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1. Introduction

The polymer electrolyte fuel cell (PEFC) uses a polymeric mem-

brane as an electrolyte, analogous in acidity to the electrolyte in
the automotive battery, but dimensionally fixed. This facilitates
sealing in the production process and furnishes both cell and
stack with longevity. PEFCs can generate high electric-current den-
sity and allow quick start-ups and instant response to changes
in the demand of power. Being efficient, environmentally clean,
and potentially low-cost power systems for both stationary and
mobile applications, PEFCs are of interest to both electric vehicle
and portable electronics manufacturers [1–3].

The polymer electrolyte membrane (PEM), which prevents mix-
ing of feed gases and provides transport of protons from the anode
to the cathode, is one of the key components in PEFC systems. Per-
fluorosulfonic acid (PFSA) copolymer membranes, such as DuPont’s
Nafion (composed of carbon–fluorine backbone chains with perflu-
oro side chains terminated by negatively charged sulfonic groups),
are the most commonly used PEMs in PEFCs operating at low
temperatures below 80 ◦C. Some high-temperature PEMs for opera-
tion above 100 ◦C, such as naphthalene-based sulfonated polyimide
(SPI) and modified PFSA membranes, are also under active devel-
opment [4,5].
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The performance of a PEFC is strongly influenced by the protonic
conductivity of its PEM, and the conductivity is highly dependent
on the state of hydration of the membrane. The sources of water in
the membrane are the humidified reactant gases and the product of
the chemical reaction of hydrogen ions and oxygen occurred at the
cathode. Undoubtedly, the protonic conductivity of a PEM increases

with its content of water. But, an excess of water in the fuel cell
may lead to electrode flooding and thus the diffusion of the reactant
gases will be suppressed. In addition, external humidification of the
feed gases is a burden for the fuel cell. Therefore, understanding of
the water transport and successful management of the water in the
PEM is critical to optimize the performance of PEFCs [6–8].

The water distribution throughout a PEFC is determined by the
interplay among the water uptake by the PEM, the rate of chemical
reactions at the electrodes, the diffusion of water due to its activity
gradients, and the water transport in the membrane accompanied
by the protonic current from the anode to the cathode. The protonic
current produces water flow along the charged nanopore walls in
the membrane by two electrokinetic mechanisms. The first is elec-
troosmosis resulting from the interaction between the macroscopic
electric field and the electric double layer adjacent to the pore wall,
and the effects on the water transport caused by this well-known
mechanism were studied extensively in the past [9–14]. The second
mechanism is diffusioosmosis (also known as capillary osmosis)
comprising the stresses developed by the tangential gradient of the
excess pressure within the double layer [15–21], and this effect on
the water transport in the PEM has not been investigated yet.
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Nomenclature

e elementary charge (C)
E macroscopic electric field (V m−1)
Ē =E e/�kT
h half thickness of a slit (m)
k Boltzmann’s constant (J K−1)
L length of a capillary (m)
n concentration distribution of hydrogen ions (m−3)
n∞ bulk concentration distribution of hydrogen ions

(m−3)
N̄ =|�n∞|/�n∞(0)
p pressure distribution (N m−2)
r radial coordinate in a tube (m)
R radius of a tube (m)
T absolute temperature (K)

u fluid velocity distribution (m s−1)
〈u〉 average fluid velocity (m s−1)
U* characteristic electrokinetic velocity (m s−1)
y lateral coordinate in a slit (m)
z axial coordinate in a capillary (m)

Greek letters
� =ln(�r)
ε dielectric permittivity (C2 J−1 m−1)
� zeta potential of capillary walls (V)
�̄ =�e/kT
� fluid viscosity (kg m−1 s−1)
� Debye screening parameter (m−1)
� = − ̄ + 2 ln(�r)
� surface charge density (C m−2)
 electrostatic potential distribution (V)
 ̄ = e/kT
 ̄0  ̄ at the axis of a capillary
The fluid flow resulting from the interaction between a solid wall
and a tangential solute concentration gradient is termed diffusioos-
mosis. The ionic solute–charged wall interaction in diffusioosmosis
is electrostatic in nature and its range is the Debye screening length
�−1 (defined by Eq. (4)). The fluid motion caused by diffusioosmo-
sis has been analytically examined for ionic solutions near a plane
wall [22,23] and inside a capillary pore [23–27]. Some experimen-
tal results and interesting applications concerning diffusioosmosis
are also available in the literature [28]. Ionic solutions with a con-
centration gradient of order 100 kmol m−4 (=1 M cm−1) along solid
surfaces with a zeta potential of order kT/e (∼25 mV; e is the charge
of a proton, k is the Boltzmann constant, and T is the absolute
temperature) can flow by diffusioosmosis at a velocity of several
micrometers per second.

