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E!ects of inertia on the slow motion of aerosol particles
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Abstract

The translational motion of a spherical particle and a circular cylindrical particle (in the direction normal to its axis) in a quiescent
unbounded #uid at small but "nite Reynolds number is examined theoretically. The #uid, which may be a slightly rare"ed gas, is
allowed to slip at the surfaces of the particles. The axisymmetric Navier}Stokes equation for the #uid #ow around the sphere and the
two-dimensional equation of motion for the #ow surrounding the cylinder are solved by using a method of matched asymptotic
expansions. The approximate expressions for the drag force exerted by the #uid on the sphere and the cylinder are obtained
analytically. For both cases of a sphere and a circular cylinder, the normalized drag force is found to increase monotonically with the
Reynolds number and to decrease monotonically with the dimensionless slip coe$cient (or the Knudsen number). The resulting
formulas presented here include the previous results for a no-slip rigid sphere, a perfect-slip #uid sphere, and a no-slip circular cylinder
as special cases. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The area of the relative motion of a solid particle or
#uid drop in a continuous medium at low-Reynolds
numbers has continued to receive much attention from
investigators in the "elds of chemical, biomedical, and
environmental engineering and science. The majority of
the moving phenomena are fundamental in nature, but
permit one to develop rational understanding of many
practical systems and industrial processes such as sedi-
mentation, centrifugation, #oatation, coagulation, spray
drying, and aerosol processing. The theoretical study of
this subject has grown out of the classic work of Stokes
(1851) for a translating rigid sphere in a viscous #uid at
a vanishingly small Reynolds number. Hadamard (1911)
and Rybczynski (1911) have independently extended this
result to the translation of a #uid sphere. Assuming
continuous velocity and continuous tangential stress
across the interface of #uid phases, they found that the
force exerted on a spherical drop of radius a by the
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surrounding #uid of viscosity g is given by

F"2pga;
3gH#2

gH#1
, (1)

where ; is the migration velocity of the drop and gH is
the ratio of the viscosity of the interior to that of exterior
#uid. Since the #uid viscosities are arbitrary, Eq. (1)
degenerates to the case of translation of a solid sphere
(Stokes' law) when gHPR and to the case of motion of
a gas bubble with spherical shape in the limit gHP0.

In many practical applications of the relative motion
of a solid or #uid particle in a viscous #uid, the Reynolds
number is small but "nite, and the e!ect of inertia on the
particle motion cannot be entirely ignored. Using a sin-
gular perturbation method, Taylor and Acrivos (1964)
analyzed the translation of a #uid drop, which is allowed
to deform slightly from its spherical shape, at small but
"nite Reynolds number. When the e!ect of the deforma-
tion on the drop is not considered, their result for the
drag force exerted on the drop is
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In this expansion formula, the Reynolds number is de-
"ned by

Re"
a;

l
, (3)

where l is the kinematic viscosity of the surrounding
#uid. In the limit gHPR, Eq. (2) reduces to the result
obtained by Proudman and Pearson (1957) for the trans-
lation of a solid sphere.

When one tries to solve the Navier}Stokes equation, it
is usually assumed that no slippage arises at the
solid}#uid interfaces. Actually, this is an idealization of
occurrence of the transport processes. The phenomenon
that the adjacent #uid (especially if the #uid is a slightly
rare"ed gas) can slip frictionally over a solid surface has
been con"rmed, both experimentally and theoretically
(Kennard, 1938; Ying & Peters, 1991; Hutchins, Harper
& Felder, 1995). Presumably, any such slipping would be
proportional to the local tangential stress next to the
solid surface (Basset, 1961; Happel & Brenner, 1983), at
least as long as the velocity gradient is small. The con-
stant of proportionality, b~1, may be termed a &slip
coe$cient'. The quantity g/b is a length, which can be
pictured by noting that the #uid motion is the same as if
the solid surface was displaced inward by a distance g/b
with the velocity gradient extending uniformly right up
to no-slip velocity at the surface. Basset (1961) has found
that the drag force acting on a translating rigid sphere
with a slip-#ow boundary condition at its surface (e.g.,
a settling aerosol sphere) in the limit of zero Reynolds
number is

F"6pga;
ba#2g
ba#3g

. (4)

When bPR, there is no slip at the particle surface and
Eq. (4) degenerates to Stoke's law. In the limiting case of
b"0, there is a perfect slip at the particle surface (the
particle acts like a spherical gas bubble) and Eq. (4) is
consistent with Eq. (1) (taking gH"0).

