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Abstract

The steady diffusioosmotic flow of an electrolyte solution in the fibrous medium constructed by an ordered array of

parallel charged circular cylinders is analytically studied. The prescribed electrolyte concentration gradient is constant

but can be oriented arbitrarily with respect to the axes of the cylinders. The electric double layer surrounding each

cylinder may have an arbitrary thickness relative to the radius of the cylinder. A unit cell model, which allows for the

overlap of the double layers of adjacent cylinders, is employed to account for the effect of fibers on each other. The

electrostatic potential distribution in the fluid phase of a cell is obtained by solving the linearized Poisson�/Boltzmann

equation, which applies to the case of low surface potential or low surface charge density of the cylinders. An analytical

formula for the diffusioosmotic/electroosmotic velocity of the electrolyte solution as a function of the porosity of the

array of cylinders correct to the second order of their surface charge density or zeta potential is derived as the solution

of a modified Stokes equation. In the absence of a macroscopic electric field induced by the electrolyte gradient (or

externally imposed), the fluid flows (due to the chemiosmotic contribution) toward lower electrolyte concentration.

With an induced electric field, competition between electroosmosis and chemiosmosis can result in more than one

reversal in direction of the fluid flow over a small range of the fiber surface potential. In the limit of maximum porosity,

these results can be interpreted as the diffusiophoretic and electrophoretic velocities of an isolated circular cylinder

caused by the applied electrolyte gradient or electric field.
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1. Introduction

The flow of electrolyte solutions in a small pore

with a charged wall is of much fundamental and

practical interest in various areas of science and

engineering. In general, driving forces for this

electrokinetic flow include dynamic pressure dif-

ferences between the two ends of the pore (a

streaming potential is developed as a result of zero

net electric current) and tangential electric fields

that interact with the electric double layer adjacent

to the pore wall (electroosmosis). Problems of fluid

flow in porous media caused by these well-known

driving forces were studied extensively in the past

century [1�/6].

Another driving force for the electrokinetic flow

in a micropore, which has commanded less atten-
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tion, involves tangential concentration gradients
of an ionic solute that interacts with the charged

pore wall. This solute-wall interaction is electro-

static in nature and its range is the Debye screen-

ing length k�1. The fluid motion associated with

this mechanism, known as ‘‘diffusioosmosis’’

(which is the complementary transport phenom-

enon to the diffusiophoresis of colloidal particles

in prescribed solute concentration gradients), has
been discussed mainly for solutions near a plane

wall [4,7�/9]. Electrolyte solutions with a concen-

tration gradient of order 1 M cm�1 along rigid

surfaces with a zeta potential of order kT /e (�/25

mV; e is the charge of a proton, k is the

Boltzmann constant, and T is the absolute tem-

perature) can flow by diffusioosmosis at rates of

several microns per second.
The analytical expression for the diffusioosmo-

tic velocity of electrolyte solutions parallel to a

charged plane wall [7] can be applied to the

corresponding flow in capillary tubes and slits

when the thickness of the double layer adjacent to

the capillary wall is small compared with the

capillary radius. However, in some practical ap-

plications involving dilute electrolyte solutions in
very fine pores, this condition is no longer satisfied

and the dependence of the fluid flow on the

electrokinetic radius kR , where R is the radius

of a capillary tube or the half thickness of a

capillary slit, must be taken into account. Re-

cently, the diffusioosmosis of electrolyte solutions

in a capillary tube or slit with an arbitrary value of

kR was analyzed [10] for the case of small surface
potential or surface charge density at the capillary

wall. Closed-form formulas for the fluid velocity

profile and average fluid velocity on the cross

section of the capillary tube or slit were derived.

The capillary model of porous media is not

realistic for either granular or fibrous systems, for

it does not allow for the convergence and diver-

gence of flow channels. For electrokinetic flow
within beds of particles or synthetic microporous

membranes, it is usually necessary to account for

the effects of pore geometry, tortuosity, etc. To

avoid the difficulty of the complex geometry

appearing in beds of particles, a unit cell model

[11�/13] was often employed to predict these effects

on the relative motions between a granular bed

and the bulk fluid. This model involves the
concept that a bed of identical particles can be

divided into a number of identical cells, one

particle occupying each cell at its center. The

boundary value problem for multiple particles is

thus reduced to the consideration of the behavior

of a single particle and its bounding envelope. In

the past three decades, the unit cell model was used

by many researchers to predict various electro-
kinetic properties such as the mean electrophoretic

mobility [14�/22], effective electric conductivity

[17,20�/23], mean sedimentation rate [24�/27], and

sedimentation potential [24�/28] of a suspension of

charged spherical particles as well as the transverse

electroosmotic mobility of electrolyte solutions in

a fibrous porous medium [29�/32]. Recently, using

the cell model, the present authors derived analy-
tical expressions for the mean diffusioosmotic/

diffusiophoretic velocity in a bed of dielectric

spheres [33] and within an array of parallel

charged circular cylinders caused by a transversely

imposed electrolyte concentration gradient [34].