The pores in the membrane (e.g., Nafion) of a PEFC can be
simulated as straight nanochannels with negatively charged walls,
and the hydrogen ions generated at the anode create a protonic
concentration gradient in the membrane against the cathode; as
a result, diffusioosmosis will contribute to the flow of water. In

Fig. 1. Geometrical sketch for the electrokinetic flow in a straight nanochannel due to an
a capillary tube and (b) a capillary slit.
Sources 180 (2008) 711–718

this work, we will analytically study the effect of diffusioosmosis,
in comparison with that of electroosmosis, on the isothermal
transport of water in a fully hydrated membrane whose shapes of
channels are maintained during the operation of the fuel cell. The
capillary channels are in general of the order nanometer in radius,
and no assumption is made about the thickness of the electric
double layers adjacent to the capillary walls or the magnitude of
the zeta potential of the walls.

2. Electrokinetic flow in a capillary tube

In this section, we consider the combined electroosmotic and
diffusioosmotic flow of a fluid solution of hydrogen ions in a straight
capillary tube of radius R and length L with R � L in the presence of
an external electric field with a constant magnitude E in the axial (z)
direction, as illustrated in Fig. 1a, at the steady state. The discrete
nature of the surface charges, which are negative and uniformly
distributed over the capillary wall, is ignored. The prescribed con-
centration gradient ∇n∞ of the hydrogen ions has a constant mag-
nitude (equal to |∇n∞|) along the −z direction, where n∞(z) is the
linear concentration distribution of the hydrogen ions in the bulk
solution phase in equilibrium with the fluid inside the capillary. The
hydrogen ions can diffuse in the capillary, so there exists no regular
osmotic flow of the solvent. It is assumed that L|∇n∞|/n∞(0)<< 1,
where z = 0 is set at the midpoint through the capillary axially. Thus,
the variation of the electrostatic potential and ionic concentration
in the electric double layer (without co-ions) adjacent to the capil-
lary wall with the axial position can be neglected.

2.1. Electrostatic potential distribution

We first deal with the electrostatic potential distribution in the
ionic solution on a cross-section of the capillary tube. If (r) repre-

sents the electrostatic potential at a point with distance r from the
axis of the tube (where the total electric potential equals -Ez from
the linear superposition of that would exist in the absence of the
imposed electric field and −Ez that arises from this electric field)
relative to that in a neutral bulk solution and n(r, z) denotes the
local concentration of the hydrogen ions, then Poisson’s equation
gives

1
r

d
dr

(
r

d 
dr

)
= − e

ε
n(r,0). (1)

Here ε is the dielectric permittivity of the ionic solution, which is
taken to be a constant. The local concentration of hydrogen ions
can also be related to the electrostatic potential by the Boltzmann
equation:

n = n∞ e− ̄, (2)

where  ̄ =  e/kT is the normalized electrostatic potential distri-
bution.

applied electric field and a prescribed concentration gradient of hydrogen ions: (a)
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Substitution of Eq. (2) into Eq. (1) leads to the
Poisson–Boltzmann equation:

1
r

d
dr

(
r

d ̄
dr

)
= −�2 e− ̄, (3)

where � is the reciprocal of the Debye screening length defined by

� =
[
n∞(0)
εkT

]1/2

e. (4)

The boundary conditions for  ̄ are

r = 0 :
d ̄
dr

= 0, (5a)

r = R :  ̄ = �, (5b)

where the constant � = � e/kT is the dimensionless zeta potential
at the shear plane of the capillary wall adjacent to the fluid solution
having a uniform bulk concentration n∞(0) of the hydrogen ions.