In Eq. (4), the slip coe$cient has been determined
experimentally for various cases and found to agree with
the general kinetic theory of gases. It can be evaluated
from the relation

b~1"
C

m
l

g
, (5)

where l is the mean free path of a gas molecule, and C
m

is
a dimensionless constant of the gas-kinetic slip, which is
semi-empirically related to the momentum accommoda-
tion coe$cient f

m
at the solid surface by C

m
+(2!f

m
)/f

m
(Kennard, 1938). Although C

m
surely depends upon the

nature of the surface, examination of the experimental
data suggests that it will be in the range 1.0}1.5 (Davis,
1972; Talbot, Cheng, Schefer, and Willis, 1980). Note
that the slip-#ow boundary condition is not only appli-

cable for a gas}solid surface in the continuum regime
(Knudsen number Kn"l/a@1), but also appears to be
valid for some cases even into the molecular #ow regime
(Kn*1). The factor (ba#2g)/(ba#3g) in Eq. (4) is
equivalent to the so-called Cunningham correction factor
for the slip e!ect.

In the present work we wish to study the inertial e!ects
on the relative motion of a slip spherical particle and of
a slip circular cylindrical particle (in the direction perpen-
dicular to its axis) in a viscous #uid at small but "nite
Reynolds numbers. The method of matched asymptotic
expansions (Proudman and Pearson, 1957; Illingworth,
1963; Van Dyke, 1975) is used to solve the problem.
Analytical results in the form of expansion formulas for
the drag force exerted by the #uid on the sphere and the
cylinder as functions of the slip coe$cient are given in
Eqs. (23) and (43), respectively.

2. Motion of a slip sphere

In this section we consider a rigid spherical particle of
radius a translating with a velocity ; in an incompress-
ible Newtonian #uid at rest at in"nity. The #uid may slip
frictionally at the surface of the particle. The spherical
coordinate system r@, h, /, with its origin at the particle
center, is chosen to translate with the particle. In view of
the axial symmetry of the #ow, it is possible to express the
steady equation of motion, the Navier}Stokes equation,
in terms of the Stokes stream function t@(r, k) as
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where the dimensionless variables t"t@/a2; and
r"r@/a, k is used to denote cos h for brevity, the oper-
ators E2
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and L(t, E2
r
t)/L(r, k) is the Jacobian of t and E2

r
t with

respect to r and k. The Stokes stream function is related
to the velocity components v@

r
and v@h by
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r(1!k2)1@2
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where the dimensionless velocity components v
r
"v@

r
/;

and vh"v@h/;.
The boundary conditions require that there be no

relative normal #ow at the surface of the sphere and that
the tangential velocity of the #uid relative to the sphere at
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a point on its surface be proportional to the tangential
stress prevailing at that point. Thus,

r"1: v
r
"0, (9a)

vh"
1

a
r

L
LrA
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r B, (9b)

rPR: v
r
"!cos h, (10a)

vh"sin h, (10b)

where the dimensionless slip parameter a"ba/g (i.e.,
a~1"C

m
Kn is a dimensionless slip coe$cient). Once

(6)}(10) are solved for the stream function, the drag force
exerted by the #uid on the spherical boundary r"1 can
be determined from

F"!pga;P
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r2 B dk. (11)

To obtain a solution for the #uid #ow, we follow the
approach of matched asymptotic expansions used by
Proudman and Pearson (1957) and distinguish between
the inner #ow near the particle, where the Stokes variable
r is O(1), and the outer #ow where the Oseen variable
R"Re r is O(1). In the Stokes region of the #ow,
the solution for the stream function is assumed to take
the expansion form
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where f
0
(Re)"1 and f

n`1
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n
(Re)P0 as ReP0. The

"rst term of this expansion satis"es the Stokes equation,
E4
r
t
0
"0, and the boundary conditions (9) and (10), and

is given by (Basset, 1961)
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The Stokes expansion (12) is invalid far from the par-
ticle where r is of order Re~1. We therefore introduce the
contracted variables R"Re r and W"Re2t, in terms of
which the governing Eq. (6) becomes
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R
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1
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R
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where E2
R

and ¸
R

are the same operators as those de"ned
by Eqs. (7a) and (7b), but with r replaced by R. The Oseen
expansion in the outer region is now expressed as the
form