For a general case of diffusioosmosis/electro-

osmosis of a fluid solution in a fibrous system

constructed by an array of parallel cylinders, the
applied electrolyte concentration gradient can be

taken as a combination of its transversal and

longitudinal components with respect to the or-

ientation of the cylinders. Hence, the problem can

be divided into two, if it is linearized, and they

might be separately solved. The overall diffusioos-

motic/electroosmotic velocity of the bulk fluid can

be obtained by the vectorial addition of the two-
component results. Since the problem of the

transverse diffusioosmotic flow in a homogeneous

array of parallel charged circular cylinders has

been solved in a previous paper [34], in this work

we only need to treat the diffusioosmosis in the

array generated by a longitudinal electrolyte

gradient. The unit cell model is still used in the

analysis. The electric potential at the cylinder
surfaces (or the surface charge density) is assumed

to be uniform and low, but no assumption is made

as to the thickness of the electric double layers

relative to the radius of the cylinders. A closed-

form expression for the diffusioosmotic/electroos-

motic velocity profile in a cell is obtained in Eqs.

(16), (17a) and (17b). The information provided by
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this work may prove relevant in understanding the
chemotactic flow of fluids and transport of parti-

cles in physiological media.

2. Analysis

We consider the diffusioosmotic flow of a fluid

solution of a symmetrically charged binary elec-

trolyte of valence Z (where Z is a positive integer)

through a uniform array of parallel, identical,

circular cylinders at the steady state. The discrete

nature of the surface charges, which are uniformly

distributed on each cylinder, is neglected. The

applied electrolyte concentration gradient 9n� is
a constant along the axial (z ) direction of the

cylinders, where n�(z ) is the linear concentration

distribution of the electrolyte in the bulk solution

phase in equilibrium with the fluid inside the

array. The electrolyte ions can diffuse freely in

the fibrous porous medium, so there exists no

regular osmotic flow of the solvent. As shown in

Fig. 1, we employ a unit cell model in which each
dielectric cylinder of radius a is surrounded by a

coaxial circular cylindrical shell of the fluid solu-

tion having an outer radius of b such that the

fluid/cell volume ratio is equal to the porosity 1�/

8 of the fiber matrix; viz. 8�/(a /b)2. The cell as a

whole is electrically neutral. It is assumed that a �/

L and L j9n�j/n�(0)�/1, where L is the length of

the cylinder and z�/0 is set at the midpoint along
the cylinder. Thus, the variation of the electro-

static potential (excluding the macroscopic electric

field induced by the electrolyte gradient) and ionic

concentrations in the electric double layer adjacent
to the cylinder surface with the axial position can

be ignored.

2.1. Electrostatic potential distribution

We first deal with the electric potential distribu-

tion in the fluid phase on a plane normal to the

axis of the cylinder in a unit cell. If c (r ) represents

the electrostatic potential at a point distance r

from the axis of the cylinder relative to that in the

bulk solution and n�(r , z ) and n�(r , z ) denote

the local concentrations of the cations and anions,

respectively, then Poisson’s equation gives:

1

r

d

dr

�
r

dc

dr

�

��
4pZe

o
[n�(r; 0)�n�(r; 0)]: (1)

In this equation, o�/4po0or, where or is the relative

permittivity of the electrolyte solution and o0 is the

permittivity of a vacuum. The local ionic concen-

trations can also be related to the electrostatic

potential by the Boltzmann equation,

n9�n� exp

�
�

Zec

kT

�
: (2)

Substitution of Eq. (2) into Eq. (1) leads to the

well-known Poisson�/Boltzmann equation. For

small values of c , the Poisson�/Boltzmann equa-

tion can be linearized (known as the Debye�/

Huckel approximation), and Eq. (1) becomes:

1

r

d

dr

�
r

dc

dr

�
�k2c; (3)

where k is the reciprocal of the Debye screening

length defined by:

k�
�

8pZ2e2n�(0)

okT

�1=2

: (4)

The boundary conditions for c are:

r�a: c�z; (5a)

r�b:
dc

dr
�0; (5b)Fig. 1. Geometrical sketch of the unit cell model for a uniform

array of identical parallel circular cylinders.
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where z is the zeta potential of the cylinder surface
(at the shear plane).