Introducing the variables � = ln(�r) and � = − ̄ + 2 ln(�r), we
can rewrite Eq. (3) as

d
d�

(
d�
d�

)2

= 2
de�

d�
. (6)

The integration of the above equation with respect to � subject
to boundary condition (5a) leads to(

d�
d�

)2

= 2 e� + 4. (7)

After eliminating the unreasonable root, Eq. (7) becomes

d�
d�

= (2 e� + 4)1/2. (8)

By integrating the above equation with respect to� again subject
to boundary condition (5b), the electrostatic potential distribution
can be obtained as

 ̄ = 2 ln(�r) − ln

[
−2 sech2

(
ln

�r

2
√−2

−  ̄0

2

)]
, (9a)

where

 ̄0 =  ̄(0) = 2 ln
�R

2
√−2

+ ln
2 +

√
4 + 2 e−�(�R)2

2 −
√

4 + 2 e−�(�R)2
, (9b)

representing the dimensionless electrostatic potential on the axis

of the capillary tube.

If the constant surface charge density �, instead of the surface
potential �, is known at the capillary wall, the boundary condition
specified by Eq. (5b) should be replaced by the Gauss condition:

r = R :
d ̄
dr

= e�

εkT
. (10)

The solution for  ̄ given by Eqs. (9a) and (9b) still holds for this
condition, with the relation between �̄ and � for an arbitrary value
of �R as

�̄ = ln
2(�R)2

((e�R/εkT) − 2)2 − 4
. (11)

For the hydrogen ionic solution in a capillary tube with a given
radius, the above equation predicts that the magnitude of �
decreases with an increase in �R for the case of constant surface
charge density and the magnitude of � increases with an increase
in �R for the case of constant surface potential.

Fig. 2 shows the result of the dimensionless electrostatic poten-
tial  ̄ calculated from Eq. (9a) and (9b) as functions of the relative
position r/R for various values of the dimensionless parameters �̄
Fig. 2. Plots of the dimensionless potential  ̄(r) in a capillary tube versus the relative
position r/R for various values of �̄. The solid and dashed curves denote the cases
�R = 1 and �R = 10, respectively.

and�R. Negative values of �̄ are chosen since the capillary wall bears
negative charges (e.g., resulting from sulfonic acid (SO3

−) groups
attached to the perfluoro side chains of a Nafion carbon–fluorine
polymer backbone). As expected, the value of  ̄ is always nega-
tive with its value increasing or its magnitude decreasing with a
decrease in r/R when the electric double layer adjacent to the cap-
illary wall is relatively thick (say, with �R < 1) for a constant value of
�̄ at the wall. On the other hand, when the double layer is relatively
thin (say, with �R > 2), the value of  ̄ increases with a decrease in
r/R from the given dimensionless zeta potential �̄ at the wall (with
r/R = 1) and becomes positive after r/R is smaller than certain val-
ues [29], since the fluid around the axis of the capillary tube still
contains hydrogen ions only and the negatively charged wall has
little influence on the fluid in this region. For a specified value of
�R, the value of  ̄ at any position r/R decreases with a decrease
in the value of �̄. It can be seen that the value of  ̄ − �̄ is always
positive and increases with an increase in the magnitude of �̄ for
given values of r/R and �R. The increase of  ̄ − �̄with decreasing r/R
(which is relatively sharp near the capillary wall) becomes gentler

when either �R or the magnitude of �̄ is smaller.

2.2. Fluid velocity distribution

We now consider the steady electrokinetic flow of the hydrogen
ionic solution in the capillary tube. The momentum balances on the
Newtonian fluid in the r and z directions give

∂p

∂r
+ e nd 

dr
= 0, (12a)

�

r

d

dr

(
r

du
dr

)
= ∂p

∂z
− e nE, (12b)

where u(r) is the fluid velocity in the positive z direction (axial
direction of decreasing ionic concentration), p(r, z) is the pressure
distribution, � is the viscosity of the fluid, and E is the imposed
electric field in the z direction. The boundary conditions for u are

r = 0 :
du
dr

= 0, (13a)