W"W
0
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1
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#F
2
(Re)W

2
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where F
n`1

(Re)/F
n
(Re)P0 as ReP0. This expansion

should be matched to the Stokes expansion (12) at small
values of R, and its leading term is a uniform stream

speci"ed by the boundary condition (10),

W
0
"1

2
R2(1!k2). (16)

When the expansion (15) for W is substituted into the
Navier}Stokes equation (14) written in Oseen variables,
the terms involving F

1
(Re) show that W

1
satis"es Oseen's

equation
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The solution to the above equation, which must vanish
as RPR and at k"$1, is

W
1
"!

3(a#2)

2(a#3)
(1#k)[1!e~R(1~k)@2]. (18)

The matching requirement between the Oseen and
Stokes expansions at small values of R, which has
been satis"ed to result in solution (18), yields that
F
1
(Re)"Re.
When the "rst approximation to the right-hand side of

the Stokes form of the governing (6) is calculated from the
leading term given by Eq. (13), one can "nd that
f
1
(Re)"Re, and the equation for t

1
may be written as
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The general solution of this equation vanishing at r"1
and k"$1 is

t
1
"!

3(a#2)

32(a#3) C2 r2!3
a#2

a#3
r#

a(a#6)

(a#3)(a#5)

!

a
a#3

1

r
#

a(a#4)

(a#3)(a#5)

1

r2Dk(1!k2)

#

=
+
n/1
GAnC(2n!1)rn`3!(2n#1)A1!

2

aBrn`1

#2A1!
2n#1

a Br~n`2D
#B

nC2A1#
2n#1

a Brn`1!(2n#1)A1#
2

aBr~n`2

#(2n!1)r~nDHP
1

k
P
n
(k) dk, (20)

where P
n
(k) is the Legendre polynomial of order n. When

Eq. (20) is expressed in terms of R and multiplied by Re2
(in order to compare it with W), it must not contain any
term of order greater than 1, and so all the coe$cients
A

n
and B

n
must be zero except B

1
. By matching the terms

that are O(1) with the expansion of the Oseen term
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Fig. 1. Plots of the normalized drag force C
D

on a slip sphere versus the
Reynolds number Re for various values of the slip parameter a.

Fig. 2. Plots of the normalized drag force C
D

on a slip sphere versus the
slip parameter a with the Reynolds number Re as a parameter.

W
1

given by Eq. (18) for small R, one can obtain B
1
, and

the solution for t
1

is
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The last term in the square brackets arises from the
right-hand side of Eq. (19) and so represents the e!ect of
inertia on the inner #ow. Because this term is an odd
function of k, it makes no contribution to the hydro-
dynamic drag on the sphere. Since the remainder part in
Eq. (21) is [3(a#2)/8(a#3)]t

0
, the drag on the sphere

to the second approximation is M1#[3(a#2)/
8(a#3)]ReN times Basset's estimate given by Eq. (4).

The third term f
2
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2
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as follows. After some analysis it emerges that
f
2
(Re)"Re2 ln Re, and hence that t

2
, which satis"es

E4
r
t
2
"0, must be a "nite multiple of Basset's solution

(13). By noticing that there is no term in Re2 ln Re in the
Oseen expansion, one can obtain the solution for t

2
as
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According to the "rst three terms of the Stokes expan-
sion, the drag force exerted on the sphere can be cal-
culated by using Eq. (11), and the result is
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2
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When aPR, the above formula reduces to the result
obtained by Proudman and Pearson (1957) for the trans-
lation of a no-slip sphere. Also, Eq. (23) is consistent with
Eq. (2) (taking gH"0) in the limit a"0 (representing the
case of motion of a spherical gas bubble).

The normalized drag force on the sphere,

C
D
"

F

6pga; A
a#3

a#2B, (24)

as calculated from Eq. (23), is plotted versus the Reynolds
number in the range 0(Re(1 in Fig. 1 with a as
a parameter, and is plotted versus a in a broad range in
Fig. 2 with Re as a parameter. Although the results for
small values of a are included in these "gures for com-
pleteness, it is understood that a small value of a is
related to a large value of Kn and does not apply to the

continuum regime of the #uid #ow (this implies a free
molecule regime for which the Navier}Stokes equation is
not valid). As expected, the inertial e!ect of the #uid #ow
increases the normalized drag on the particle. It can be
seen that C

D
is a monotonic decreasing function of the

dimensionless slip coe$cient a~1 for a given Reynolds
number (consistent with the fact that the drag force on
the particle decreases signi"cantly as the free molecule
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regime is approached). Note that C
D

is a sensitive func-
tion of the parameter a only over the range of a equal to
0.4}20, which is equivalent to the range of Kn equal to
0.04}2. When Re"1, the e!ect of inertia on C

D
in the

case of a"1 is 25% smaller than that in the case of
aPR.

