The translational motion is described by the coe�cient aaam and bbbm. It can be obtained from

Eqs. (11a), (11b), (13), and (15a) that

aaa1 � ÿUÿ aLpRT�Gÿ Ĝ��rCA�0 �19a�

aaa2 � 1

3
a2LpRT�Hÿ Ĥ��rrCA�0 �19b�

aaam � 0 for m > 2 �19c�
Finally, substituting Eq. (13) together with Eqs. (11a) and (11b) into Eq. (15b) and neglecting
the terms of O(HHHCA )0 (only bbb1 and bbb2 are needed in the following calculations), one has

bbb1 � 2aLpRT�Gÿ Ĝ��rCA�0 �20a�

bbb2 � ÿ
2

3
a2LpRT�Hÿ Ĥ��rrCA�0 �20b�

The force-free characteristic of this problem is used with Eqs. (16a), (19a), and (20a), and the
translational velocity is found to be

U � A�rCA�0 �21�
where

A � ÿ1
3
aLpRT�Gÿ Ĝ� � ÿ aLpRT

2� 2k� k
�22�

Eqs. (21) and (22) show that the osmophoretic velocity of the vesicle is proportional to the
prescribed solute concentration gradient evaluated at the vesicle center and is identical to Eq.
(1) in the dependence on the properties of the solution and the vesicle itself.
The corresponding velocity ®eld external to the osmophoretic vesicle is determined by
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v � rfÿ2 � rfÿ3 �
1

2Z
rpÿ3 �O�rrrCA�0 �23�

where the solid spherical harmonic functions fÿ(m + 1) and pÿ(m + 1) are (Happel and Brenner,
1983),

fÿ2 �
a3

4
rÿ2�aaa1 � bbb1� � �ÿer� �24a�

fÿ3 �
a4

6
rÿ3�2aaa2 � bbb2�:�3erer ÿ I� �24b�

pÿ3 � Za2rÿ3�4aaa2 � bbb2�:�3erer ÿ I�, etc: �24c�
After evaluating fÿ2, fÿ3, and pÿ3 from aaa1, bbb1, aaa2, and bbb2, we obtain the external velocity
®eld as

v � ÿA
�
a

r

�3�
3

rr

r2
ÿ I

�
� �rCA�0 � B

�
a

r

�3 rrr

r2
:�rrCA�0 �O�rrrCA�0 �25�

where

B � aLpRT�Hÿ Ĥ� � 5aLpRT

6� 3 �k� 2k
�26�

For the motion of a freely-suspended spherical vesicle under arbitrary imposed solute
concentration gradient HCA and velocity ®eld vA in an unbounded ¯uid, the translational and
angular velocities of the vesicle can be obtained by linearly combining the Faxen laws for a
force-free and torque-free sphere with no-slip surface (Happel and Brenner, 1983), Eqs. (18)
and (21),

U � A�rCA�0 � �vA�0 �
1

6
a2�r2vA�0 �27a�

OOO � 1

2
�r � vA�0 �27b�

Note that the vesicle behaves as an impermeable particle in the applied velocity ®eld vA
because the normal ¯uid velocity through the vesicle surface does not exist due to the fact that
both the normal component of the velocity gradient and the dynamic pressure are continuous
across the zero-thickness membrane and the viscosity is the same for both the internal and
external ¯uids.

3. Solution for interactions between two osmophoretic vesicles

In this section we consider the quasisteady osmophoresis of two spherical vesicles of radii a1
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and a2. They are oriented at an arbitrary angle to the prescribed solute concentration gradient
E1(=HC1, where C1(x) is the undisturbed concentration ®eld of the surrounding solution).
The vesicles, which may be formed from di�erent semipermeable membranes and contain
arbitrary solutes, are supposed to be su�ciently close to interact with each other, but
su�ciently distant from boundary walls for the ambient ¯uid to be regarded as unbounded.
Let e be the unit vector pointing from the center of vesicle 1 to the center of vesicle 2 and r12
be the center-to-center distance between the vesicles. E1 is assumed to be constant over
distances comparable to r12 and the ¯uid at in®nity is at rest. The objective is to determine the
correction to Eq. (1) for the motion of each vesicle due to the presence of the other.
In the situation (a1+a2)/r12 <<1, a method of re¯ections (Anderson, 1985; Chen and Keh,