r = R : u = 0. (13b)
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The electroosmotic and diffusioosmotic velocities of the hydro-
gen ionic solution in the capillary tube are given by Eq. (15), in
which the dual integration can be performed numerically, setting
N̄ = 0 and Ē = 0, respectively. These velocities in nondimensional
mobility form are plotted versus the normalized coordinate r/R in
Figs. 4 and 5 for several values of the parameters �̄ and �R. It can
be seen that both the dimensionless electroosmotic mobility u/U∗Ē
and diffusioosmotic mobility u/U∗N̄ decrease monotonically with
an increase in r/R from maxima at the axis of the capillary (r/R = 0)
to zero at the capillary wall (r/R = 1) due to the no-slip condition
at the wall. The fluid flows in the direction of the electric field or
decreasing ionic concentration (u is positive). Both the electroos-
motic and diffusioosmotic mobilities are monotonically increasing
functions of �R and the magnitude of �̄. It implies that a modifi-
cation of the membrane material in a fuel cell with a smaller pore
radius or a lower magnitude of zeta potential could result in less
water transport and easier maintenance of the fully hydrated envi-
ronment. Since the aging of the membrane and the deformation of
its nanopores during fuel cell operations often change the values
of �R and �̄, these factors could affect the consistency of the water
transport as well.
Fig. 3. Plots of the dimensionless pressure (p − p0)/n∞kT in a capillary tube versus
the relative position r/R for various values of �̄. The solid and dashed curves denote
the cases �R = 1 and �R = 10, respectively.

After the substitution of Eq. (2) into Eq. (12a), the pressure dis-
tribution can be determined as

p = p0 + n∞(z)kT[e− ̄ − e− ̄0 ], (14)

where p0 is the pressure on the axis of the capillary tube, which
is a constant in the absence of applied pressure gradients and the
electrostatic potential distribution  ̄(r) is given by Eqs. (9a) and
(9b). Note that the pressure distribution in the r and z directions
results from the variation of the electrostatic potential  with r
and the variation of the bulk concentration n∞ with z, respectively.

Fig. 3 illustrates the result of the normalized pressure
(p − p0)/n∞kT obtained from Eqs. (14), (9a) and (9b) as functions of
the relative coordinate r/R for several values of the dimensionless
parameters �̄ and �R. It can be seen that this normalized pressure
is always positive and increases with an increase in r/R irrespective
of the values of �̄ and �R. This behavior is understood by an exam-
ination of Eq. (12a) for the fluid momentum balance in the radial
direction and knowing that the value of the electrostatic poten-
tial  ̄ (which is negative at the capillary wall) decreases with an
increase in r/R. Accordingly, the value of (p − p0)/n∞kT increases

with an increase in the magnitude of �̄ for given values of r/R and
�R, and its increase with r/R (which is relatively sharp near the cap-
illary wall) becomes gentler when either �R or the magnitude of �̄
is smaller. Eq. (14) also predicts that the axial gradient of the excess
pressure in the electric double layer is in the same direction as that
of the ionic concentration gradient.

Substituting the ionic concentration distribution of Eq. (2) and
the pressure profile of Eq. (14) into Eq. (12b), and then perform-
ing the integration with respect to r twice subject to the boundary
conditions in Eqs. (13a) and (13b), we obtain

u

U∗ = (�R)2
∫ r/R

1

R

r

∫ r/R

0

r

R
[(e− ̄0 − e− ̄)N̄ − e− ̄Ē]d

r

R
d
r

R
, (15)

where the electrostatic potential distribution  ̄ is given by Eqs. (9a)
and (9b),

U∗ = n∞(0)kT
��

, (16)

which is a characteristic velocity of the electrokinetic flow of
the fluid, Ē = E e/�kT represents a dimensionless strength of
the applied electric field to produce the electroosmosis, and
Sources 180 (2008) 711–718

N̄ = |∇n∞|/�n∞(0) denotes a dimensionless strength of the ionic
concentration gradient to cause diffusioosmosis (more accu-
rately, chemiosmosis only). For some typical values, E ≈ 250 V m−1,
n∞/|∇n∞| ≈ 10−4 m, and �−1 ≈ 10−8 m, then both Ē and N̄ have the
order 10−4. Eq. (15) indicates that the total fluid velocity is a super-
position of the electroosmotic and diffusioosmotic velocities and,
under the condition of N̄ = Ē, the effect of diffusioosmosis is weaker
than that of electroosmosis by a factor 1 − e ̄− ̄0 .