3. Transverse motion of a slip circular cylinder

We now consider the steady translational motion of
a long cylindrical particle of radius a normal to its axis
in a quiescent #uid extending to in"nity. The #uid may
slip frictionally at the surface of the cylinder. This
transverse motion may be treated as a two-dimensional
problem in a cross section perpendicular to the cylinder.
It is understood that, for two-dimensional #ow past
any body, there exists no solution of the creeping
motion equations (ReP0) vanishing on the body that
remains "nite at in"nity (known as Stoke's paradox)
(Happel & Brenner, 1983). The polar coordinate system
(o@, /) measured from the cylinder axis is chosen to trans-
late with the cylinder. When the Lagrangian stream func-
tion t@ is expressed in nondimensional form by the
relation t"(t@/a;), the equation of motion for t be-
comes

+ 4o t"!

Re

o
L(t, + 2o t)

L(o, /)
, (25)

where the dimensionless radial coordinate o"o@/a,
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The Lagrangian stream function is related to the velocity
components v@o and v@

(
by
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o
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, (27a)

v
(
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where the dimensionless variables vo"(v@o/;) and
v
(
"(v@

(
/;).

Similar to Eqs. (9a), (9b), (10a) and (10b) in the previous
section, the boundary conditions for the #uid #ow sur-
rounding the cylinder are

o"1: vo"0, (28a)

v
(
"

1

a
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L
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v
(
o B, (28b)

oPR: vo"!cos /, (29a)

v
(
"sin /. (29b)

The drag force exerted by the #uid on the cylindrical
boundary o"1 per unit length can be evaluated by
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o
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The stream function t may be expressed as a Stokes
expansion
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1
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in the inner #ow, and by an Oseen expansion
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(Re)W

2
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in the outer #ow, where the Oseen variables P"Re o
and W"Re t. In terms of the Oseen variables, Eq. (25)
becomes

+ 4
P
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1

P

L(W, + 2
P

W)

L(P, /)
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The Oseen expansion is to satisfy the above equation and
match the Stokes expansion at small values of P. Also,
the leading term of the Oseen expansion is the uniform
stream speci"ed by the boundary condition (29),

W
0
"!P sin /. (34)

The "rst term in the Stokes expansion must satisfy the
Stokes equation, ¸4o+0

"0, and the boundary condition
(28) at o"1. The appropriate expression for it is

t
0
"!Co ln o!

a
2(a#2)

o#
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2(a#2)
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f
0
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4

Re
!c#

a#4

2(a#2)D
~1

, (36)

where c is Euler's constant ("0.5772). The condition
given by Eq. (36) is necessary in order to match the Oseen
expansion. Note that, unlike the three-dimensional case,
the #uid velocity resulting from the solution (35) for
t
0

diverges as oPR.
The second term in the Oseen expansion (32) satis"es

Oseen's equation

A+ 2
P
!

L
LXB + 2

P
W

1
"0, (37)

where X"P cos /. The general solution for + 2
P

W
1

that
is antisymmetric about /"0 and vanishes at in"nity is
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P

W
1
"eP #04 h@2

=
+
n/1

C
n
K

n
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Fig. 3. Plots of the normalized drag force C
D

on a slip circular cylinder
versus the Reynolds number Re for various values of the slip param-
eter a.