1988) is used to solve the two-sphere problem. Because of the linear characteristic of the
governing equations (3a), (3b), (12a) and (12b) as well as the boundary conditions, Eqs. (4a),
(4b), (5), (13) and (14), the solution of the solute concentration and ¯uid velocity ®elds external
to the vesicles for Eqs. (3a) and (12a) and (12b) can be decomposed into a sum of ®elds, which
depend on increasing powers of rÿ112 ,

C � C
�1�
1 � C

�2�
2 � C

�3�
1 � C

�4�
2 � � � � �28a�

v � v
�1�
1 � v

�2�
2 � v

�3�
1 � v

�4�
2 � � � � �28b�

where subscripts 1 and 2 represent the re¯ections from vesicle 1 and vesicle 2, respectively, and
the superscript (i ) denotes the ith re¯ection from either vesicle surface. Hence, the vesicles'
translational and angular velocities can also be expressed in the form of a series,

U1 � U
�0�
1 � U

�2�
1 � U

�4�
1 � � � � �29a�

OOO1 � OOO�0�1 � OOO�2�1 � OOO�4�1 � � � � �29b�

U2 � U
�1�
2 � U

�3�
2 � U

�5�
2 � � � � �29c�

OOO2 � OOO�1�2 � OOO�3�2 � OOO�5�2 � � � �29d�
where U(i )

1 and OOO�i �1 are related to C (i )
2 and v(i )2 by Eqs. (27a) and (27b) for i = 2, 4, 6, . . . ,

while U(i )
2 and OOO�i �2 are related to C (i )

1 and v(i )1 for i = 1, 3, 5, . . . Obviously, the unperturbed
linear concentration ®eld gives

U
�0�
1 � A1E1 �30a�

OOO�0�1 � 0 �30b�
Hereinafter, we use Aj, Bj and Gj to represent the values of A, B and G, respectively, de®ned by
Eqs. (22), (26), and (10a) for the vesicle j ( j= 1 or 2).
The initial concentration gradient HC (1)

1 and velocity ®eld v(1)1 , which correspond to the
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osmophoresis of vesicle 1 isolated in an unbounded ¯uid under the prescribed ®eld E1, are
easily obtained from Eqs. (11a) and (25) for r1 > a1 as

rC �1�1 � E1 ÿ G1

�
a1
r1

�3�
3

r1r1

r21
ÿ I

�
� E1 �31a�

v
�1�
1 � ÿA1

�
a1
r1

�3�
3

r1r1

r21
ÿ I

�
� E1 �31b�

where r1 is the position vector relative to the center of vesicle 1 and r1=vr1v. Note that v(1)1 is
irrotational and satis®es Laplace's equation. The contributions of C (1)

1 and v(1)1 to the velocity
of vesicle 2 (with the center at position r1=r12e) are determined from Eqs. (27a) and (27b)
taking CA=C (1)

1 and vA=v(1)1 . Thus,

U
�1�
2 � A2E1 ÿ �A1 � A2G1�

�
a1
r12

�3

�3eeÿ I� � E1 �32a�

OOO�1�2 � 0 �32b�

Eq. (32a) indicates that the e�ect of vesicle interaction in osmophoresis is O(rÿ312 ).
The ®rst re¯ected concentration gradient ®eld from vesicle 2 can be derived from using Eqs.

(11a) and (31a), while the ®rst re¯ected velocity ®eld from vesicle 2 can be determined from
Eqs. (25), (31a) and (31b), and the analysis of Chen and Keh (1988). The results are

rC �2�2 � ÿG2

�
a2
r2

�3�
3

r2r2

r22
ÿ I

�
� �rC �1�1 �r1�r12e �O�rÿ42 rrC �1�1 � rÿ32 rrrC �1�1 � �33a�

v
�2�
2 � ÿA2

�
a2
r2

�3�
3

r2r2

r22
ÿ I

�
� �rC �1�1 �r1�r12e � B2

�
a2
r2

�3 r2r2r2

r22
: �rrC �1�1 �r1�r12e

ÿ 5

2

�
a2
r2

�3 r2r2r2

r22
:�rv

�1�
1 �r1�r12e �O�rÿ42 �rrC �1�1 � rv

�1�
1 � � rÿ32 �rrrC �1�1 �rrv

�1�
1 ��

�33b�

Substituting Eqs. (33a) and (33b) into Eqs. (27a) and (27b) with CA=C (2)
2 and vA=v(2)2 , one

obtains the contribution to the velocity of vesicle 1 due to the re¯ected ®elds from vesicle 2,