The average fluid velocity 〈u〉 over a cross-section of the capillary
tube is defined as

〈u〉 = 2

∫ 1

0

u
(
r

R

)
r

R
d
r

R
, (17)

which can be obtained by numerical integration after the substitu-
tion of Eq. (15).

2.3. Results of fluid velocity and discussion
Fig. 4. Plots of the dimensionless electroosmotic mobility u/U∗Ē in a capillary tube
as calculated from Eq. (15) with N̄ = 0 versus the relative position r/R for vari-
ous values of �̄. The solid and dashed curves denote the cases �R = 1 and �R = 2,
respectively.
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Fig. 5. Plots of the dimensionless diffusioosmotic mobility u/U∗Ē in a capillary tube
as calculated from Eq. (15) with Ē = 0 versus the relative position r/R for various val-
ues of �̄. The solid and dashed curves denote the cases �R = 1 and �R = 2, respectively.

In Fig. 6, the dimensionless average electrokinetic velocity
〈u〉/U∗Ē of the ionic solution in the capillary tube calculated using
Eq. (17) is plotted as functions of the parameter �R for some values
of the parameters N̄/Ē and �̄. The contribution from diffusioosmo-
sis to the total fluid flow increases with the ratio N̄/Ē, as expected,
and is quite significant (more than 20%) as this ratio is greater than
1/2. In accordance to the electroosmotic and diffusioosmotic veloc-
ity profiles illustrated in Figs. 4 and 5, the average fluid velocity
increases with an increase in �R and the magnitude of �̄ at any
value of N̄/Ē.

3. Electrokinetic flow in a capillary slit

In this section, we examine the steady electroosmosis and diffu-
sioosmosis of a hydrogen ionic solution in a nanochannel between

Fig. 6. Plots of the dimensionless average electrokinetic velocity 〈u〉/U∗Ē in a cap-
illary tube as calculated from Eq. (17) versus the electrokinetic radius �R for various
values of N̄/Ē. The solid and dashed curves denote the cases �̄ = −1 and �̄ = −2,
respectively.
Sources 180 (2008) 711–718 715

two identical parallel plates with a separation distance 2h in the
presence of a uniform external electric field E in the tangential
z direction, as shown in Fig. 1b. The imposed concentration gra-
dient ∇n∞ of the hydrogen ions is along the −z direction. Owing
to the planar symmetry of the system, we need consider only the
half region 0 ≤ y ≤ h, where y is the distance from the median plane
between the slit walls in the normal direction. The analysis for this
case is similar to that for the case of electrokinetic flow in a capillary
tube presented in the previous section.

3.1. Electric potential distribution

For the ionic solution in the capillary slit, let  (y) be the
electrostatic potential at the position y and n(y, z) be the local con-
centration of the hydrogen ions. Here, Poisson’s equation becomes

d2 

dy2
= − e

ε
n(y,0), (18)

where z = 0 is set at the midpoint through the capillary. Substitution
of Eq. (2) into the above equation results in

d2 ̄

dy2
= −�2 e− ̄, (19)

where the Debye screening parameter � is defined by Eq. (4). For
the case of constant surface potential �, the boundary conditions
for  ̄ are

y = 0 :
d ̄
dy

= 0, (20a)

y = h :  ̄ = �̄. (20b)

The solution to Eq. (19) subject to Eqs. (20a) and (20b) can be
obtained as

 ̄ =  ̄0 + 2 ln cos[C − (�h− �y)B], (21)

where

B = e− ̄0/2/
√

2, (22a)

C = tan−1
√

e ̄0−�̄ − 1, (22b)

and now  ̄0 =  ̄(0) = �̄ − 2 ln cosC, representing the potential at
the median plane between the slit walls.

For the case of constant surface charge density �, the boundary
condition given by Eq. (20b) is replaced by
y = h :
d ̄
dy

= e�

εkT
, (23)

and the solution for  ̄ given by Eq. (21) is still valid, with

�̄ = 1 + e�

ε�kT
coth(�h). (24)

For the ionic solution in a capillary slit with a given separation
distance between its walls, the magnitude of � is a decreasing func-
tion of �h for a constant value of � and the magnitude of � is an
increasing function of �h for a constant value of �.