Fig. 4. Plots of the normalized drag force C
D

on a slip circular cylinder
versus the slip parameter a with the Reynolds number Re as a para-
meter.

where K
n
(P/2) is the modi"ed Bessel function of the

second kind of order n and C
n

are constants. By expand-
ing both sides of the relation + 2o t"Re+ 2

P
W for small P,

one obtains that C
1
"1, C

n
"0 for n*2, and

F
1
(Re)"e (it can be found that F

n
(Re)"en) with e de-

"ned by Eq. (36). Then, Eq. (37) may be integrated and
matched to the Stokes expansion to give

W
1
"

=
+
n/1

M2K
1
(P/2)I
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0
(P/2)[I

n~1
(P/2)

#I
n`1

(P/2)]N
P sin n/

n
, (39)

where I
n
(P/2) is the modi"ed Bessel function of the "rst

kind of order n.
The Stokes expansion (31) turns out to be of the form

t"

=
+
n/0

en`1t
n
, (40)

where the t
n

satisfy the Stokes equation and are there-
fore proportional to t

0
. Thus, we have

t"!eA1#
=
+
n/1

a
n
enB Co ln o!

a
2(a#2)

o

#

a
2(a#2)

o~1D sin /. (41)

The above expansion agrees with Eq. (39) at small values
of P in the terms P and P ln P to O(e) if a

1
"0.

The third term in the Oseen expansion (32) must satisfy
the inhomogeneous Oseen equation

A+ 2
P
!

L
LXB+ 2

P
W

2
"!

1

P

L(W
1
, + 2

P
W

1
)

L(P, /)
(42)

and vanish at in"nity. The constant a
2

can be determined
by the matching procedure of Eq. (41) with the expansion
of W

2
for small P. Kaplun (1957) has carried a somewhat

di!erent process for the transverse motion of a no-slip
cylinder to "nd a

2
equal to !0.87 approximately.

Hence, the drag force exerted on the cylinder per unit
length calculated by using (30) and (41) is

F"4pg;[e!0.87e3#O(e4)], (43)

where e is a function of Re de"ned by Eq. (36). The above
formula di!ers from that for a no-slip cylinder (with
aPR and e"[ln(4/Re)!c#1/2]~1) (Illingworth,
1963; Van Dyke, 1975) only by the function e(Re).

The normalized drag force on the cylinder,

C
D
"

F

4pg;
, (44)

as calculated from Eq. (43), is plotted versus the Reynolds
number in the range 0(Re(1 in Fig. 3 with a as
a parameter, and is illustrated as a function of a in Fig.
4 with Re as a parameter. Analogous to the case of a slip

sphere discussed in the previous section, the normalized
drag C

D
increases monotonically with the increase of the

Reynolds number Re for a constant slip parameter a, and
decreases monotonically with the increase of the dimen-
sionless slip coe$cient a~1 (or the Knudsen number Kn)
for a "xed Re. Again, C

D
is a sensitive function of a only
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over the range 0.4(a(20. When Re"0.5, the inertial
e!ect on C

D
in the case of a"1 is about 8% smaller than

that in the case of aPR (which shows a relatively weak
in#uence of a"1 in comparison with the case of a slip
sphere). Note that C

D
P0 as ReP0, because there is no

solution of the Stokes equation for the transverse motion
of a long cylinder.

Notation

a particle radius, m
a
n

coe$cients de"ned by Eq. (41)
C

D
normalized drag force on the particle

C
m

dimensionless frictional slip coe$cient
E2
r
, E2

R
operator de"ned by Eq. (7a)

F drag force on the particle, N
f
n

terms in Stokes expansion given by Eq. (12) or
(31)

F
n

terms in Oseen expansion given by Eq. (15) or
(32)

I
n
, K

n
modi"ed Bessel functions of the "rst and second
kinds, respectively, of order n

Kn Knudsen number ("l/a)
l mean free path of the gas molecules, m
¸
r
, ¸

R
operator de"ned by Eq. (7b)

P equal to Re o
P
n

Lengendre polynomial of order n
r dimensionless radial spherical coordinate
R equal to Re r
Re Reynolds number de"ned by Eq. (3)
; particle velocity, m s~1

v
r
, vh dimensionless #uid velocity components in

spherical coordinates, m s~1

vo , v
(

dimensionless #uid velocity components in po-
lar coordinates, m s~1

X equal to P cos /

Greek letters

a "ba/g or (C
m
Kn)~1

b reciprocal of the slip coe$cient at particle sur-
face, kg m~2 s~1

e function of Re and a de"ned by Eq. (36)
g #uid viscosity, kg m~1 s~1

h, / angular spherical coordinates
k "cos h

o, / dimensionless polar coordinates
t dimensionless stream function of the #uid
t
n

coe$cients in Stokes expansion given by Eq. (12)
or (31)

W "Re t
W

n
coe$cients in Oseen expansion given by Eq. (15)
or (32)
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