U
�2�
1 � ÿ�A2 � A1G2�

�
a2
r12

�3

�3eeÿ I� � E1 � ��A1G1G2 � A2G1��3ee� I�

� 3�5A1 ÿ 2B2G1�ee�a
3
1a

3
2

r612
� E1 �O�rÿ812 �

�34a�
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OOO�2�1 � 3�5A1 ÿ 2B2G1�a
3
1a

3
2

r712
e� E1 �O�rÿ912 � �34b�

Obviously, U(4)
1 and OOO(4)

1 will be of the orders O(rÿ912 ) and O(rÿ1012 ), respectively. With the
addition of Eqs. (30) and (34), the translational and angular velocities of vesicle 1 can be
expressed as

U1 � A1E1 ÿ �A2 � A1G2�
�
a2
r12

�3

�3eeÿ I� � E1 � ��A1G1G2 � A2G1��3ee� I�

� 3�5A1 ÿ 2B2G1�ee�a
3
1a

3
2

r612
� E1 �O�rÿ812 � �35a�

OOO1 � 3�5A1 ÿ 2B2G1�a
3
1a

3
2

r712
e� E1 �O�rÿ912 � �35b�

U2 and OOO2, the velocities of vesicle 2, can be obtained from the above formulas by
interchanging the subscripts 1 and 2 in all variables and replacing e by ÿe. As expected, both
vesicles will move with the velocity that would exist in the absence of the other (without
rotation) for any orientation of the vesicles as r12 41.

4. Discussion on interactions between two vesicles

The interaction between two vesicles in a solute concentration gradient ®eld, given by Eqs.
(35a) and (35b), results from two phenomena: each vesicle disturbs the local concentration ®eld
experienced by the other, and the movement of each vesicle generates a ¯uid velocity ®eld that
convects and rotates the other. The leading term of the interaction for vesicle translation is
O(rÿ312 ), because both the concentration gradient and velocity disturbances in the surrounding
¯uid produced by an isolated osmophoretic vesicle decay like rÿ3, as shown in Eqs. (11a) and
(25). For osmophoretic vesicles that allow free rotation, the leading term of the angular
velocity is of O(rÿ712 ). Thus, the interaction between vesicles undergoing osmophoresis is much
weaker than that between sedimenting particles, since the leading terms of particle interaction
for the translational and angular velocities of two spheres driven by body forces are of O(rÿ112 )
and O(rÿ212 ), respectively (Happel and Brenner, 1983).
The exact (numerical) solution for the problem of osmophoresis of two arbitrary spherical

vesicles was obtained by using bipolar coordinates (Keh and Yang, 1992). Tables 1 and 2 give
the comparisons in osmophoretic velocities of the two vesicles with the line of their centers
parallel and perpendicular, respectively, to the applied solute concentration gradient E1. For
simplicity, only the case of two identical vesicles (a1=a2=a, Lp1=Lp2=Lp, k1=k2=k,
�k1= �k2= �k, U (0)

1 =U (0)
2 =U (0)=vU(0)v) is presented. In this speci®c case, the vesicles will migrate

at the same velocity (U1=U2=U ) and rotate with equal but opposite angular velocities
(O1=ÿO2=O). It is found in Tables 1 and 2 that the predictions of the normalized velocities
U/U (0) and aO/U (0) from the asymptotic approximation given by Eqs. (35a) and (35b) for
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various values of k and �k are in good agreement with those of the exact solution. The errors in

U/U (0) are less than 0.12% for cases 2a/r12E0.6 or 2.6% for cases 2a/r12E0.8 (although the

errors in aO/U (0) are relatively large), indicating that the higher terms such as O(rÿ812 ) in Eq.