The solution to Eqs. (3), (5a) and (5b) is:

c�z
I1(kb)K0(kr) � K1(kb)I0(kr)

I1(kb)K0(ka) � K1(kb)I0(ka)
; (6)

where In and Kn are the modified Bessel functions
of the first and second kinds, respectively, of order

n . Due to the linearization of the Poisson�/

Boltzmann equation, the normalized potential

distribution c /z is independent of the dimension-

less parameter Zez /kT .

If the surface charged density s , instead of the

surface potential z , is known on the cylinder, the

boundary condition specified by Eq. (5a) should
be replaced by the Gauss condition,

r�a:
dc

dr
��

4ps

o
: (7)

The solution for c given by Eq. (6) still holds for

this condition, with the relation between z and s

for arbitrary values of ka and kb as:

z�
4ps

ok

I1(kb)K0(ka) � K1(kb)I0(ka)

I1(kb)K1(ka) � K1(kb)I1(ka)
: (8)

In the limit of the largest possible porosity of the
fiber matrix (or 8�/(a /b)2�/0), Eqs. (6) and (8)

reduce to:

c�z
K0(kr)

K0(ka)
(9)

and

z�
4ps

ok

K0(ka)

K1(ka)
: (10)

For a charged cylinder with a given radius, Eq.

(10) predicts that z decreases with an increase in

ka for the case of constant surface charge density
and s increases with an increase in ka for the case

of constant surface potential.

2.2. Fluid velocity distribution

We now consider the steady flow of an electro-

lyte solution through a unit cell under the influ-

ence of a constant concentration gradient 9n� of

the electrolyte prescribed axially. The momentum
balances on the Newtonian fluid in the r and z

directions give:

@p

@r
�eZ(n��n�)

dc

dr
�0; (11a)

h

r

d

dr

�
r

du

dr

�
�

@p

@z
�eZ(n��n�)E; (11b)

where u(r ) is the fluid velocity in the axial

direction of increasing electrolyte concentration

(satisfying the equation of continuity for an

incompressible fluid), p (r , z ) is the pressure, and

h is the viscosity of the fluid. The macroscopic
electric field E in Eq. (11b) arises spontaneously

due to the imposed concentration gradient of the

electrolyte and the difference in mobilities of the

cation and anion of the electrolyte. Under the

condition that there is no electric current generated

by the cocurrent diffusion of the electrolyte ions in

an electrically neutral bulk solution, this induced

electric field can be expressed as [4,5,35]:

E�
kT

Ze
b
½9n�½

n�(0)
; (12)

which is a constant, where:

b�
D� � D�

D� � D�

; (13)

and D� and D� are the diffusion coefficients of

the cation and anion, respectively. Equation (12) is

correct for the electric field induced by the bulk

concentration gradient of the electrolyte solution

in the cell for the case with the Debye�/Huckel

approximation. When the effect of radial distribu-
tions of ions is considered for the local induced

electric field, the variable b in Eq. (12) should be

replaced by b�/(b2�/1)Zec /kT�/O(c2).

The boundary conditions for u are:

r�a: u�0; (14a)

r�b:
du

dr
�0: (14b)

After the substitution of Eq. (2) for n9 into Eq.

(11a) and the application of the Debye�/Huckel

approximation, the pressure distribution can be

determined, with the result:

Y.K. Wei, H.J. Keh / Colloids and Surfaces A: Physicochem. Eng. Aspects 222 (2003) 301�/310304



p�p0�
n�

kT
(Ze)2f[c(r)]2� [c(b)]2g�O(z3); (15)

where p0 is the pressure on the outer (virtual)

boundary of the unit cell, which is a constant in the

absence of applied pressure gradient. Substituting

the ionic concentration distributions of Eq. (2), the

pressure profile of Eq. (15), and the electric field of
Eq. (12) into Eq. (11b) and solving for the fluid

velocity distribution subject to the boundary

conditions in Eqs. (14a) and (14b), we obtain:

u��
2Ze

hk2
½9n�½

�
bzU1

�
ka;

a

b
;
r

a

�

�
Ze

8kT
z2U2

�
ka;

a

b
;
r

a

�
�O(z3)