The numerical values of the dimensionless potential  ̄ cal-
culated from Eq. (21) are plotted in Fig. 7 as functions of the
dimensionless coordinate y/h for several values of the dimension-
less parameters �̄ and �h. Similar to the case of a capillary tube
shown in Fig. 2, the value of  ̄ is always negative with its magni-
tude decreasing with a decrease in y/h when the electric double
layers adjacent to the walls are relatively thick for a constant mag-
nitude of �̄, and it increases with a decrease in y/h from the given �̄
at the walls and becomes positive after y/h is smaller than certain
values when the double layers are relatively thin. The value of  ̄ at
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Fig. 8. Plots of the dimensionless pressure (p − p0)/n∞kT in a capillary slit versus
the relative position y/h for various values of �̄. The solid and dashed curves denote
the cases �h = 1 and �h = 10, respectively.

capillary walls is faster in a slit than in a tube, the variation of the
pressure with the lateral position is stronger in a slit than in a tube,
as Eq. (25a) predicts.

The fluid velocity u can be solved from Eqs. (25b), (26a) and
(26b) by the substitution of the ionic concentration distribution of
Eq. (2) and the pressure profile of Eq. (14), with a form similar to
Eq. (15):

u

U∗ = (�h)2
∫ y/h

1

∫ y/h

0

[(e− ̄0 − e− ̄)N̄ − e− Ē]d
y

h
d
y

h
, (27)

where U* is defined by Eq. (16). After substituting the electrostatic
potential distribution of Eq. (21) and integrating with respect to y
Fig. 7. Plots of the dimensionless potential  ̄(y) in a capillary slit versus the relative
position y/h for various values of �̄. The solid and dashed curves denote the cases
�h = 1 and �h = 10, respectively.

any position decreases with a decrease in the values of �̄ and �h.
Since the adjacent wall area per unit volume of the fluid is smaller
in a slit than in a tube, the decay of the electrostatic potential from
the capillary walls is faster in a slit than in a tube.

3.2. Fluid velocity distribution

The momentum equations for the steady flow of the solution of
hydrogen ions in a capillary slit with an applied electric field and
ionic concentration gradient parallel to the slit walls are

∂p

∂y
+ e nd 

dy
= 0, (25a)

�
d2u

dy2
= ∂p

∂z
− e nE, (25b)
where u(y) is the fluid velocity profile in the tangential direction of
decreasing ionic concentration, p(y, z) is the pressure distribution,
and E is the applied electric field. Here, the boundary conditions for
u are

y = 0 :
du
dy

= 0, (26a)

y = h : u = 0. (26b)

After the substitution of Eq. (2) into Eq. (25a), the pressure distri-
bution can still be determined as the form of Eq. (14), in which p0 is
the pressure on the midplane between the slit walls and the electro-
static potential distribution  ̄(y) is given by Eq. (21). Fig. 8 illustrates
the result of the normalized pressure (p − p0)/n∞kT obtained from
Eqs. (14) and (21) as functions of the relative coordinate y/h for var-
ious values of the dimensionless parameters �̄ and �h. Analogous
to the result in the case of a capillary tube in Fig. 3, (p − p0)/n∞kT is
positive and an increasing function of y/h for any specified values
of �̄ and �h. This normalized pressure increases with an increase in
the magnitude of �̄ for given values of y/h and �h, and its increase
with y/h becomes gentler when either �h or the magnitude of �̄
is smaller. Since the decay of the electrostatic potential from the
Fig. 9. Plots of the dimensionless electroosmotic mobility u/U∗Ē in a capillary slit as
calculated from Eq. (28) with N̄ = 0 versus the relative position y/h for various values
of �̄. The solid and dashed curves denote the cases �h = 1 and �h = 2, respectively.
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chosen to model the interstitial nanochannels in the membrane. It
is assumed that the fluid is only slightly nonuniform in the concen-
tration of hydrogen ions along the axial direction of the capillary,
but no assumption is made about the thickness of the electric dou-
ble layers adjacent to the capillary walls. The capillary walls may
have either a constant surface potential or a constant surface charge
density of an arbitrary quantity. By solving the Poisson–Boltzmann
equation and the modified Navier–Stokes equation applicable to
the system, the electrostatic potential distribution and the pressure
profile under the influence of a constant prescribed concentration
gradient of hydrogen ions are determined analytically. The results
for the local and averaged electrokinetic velocities of the fluid in the
capillary are presented in detail, and the effect of diffusioosmosis
on the water transport in the membrane of a PEFC is found to be
significant, especially when the macroscopic electric field is low.