(35a) are not important unless the vesicles are nearly touching. Note that the interaction e�ect

between the vesicles evaluated from Eqs. (35a) and (35b) always overestimates the value of U/

U (0) and underestimates the value of aO/U (0). For the case of two vesicles di�ering in size and/

or in physical properties, Eqs. (35a) and (35b) can also be found to agree well with the exact

solution.

The translational and rotational velocities for various cases of two spherical vesicles

evaluated from Eqs. (35a) and (35b) are shown by solid curves in Figs. 1±3. The corresponding

numerical results (with ®nite values of k and �k) obtained by using bipolar coordinates (Keh

and Yang, 1992) are also presented by dashed curves in these ®gures for comparison purposes.

In each case, the velocity of a vesicle normalized by the value that prevails in the absence of

the other is plotted versus the separation parameter (a1+a2)/r12. It can be seen that the e�ect

of particle interactions on the normalized osmophoretic velocities in general is increased with

the increase in (a1+a2)/r12.

For the situation of two identical vesicles oriented along the prescribed solute concentration

gradient, the interaction e�ect makes each vesicle move slower than its undisturbed value, as

Table 1
Normalized osmophoretic velocities U/U (0) of two identical vesicles with the line through their centers aligned with

the prescribed solute concentration gradient

U/U (0)

k �k 2a/r12 Asymptotic solution Exact solution

0 0 0.2 0.99702 0.99702
0.4 0.97747 0.97747
0.6 0.93577 0.93472

0.8 0.90221 0.88241
0.9 0.91761 0.85879

0 5 0.2 0.99702 0.99703
0.4 0.97770 0.97771

0.6 0.93837 0.93737
0.8 0.91684 0.89429
0.9 0.94727 0.87805

5 0 0.2 0.99915 0.99915
0.4 0.99356 0.99357
0.6 0.98161 0.98145

0.8 0.97185 0.96743
0.9 0.97604 0.96210

5 5 0.2 0.99790 0.99790

0.4 0.98410 0.98410
0.6 0.95465 0.95403
0.8 0.93090 0.91784
0.9 0.94169 0.90198
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illustrated in Figs. 1(a) and 2(a). On the other hand, the normalized migration velocity of two
identical vesicles undergoing osmophoresis normal to the line of their centers is a monotonic
increasing function of the separation parameter 2a/r12, as illustrated in Figs. 1(b) and 2(b). A
careful examination of the surrounding ¯uid recirculation pattern generated by the
osmophoretic motion of a single spherical vesicle (Anderson, 1986) shows why the particle
interactions cause the enhancement or retardation in the vesicle velocity. In Figs. 1(c) and 2(c),
the normalized angular velocities of two identical vesicles undergoing osmophoresis normal to
the line of their centers are plotted versus 2a/r12 with k and �k as parameters. For two spheres
aligned with the prescribed solute concentration gradient the ¯ow is axisymmetric and the
angular velocities of vesicles vanish. Figs. 1 and 2 indicate that the vesicle interaction e�ect is
more signi®cant if the value of k becomes smaller or the value of �k becomes greater, keeping
the other as a constant. In the limit k 41, Eqs. (10a), (22), and (26) give G=ÿ1 and B/
A=ÿ5/2. Under this situation, the osmophoretic velocity of each of these two identical vesicles
(which can be arbitrarily oriented) is una�ected by the presence of the other, as predicted by
Eqs. (35a) and (35b).

In Fig 3, the normalized translational and rotational velocities (of vesicle 1) for the
osmophoresis of two unequally sized vesicles with the same physical properties (Lp, k and �k)
are plotted versus (a1+a2)/r12 with the ratio a2/a1 as a parameter for the case of k= �k=0.