�
; (16)

where U1 and U2 are functions given by:

U1�
I1(kb)[K0(ka) � K0(kr)] � K1(kb)[I0(ka) � I0(kr)]

I1(kb)K0(ka) � K1(kb)I0(ka)

�1�
c(r)

z
; (17a)

U2�4k2 g
a

r

1

r g
r

b

r

��
c(r)

z

�2

�
�
c(b)

z

�2�
drdr: (17b)

Note that the diffusioosmotic velocity given by Eq.

(16) at the position r�/b can also be viewed as the

diffusiophoretic velocity (in the opposite direction)

of the charged cylinder caused by the imposed

electrolyte gradient.

The average (superficial) fluid velocity �u� over

a cross section of the unit cell can be expressed as:

�u���
2Ze

hk2
½9n�½[bz�U1��

Ze

8kT
z2�U2�

�O(z3)]: (18)

Here, the definition of the angle brackets is:

�u��
2

b2 g
b

a

u(r)r dr: (19)

It can be found that:

�U1��
I1(kb)[K0(ka) � 8K2(ka)] � K1(kb)[I0(ka) � 8 I2(ka)]

I1(kb)K0(ka) � K1(kb)I0(ka)
;

(20)

where b�/a8�1/2, but the analytical form of �U2�

is quite complicated and it will be determined by
numerical integration. Note that, when the sym-

metric electrolyte is replaced by a general electro-

lyte, there should be one more term of the order z2

in Eqs. (16) and (18) which is proportional to the

parameter b [10]. Also, when the effect of radial

distributions of ions is taken into account for the

local induced electric field in Eq. (12), there should

be another term of the order z2 in these equations
which is proportional to b2�/1.

In the limit of 8�/0, Eqs. (17a) and (17b)

becomes;

U1(8�0)�1�
K0(kr)

K0(ka)
; (21a)

U2(8�0)�
1

[K0(ka)]2
[H(ka)�H(kr)]; (21b)

where the function H is defined as:

H(x)�x2fK0(x)[K0(x)�K2(x)]�2[K1(x)]2g:

(22)

When r /a 0/�, Eqs. (21a) and (21b) reduces to

U1(8�/0)�/1 for all values of ka and U2(8�/

0)�/H (ka )/[K0(ka )]2. When ka�/0, Eqs. (21a)

and (21b) gives U1(8�/0)�/0 for all finite values

of r /a , U2(8�/0)�/0 for all values of r /a ,

�U1�(8�/0)�/1, and �U2�(8�/0)�/0.

In the limiting situation that ka�/0, Eqs. (17a)

and (17b) gives U1�/U2�/0 at any position in the

cell with a finite value of 8 , which also leads to

�U1��/�U2��/0, as expected. If we consider the
other limiting situation that ka 0/�, the fluid

velocity at a large distance from the surface of the

cylinder (i.e. with k (r�/a)0/�) can be evaluated

from Eq. (16) noting that c(r )0/0 far from the

cylinder. For this particular case, U1�/U2�/1 at

an arbitrary position r /a "/1 (so �U1��/�U2��/

1�/8 due to the definition of Eq. (19)) and Eq.

(16) is consistent with the result obtained by Prieve
et al. [5] for the diffusioosmotic flow of a

symmetric electrolyte solution near an infinite

flat plane.

It is understood that the diffusioosmosis of an

electrolyte solution near a rigid surface results

from a linear combination of two effects: (i)
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‘‘chemiosmosis’’ due to the non-uniform adsorp-
tion of counterions in the electric double layer over

the charged surface, which is analogous to the

diffusioosmosis of a nonelectrolyte solution [4,8,9];

(ii) ‘‘electroosmosis’’ due to the macroscopic

electric field generated by the concentration gra-

dient of the electrolyte and the difference in

mobilities of the cation and anion of the electro-

lyte, given by Eq. (12). The terms in Eqs. (16) and
(18) proportional to b (involving the functions U1

and �U1�) represent the contribution from elec-

troosmosis (same as that caused by an external

electric field), while the remainder terms (contain-

ing the functions U2 and �U2�) are the chemios-

motic component. Note that the direction of the

flow caused by electroosmosis is determined by the

sign of the product of the parameter b and the
surface potential z , while the fluid flow generated

by chemiosmosis for small values of z is always in

the direction of decreasing electrolyte concentra-

tion.