Although we discuss the diffusioosmotic effect in the previ-
ous sections mainly on PEFCs, with protons as the moving ions,
the same analysis can also be applied for other fuel cells with a
similar mechanism. For examples, in solid-state alkaline fuel cells,
hydroxide ions migrate in anion-exchange membranes, whereas in
molten carbonate fuel cells, carbonate ions move in chemically inert
Fig. 10. Plots of the dimensionless diffusioosmotic mobility u/U∗N̄ in a capillary
slit as calculated from Eq. (28) with Ē = 0 versus the relative position y/h for var-
ious values of �̄. The solid and dashed curves denote the cases �h = 1 and �h = 2,
respectively.

twice, the above equation becomes

u

U∗ = −[(�h)2 − (�y)2]B2N̄

+ 2
{

ln
cos[C − (�h− �y)B]

cosC
− (�h− �y)B tan(C − �hB)

}

× (Ē + N̄), (28)

where the dimensionless parameters B and C are defined by Eqs.
(22a) and (22b).

The average fluid velocity 〈u〉 over a cross-section of the slit can
be expressed as

〈u〉 =
∫ 1

0

u
(
y

h

)
d
y

h
, (29)

which can be obtained by numerical integration after the substitu-
tion of Eq. (28).
3.3. Results of fluid velocity and discussion

The electroosmotic velocity of the hydrogen ionic solution in the
capillary slit is given by Eq. (28) setting N̄ = 0, whereas the diffu-
sioosmotic velocity can be obtained by the same equation taking
Ē = 0. In Figs. 9 and 10, these electrokinetic velocities in dimension-
less mobility form are plotted versus the normalized coordinate
y/h for several values of the parameters �̄ and �h. Analogous to the
case of a capillary tube discussed in the previous section, both the
dimensionless electroosmotic mobility u/U∗Ē and diffusioosmotic
mobility u/U∗N̄ decrease monotonically with an increase in y/h and
vanish at the no-slip capillary walls. The fluid flows toward the end
with lower electric potential or ionic concentration. Both of these
electrokinetic velocities are monotonically increasing functions of
�h and the magnitude of �̄.

The dimensionless average electrokinetic velocity 〈u〉/U∗Ē of the
ionic solution in the capillary slit calculated using Eq. (29) is plot-
ted in Fig. 11 as functions of �h for some values of the parameters �̄
and N̄/Ē. Again, the contribution from diffusioosmosis to the total
fluid flow increases with the ratio N̄/Ē and is quite significant as
this ratio is greater than 1/2. In accordance to the electroosmotic
Sources 180 (2008) 711–718 717

and diffusioosmotic velocity profiles illustrated in Figs. 9 and 10,
the average fluid velocity increases with an increase in �h and the
magnitude of �̄ at any value of N̄/Ē. Since the viscous retardation
exerted on the fluid flow by the capillary walls decreases with a
decrease in the adjacent wall area per unit volume of the fluid, the
normalized magnitudes of the electroosmotic velocity, diffusioos-
motic velocity, and total electrokinetic velocity in a slit is greater
than their corresponding magnitudes in a tube.

4. Concluding remarks

An analytical study of the effect of diffusioosmosis, in compar-
ison with that of electroosmosis, on the transport of water in the
fully hydrated membrane of a PEFC at the steady state is presented
in this work. The reactant gases are fed at the same pressure so
that no external pressure gradient exists in the membrane and the
excess water produced by the chemical reaction at the cathode is
drained. A capillary tube or slit with negatively charged walls is
Fig. 11. Plots of the dimensionless average electrokinetic velocity 〈u〉/U∗Ē in a cap-
illary slit as calculated from Eq. (29) versus the electrokinetic radius �h for various
values of N̄/Ē. The solid and dashed curves denote the cases �̄ = −1 and �̄ = −2,
respectively.
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ceramic matrices. The major difference is that the positive hydro-
gen ions in the membranes are replaced by some negative ions, and
the direction of the electrokinetic flow of the fluid will be reversed.
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