Table 2
Normalized osmophoretic velocities U/U (0) and aO/U (0) of two identical vesicles with the line through their centers

perpendicular to the prescribed solute concentration gradient

Asymptotic solution Exact solution

k �k 2a/r12 U/U (0) aO/U (0) U/U (0) aO/U (0)

0 0 0.2 1.00150 1.0 � 10ÿ6 1.00150 1.0 � 10ÿ6

0.4 1.01205 0.00013 1.01204 0.00015
0.6 1.04105 0.00219 1.04075 0.00332

0.8 1.09907 0.01638 1.09325 0.04136
0.9 1.14292 0.03737 1.11681 0.15474

0 5 0.2 1.00150 1.2 � 10ÿ6 1.00150 1.5 � 10ÿ6

0.4 1.01205 0.00015 1.01204 0.00018

0.6 1.04105 0.00258 1.04074 0.00400
0.8 1.09907 0.01931 1.09243 0.05155
0.9 1.14292 0.04404 1.11024 0.20354

5 0 0.2 1.00043 3.8 � 10ÿ7 1.00043 3.9 � 10ÿ7

0.4 1.00341 0.00005 1.00341 0.00006
0.6 1.01139 0.00082 1.01119 0.00127

0.8 1.02643 0.00614 1.02302 0.01498
0.9 1.03902 0.01401 1.02467 0.04977

5 5 0.2 1.00106 8.0 � 10ÿ6 1.00106 8.3 � 10ÿ6

0.4 1.00848 0.00010 1.00847 0.00012
0.6 1.02863 0.00175 1.02830 0.00267
0.8 1.06802 0.01308 1.06211 0.03254
0.9 1.09700 0.02983 1.07295 0.11696
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Again, this ®gure indicates that the migration velocity of the ®rst vesicle in general is reduced
if the second vesicle is oriented along the imposed solute concentration gradient (with some
exceptions when a2/a1 is small) and is enhanced if the second one is oriented perpendicular to
the gradient. It can be seen that the e�ect of vesicle interactions on the normalized
osmophoretic mobility is far greater on the smaller vesicle than on the larger one. For example,
when the larger vesicle has a radius three times that of the smaller one, the migration velocity
of the smaller vesicle [with (a1+a2)/r12=0.8] can be decreased by as much as 45% (if the
concentration gradient is applied along the line of vesicle centers) or increased by 75% (if the
concentration gradient is prescribed normal to the line of vesicle centers), while the migration
velocity of the large vesicle can hardly be in¯uenced even when the two vesicles are nearly

Fig. 1. Normalized translational and rotational velocities of two identical vesicles versus the separation parameter
2a/r12 with k=5 and �k as a parameter: (a) solute concentration gradient prescribed parallel to the line of vesicle

centers; (b) and (c) solute concentration gradient prescribed perpendicular to the line of vesicle centers. The solid
curves are computed from Eqs. (35a) and (35b), while the dashed curves are results obtained using bipolar
coordinates.
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touching. Interestingly, as shown in Fig. 3(c), a maximum of the angular velocity of vesicle 1
[to the accuracy of O(rÿ712 ) ] exists for the case of a2/a1=(

�����
43
p ÿ 4�=3 �10:85� when the

parameter (a1+a2)/r12 is kept constant. This behavior, which can also be demonstrated using
Eq. (35b), is understandable knowing that the value of r12/a1 increases linearly with a2/a1 for a
®xed (a1+a2)/r12.
In practical applications of osmophoresis, collections of vesicles are usually encountered. It is

therefore necessary to determine the dependence of the osmophoretic mobility on vesicle
concentration. The interaction e�ects between pairs of vesicles, obtained in the previous
section, can be extended to the evaluation of the average osmophoretic velocity in a suspension

Fig. 2. Normalized translational and rotational velocities of two identical vesicles versus the separation parameter
2a/r12 with �k=5 and k as a parameter: (a) solute concentration gradient prescribed parallel to the line of vesicle

centers; (b) and (c) solute concentration gradient prescribed perpendicular to the line of vesicle centers. The solid
curves are computed from Eqs. (35a) and (35b), while the dashed curves are results obtained using bipolar
coordinates.
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of spherical vesicles. In the following section, formulas for this average velocity correct to the
order of ®rst power of the volume fraction of the vesicles will be presented.