3. Results and discussion

The functions U1 and U2 given by Eqs. (17a)
and (17b) represent dimensionless electroosmotic

velocity of a symmetric electrolyte and chemios-

motic velocity of a general electrolyte, respectively,

correct to O(z2). Their numerical results in the

limit of 8�/0 (maximum porosity of the fiber

matrix), calculated by using Eqs. (21a) and (21b),

are plotted versus the dimensionless coordinate r /

a in Fig. 2 for various values of ka . As expected,
for a specified value of ka , both U1 and U2 are

monotonically increasing functions of r /a from

zero at the surface of the cylinder (with r�/a ) to

maxima far away from the cylinder. For a fixed

value of r /a , both U1 and U2 increase mono-

tonically with an increase in ka . Note that U1(8�/

0)�/1 as r /a 0/� means that the electroosmotic

velocity of the bulk fluid along the cylinder is given
by the Helmholtz formula (equal to �/ozE /4ph )

regardless of the value of ka .

In Fig. 3, the values of U1 and U2 at the outer

boundary of the cell (r�/b ) calculated from Eqs.

(17a) and (17b) are plotted versus ka with 8 as a

parameter. It can be seen that both functions U1

and U2 are always positive and increase mono-

tonically with the increase of ka (or with the

decrease of the double-layer overlap) for a given

value of 8 . For a fixed value of ka , both U1 and

U2 are monotonically decreasing functions of 8 .

The effect of the porosity (1�/8 ) of the fiber

matrix on U1 and U2 can be significant even when

the porosity is fairly high.
The numerical results of the averaged �U1� and

�U2� as functions of 8 with ka as a parameter are

plotted in Fig. 4. The calculations are presented up

to 8�/0.9, which corresponds to the maximum

attainable volume fraction (or minimum porosity)

for a swarm of identical parallel cylinders [trian-

gularly ordered, [36]]. Again, �U1� and �U2�

Fig. 2. Plots of the functions U1(8�/0) and U2(8�/0) as

calculated from Eqs. (21a) and (21b) vs. the normalized

coordinate r /a for various values of ka .
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increase monotonically with an increase in ka and

with a decrease in 8 . As expected, �U1� and �U2�
(even �U1�/(1�/8 ) and �U2�/(1�/8 )) are smaller

than U1(r�/b) and U2(r�/b), respectively, for

arbitrary finite values of ka and 8 .

Fig. 5 illustrates the dependence of the average

diffusioosmotic velocity within an array of iden-
tical charged cylinders defined by Eqs. (18) and

(19) on their dimensionless surface (zeta) potential

at several values of ka and 8 . The magnitude of

the fluid velocity is normalized by a characteristic

value given by:

U���
o½9n�½

4phn�(0)

�
kT

Ze

�2

: (23)

The negative nature of this characteristic velocity

means that its direction is opposite to that of the

concentration gradient of the electrolyte. The case

that the anion and cation diffusivities are equal

(b�/0) is drawn in Fig. 5(a). Only the results at

positive surface potentials are shown because the

diffusioosmotic velocity, which is due to the

chemiosmotic effect entirely, is an even function

of the surface potential z as indicated by Eq. (18).

Since our analysis is based on the assumption of

small surface potential, the magnitudes of Zez /kT

considered are less than 2. As expected, in this

range of Zez /kT , the magnitude of the reduced

diffusioosmotic velocity �u�/U* (or u /U* at any

location) increases monotonically with an increase

Fig. 3. Plots of the functions U1(r�/b ) and U2(r�/b ) vs. ka

with 8 as a parameter.

Fig. 4. Plots of the functions �U1� and �U2� vs. 8 with ka as a

parameter.
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in Zez /kT for given values of ka and 8 . There is

no chemiosmotic motion for the special cases of

Zez /kT�/0 or ka�/0.

Fig. 5(b) is plotted for the reduced average

diffusioosmotic velocity �u�/U* of the fluid in the

fiber matrix for a case that the cation and anion of

the electrolyte have different diffusion coefficients

(b�/�/0.2 is chosen). In this case, both the

chemiosmotic and the electroosmotic effects con-

tribute to the fluid flow and the net diffusioosmo-

tic velocity is neither an even nor an odd function

of the surface potential. It can be seen that �u�/
U*(or u /U* at any location) is not necessarily a

monotonic function of Zez /kT given constant

values of ka and 8 . Some of the curves in Fig.