5. Volume fraction dependence of osmophoretic velocity

For a bounded suspension of vesicles subjected to an imposed solute concentration gradient
E1, it is no longer possible to de®ne the vesicle velocity relative to the distant ¯uid. Instead,

Fig. 3. Normalized translational and rotational velocities of vesicle 1 for the system of two vesicles of identical
physical properties with k= �k=0 versus the separation parameter (a1+a2)/r12 with a2/a1 as a parameter: (a) solute

concentration gradient prescribed parallel to the line of vesicle centers; (b) and (c) solute concentration gradient
prescribed perpendicular to the line of vesicle centers. The solid curves are computed from Eqs. (35a) and (35b),
while the dashed curves are results obtained using bipolar coordinates.
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the vesicle velocity should be calculated for a reference frame in which the net particle and
¯uid ¯ux is zero and E1 is the volume average of the concentration gradient ®eld over the
entire suspension. Thus,

1

V

�
V

v�x� dx � 0 �36a�

1

V

�
V

rC�x� dx � E1 �36b�

where V denotes the entire volume of the suspension. Due to the existence of vesicles,
suspending ¯uid, and a discontinuity of solute concentration at the surface of each vesicle, Eq.
(36b) can be further expressed as

1

V

(�
Vs

rC�x� dx�
X
j

"�
Vj

rĈj�x� dx�
�
Sj

�C�x� ÿ Ĉj�x��nj dS

#)
� E1 �37�

where CÃj (x) is the solute concentration distribution inside vesicle j, Vj and Sj are the volume
and surface area of vesicle j, respectively, Vs=VÿSjVj is the volume occupied by the
suspending ¯uid, and nj is the unit normal vector at the surface of vesicle j pointing into the
surrounding ¯uid. The surface integral in Eq. (37) accounts for the solute concentration
gradient on the surface of vesicle j, which is singular.
Based on a microscopic model of particle interactions in a dilute dispersion which involves

both statistical and low Reynolds number hydrodynamic concepts (Batchelor, 1972; Reed and
Anderson, 1980), the ensemble-averaged osmophoretic velocity of a `test' vesicle (subscript t) in
a suspension of spherical vesicles subject to Eqs. (36a) and (37) can be expressed as

hUti � U
�0�
t � n

��
V

v
� �r��g�r� ÿ 1� dr� At

�
V

�E��r� ÿ E1��g�r� ÿ 1� dr

� At
a

k

�
r�a

rr

r2
� E� �r��g�r� ÿ 1� dS�

�
V

W�r�g�r� dr

�
�O�n2�

�38�

Here U(0)
t =AtE1, which is the undisturbed osmophoretic velocity of the test vesicle, g(r) is the

radial distribution function describing the two-particle con®gurational probability, and n is the
macroscopic concentration of the neighbor vesicles (assumed to be identical with radius a ).
E�(r) and v�(r) are the solute concentration gradient and ¯uid velocity ®elds, respectively, at
position r when a neighboring vesicle at the origin 0 moves due to the prescribed concentration
gradient E1, which are expressed by Eqs. (31a) and (31b) (eliminating the superscripts and
subscripts) for rea. Inside the neighboring vesicle (r< a ), E� can be obtained using Eq. (11b)
and v� is given by Keh and Yang (1992),

E
� � �1� ÃG�E1 �39a�
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� �

"
ÿ 5I� 3

�
r

a

�2

�2Iÿ ee�
#
� U�0� �39b�

Note that E� is constant for r < a and is singular with a discontinuity of solute concentration
at r=a, while the volume-averaged value of v� over the ¯uid inside the neighboring vesicle
equals ÿ2U(0). W(r) is a correction function needed to account for the perturbation on v�

owing to the presence of the test vesicle, and is given by

W�r� � U
�
t �r� ÿ U

�0�
t ÿ v

� �r� ÿ At�E� �r� ÿ E1� �40�
where U�t (r) is the actual velocity of the test vesicle located at r with respect to the origin of a
single neighboring vesicle at 0. U�t (r) can be calculated from Eq. (35a), taking subscripts 1 and
2 to denote the test and neighboring vesicles, respectively. Note that the Faxen correction term
involving H2v�, which should have appeared in Eqs. (38) and (40), equals zero, as computed
from using Eq. (31b).
To evaluate the volume integrals in Eq. (38), we assume that the radial distribution function

has the following equilibrium value for rigid spheres without long-range pair potential:

g � 0 if r < at � a �41a�

g � 1�O�n� if r > at � a �41b�
where O(n ) is a term proportional to the concentration of neighbors. In other words, the
vesicles must be su�ciently small so that Brownian motion dominates any multiparticle
hydrodynamic interactions that might impart microscopic structure to the suspension. In
general, it is necessary to obtain the pair distribution function as the solution of a conservation
equation of Fokker±Planck type for a polydisperse system of spheres (Batchelor, 1982). The
condition under which the assumption of the local equilibrium is valid for a dilute dispersion
consisting of di�erent types of particles are also discussed by Reed and Anderson (1980).
Given Eqs. (31a) and (31b) or (39a) and (39b) for E�(r) and v�(r), Eq. (35a) for U�t (r), Eq.

(40) for W(r), and Eq. (41) for g(r), the integrals in Eq. (38) are evaluated to obtain

hUti � U
�0�
t �1� atj�O�j2�� �42�

with

at � 2
A

At

ÿ Ĝÿ �Gÿ Ĝ� �
�
2GtG� 2Gt

A

At

ÿ 2Gt
B

At

� 5

��
at

at � a

�3

�43�

where j=4pa3n/3 is the volume fraction of the neighbor vesicles. The four terms in the
expression (43) for at are obtained in order of the contributions from the ®rst, second, third,
and fourth integrals in Eq. (38). This result is not exact, even given Eqs. (41a) and (41b) hold,
because O(rÿ812 ) terms are neglected in U�t (r); however, the error should be small and will
appear only in the calculation involving the correction function W(r). In the derivation of Eq.
(43), all the neighbor vesicles were assumed to be identical, even though they are allowed to
di�er from the test vesicle.
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For a dispersion of vesicles that have a distribution in radius and physical properties, a
generalization of Eqs. (42) and (43) yields

hUii � U
�0�
i

"
1�

X
j

aijjj �O�j2�
#

�44�

aij � 2
Aj

Ai
ÿ Gj �

�
2GiGj � 2Gi

Aj

Ai
ÿ 2Gi

Bj

Ai
� 5

��
ai

ai � aj

�3

�45�

Here, the subscript i denotes the type of vesicles having radius ai and properties ki and �ki.
In a suspension of identical vesicles, the expression for the average osmophoretic velocity

can be reduced from Eqs. (44) and (45) to

hUi � U�0��1� aj�O�j2�� �46�

a � 2ÿ G� 1

8

�
2G 2 � 2

�
1ÿ B

A

�
G� 5

�
�47�

For the limiting situation of k41 (G=1/2 and B/A=ÿ5/2), we have a=3 and the
contribution from the correction function W to a vanishes. Note that a is nonzero in this limit,
even though there is no interaction between two vesicles in an unbounded ¯uid. The reason for
this is that in the bounded suspension the volume-averaged ¯ow is zero (this contributes 2 to
a ) and the volume-averaged concentration gradient is E1 (this contributes 1 to a ) as required
by Eq. (36). For the limiting case of �k 41, Eqs. (10a), (22) and (26) give G= 1/2 and B/
A=ÿ10/3; then Eq. (47) yields a=131/48. On the other hand, for the limiting situation of
k= �k=0, one has G= 1/2 and B/A=ÿ5/3; then Eq. (47) gives a=121/48, which was obtained
by Anderson (1986).
Results of a calculated from Eq. (47) for a suspension of identical vesicles at various values

of k and �k are shown in Fig. 4. It can be found in all cases that the average osmophoretic
velocity always increases with an increase in the vesicle concentration (with 121/48EaE3).
This behavior, which is contrary to that for sedimentation (Batchelor, 1972), electrophoresis/
di�usiophoresis (Anderson, 1986) and thermocapillary motion (Anderson, 1985), is
understandable because the direction of the solvent ¯ow is opposite to that of the vesicle's
movement and the back ¯ow of solvent in the bounded suspension enhances the migration of
vesicles. Although the value of a in general increases with the increase of k, as exhibited in Fig
4(a), the dependence is not necessarily monotonic. Note that the e�ect of interactions between
two vesicles (in an unbounded ¯uid) is to reduce the value of a.
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