5(b) show that the fluid flow might reverse its

direction more than once as the surface potential

of the cylinders varies from negative to positive

values. The reversals occurring at the values of

Zez /kT other than zero result from the competi-
tion between the contributions from chemiosmosis

and electroosmosis. In the limit ka�/0, the diffu-

sioosmotic velocity vanishes for any finite value of

8 , but reduces to the result �u�/U*�/bZez /kT

(due to electroosmosis only) when the porosity of

the fiber matrix approaches unity (with 8�/0).

Note that the situations associated with Fig. 5(a)

and (b) (taking Z�/1) are close to the diffusioos-
mosis of the aqueous solutions of KCl and NaCl,

respectively.

4. Concluding remarks

In this paper, the steady-state diffusioosmosis of

a solution of a symmetric electrolyte with a uni-

form imposed concentration gradient in an or-
dered array of identical parallel circular cylinders

with an arbitrary value of ka is analyzed using the

unit cell model. The cylinders may have either a

constant surface potential or a constant surface

charge density. Solving the linearized Poisson�/

Boltzmann equation and modified Navier�/Stokes

equation applicable to the system of a cylinder in a

unit cell, we have analytically obtained the electro-
static potential distribution and the fluid velocity

profile. The fluid flow caused by the existence of

the streaming potential induced by the diffusioos-

mosis is not included. Closed-form formulas and

numerical results for the diffusioosmotic and

electroosmotic velocities of the electrolyte solution

are presented as functions of ka and the porosity

of the array of cylinders correct to the order s2 or
z2.

Equation (16) with U1 and U2 given by Eqs.

(21a) and (21b) for the limiting case of 8�/0 and

r /a 0/� can be used to express the diffusiophore-

tic/electrophoretic velocity (in the opposite direc-

tion) of an isolated charged circular cylinder along

Fig. 5. Plots of the reduced average diffusioosmotic velocity of

an electrolyte solution in an ordered array of identical circular

cylinders vs. the dimensionless zeta potential of the cylinders at

fixed values of ka ; (a) b�/0; (b) b�/�/0.2. The solid and

dashed curves represent the cases of 8�/0 and 0.2, respectively.
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its axis. It is found that this electrophoretic

velocity is given by the Smoluchowski formula

(equal to ozE /4ph ) no matter what the value of ka

is. As to the diffusiophoretic motion of a circular

cylinder generated by a transverse electrolyte

concentration gradient, the velocity of the cylinder

has also been obtained [34]. For the diffusiophor-

esis of a dielectric cylinder oriented arbitrarily with

respect to the imposed electrolyte gradient, the

cylinder velocity is the vectorial sum of its

transversal and longitudinal contributions. For

an ensemble of circular cylinders with random

orientation, the average diffusiophoretic/electro-

phoretic velocity (aligned with the direction of

9n� or the macroscopic electric field) can be

obtained by Eq. (16) with U1 and U2 equal to

one third of their values given by Eqs. (21a) and

(21b) with r /a 0/� plus two thirds of their

transverse counterparts.

Equations (12) and (16)�/(22) are obtained on

the basis of the Debye�/Huckel approximation for

the equilibrium potential distribution around the

dielectric cylinder with a low zeta potential in a

unit cell. The reduced formula for U1 of a single

dielectric sphere with low zeta potential in an

unbounded electrolyte solution was compared

with the general solution and shown to give a

good approximation for the case of reasonably

high zeta potentials (with errors less than 4% for

jz je /kT 5/2) [37]. Also, comparing with the nu-

merical solution for the diffusiophoretic mobility

of an isolated charged sphere in KCl and NaCl

aqueous solutions obtained by Prieve and Roman

[38] valid for an arbitrary value of zeta potential,

we find that the corresponding result for a dilute

suspension of charged spheres with low zeta

potential is also quite accurate for the entire range

of jz je /kT 5/2 [39]. Therefore, our results in Eqs.

(16), (17a), (17b), (18)�/(20), (21a), (21b) and (22)

might be used tentatively for the situation of

reasonably high electric potentials. In order to

see whether our approximate solution can be

extended to the higher values of electric potential,

a numerical solution of the electrokinetic equa-

tions with no assumption on the magnitude of

electric potential would be needed to compare it

with the approximate solution.
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