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Abstract

An analytical study is presented for the thermophoresis and photophoresis of a cylindrical aerosol particle in the
direction normal to its axis. The Knudsen number is assumed to be small so that the fluid flow is described by a
continuum model with a temperature jump, a thermal slip, and a frictional slip at the particle surface. In the limit of
small Peclet and Reynolds numbers, the energy and momentum equations governing these problems are solved at
steady state. Expressions for the migration velocity of the particle are obtained in simple closed forms for the cases
of thermophoresis in a uniformly prescribed bulk-gas temperature gradient and of photophoresis subjected to an
intense light beam. The results indicate that the thermophoretic mobility of a cylindrical particle is smaller than that
of a sphere, keeping the properties of the gas and particle unchanged. On the other hand, the photophoretic mobility
of a cylindrical particle can be greater or smaller than that of a sphere, depending on the ratio of particle-to-gas
thermal conductivities and the relative magnitude of the temperature jump coefficient at the gas/particle interface.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of slow relative motions between a
rarefied gas and a small particle has received
considerable attention in the general investiga-
tions of aerosol mechanics. However, the gas–
particle systems were traditionally assumed to be
isothermal. It is well known that a temperature
gradient along the surface of a solid particle can
cause a thin interfacial layer of gas to move in the
direction of the gradient. This phenomenon,

termed ‘thermal slip,’ was first examined by
Maxwell [1] using gas kinetic theory. The thermal
slip over a particle in the continuum regime (the
Knudsen number l/a�1, where l is the mean free
path of the gas molecules and a is the radius of
the particle) provides mechanisms for the ther-
mophoresis and photophoresis of aerosol parti-
cles. In thermophoresis, the temperature
inhomogeneity at the surface of the particle is due
to a prescribed gradient in the carrier gas, while in
photophoresis no temperature gradient in the
bulk gas is maintained and the temperature gradi-
ent along the particle surface originates from a
nonuniform absorption of the radiant energy by
the particle.
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The thermophoretic and photophoretic effects
can be explained in part by appealing to the
kinetic theory of gases [2]. The higher energy
molecules in the hot regions of the gas impinge on
the particle with greater momenta than molecules
coming from the cold regions, thereby leading to
the migration of the particle in the direction op-
posite to the surface temperature gradient. Thus,
for thermophoresis, the particle always moves in
the direction of decreasing bulk-gas temperature.
However, the photophoretic force on an aerosol
particle can be directed either toward (negative
photophoresis) or away from (positive pho-
tophoresis) the light source, depending upon the
optical characteristics of the particle. If the parti-
cle is opaque and the incident light energy is
adsorbed and dissipated directly at the front sur-
face of the particle, positive photophoresis occurs.
Conversely, if the light beam is partially transmit-
ted and focused at some other internal area (e.g.
the rear surface) of the particle, motion in other
directions may result.

Deposition by thermophoresis is of consider-
able practical importance in many industrial ap-
plications when hot gases containing small
suspended particles flow over cool surfaces. For
example, thermophoresis can be effective in re-
moving or collecting small particles from laminar
gas streams in air cleaning and aerosol sampling
devices [3]. The phenomenon has also been cited
as an origin for the deposition of particulate
matter on surfaces of heat exchangers causing
scale formation with the attendant reduction of
the heat-transfer coefficient [4]. Convincing evi-
dence has been provided that, in the modified
chemical vapor deposition process for the manu-
facture of high quality optical fibers, ther-
mophoresis is the primary mechanism responsible
for the deposition of aerosol particles (soot) onto
the inner walls of the containing tube [5]. On the
other hand, deposition of contaminant particles
by thermophoresis on wafers in clean rooms dur-
ing manufacturing steps can be a major cause of
loss of product yields in the microelectronics in-
dustry [6]. In the area of nuclear safety, knowl-
edge of thermophoresis is required to calculate the
deposition rates of radioactive aerosol particles
released in reactor accident situations where large
temperature gradients exist [7].

Since photophoresis is observed for many par-
ticulate materials in the diameter range between
10−8 and 10−3 m, and at pressures from above 1
atm down to below 1 torr, under illumination
intensities comparable with sunlight [8], the re-
sults of photophoresis investigations are of inter-
est to a wide variety of fields including cloud
physics, aerosol science, and environmental engi-
neering. For example, measurements of the pho-
tophoretic force or the reversal point from
positive to negative photophoresis with the elabo-
ration of photophoretic spectroscopy can be used
to determine the physical properties, such as the
complex refractive index, and the chemical com-
position of aerosol particles [9,10]. The pho-
tophoretic phenomena of aerosol particles
subjected to coherent light beams have been ap-
plied to the development of laser atmospheric
monitoring methods [11]. It was found that, due
to the effect of both positive and negative pho-
tophoresis, stratospheric aerosol particles may be
caused to rise against the gravity while others are
induced to fall considerably more rapidly than
they would under gravity alone [12,13]. Consider-
ing that radiative transfer can account for around
95% of the total heat flux in pulverized-coal fur-
naces, the driving force for photophoresis of small
particles in combustion environments can be sig-
nificantly greater than that for thermophoresis
[14].

Standard theoretical work on thermophoresis
and photophoresis is limited to spherical particles.
Based on the assumptions of a small Knudsen
number, small Peclet number, and small Reynolds
number, as well as the effects of temperature
jump, thermal slip, and frictional slip at the gas/
particle interface, Brock [15] determined the ther-
mophoretic velocity of an aerosol sphere in a
constant temperature gradient, while Reed [16]
and Mackowski [14] obtained the photophoretic
velocity of a spherical particle illuminated by an
intense light beam. In the free molecule regime
(l/a�1), the velocity distribution of the incoming
gas molecules may be taken to be uninfluenced by
the small particle and given by the Maxwell–
Boltzmann distributions. Under this assumption,
well-established models are available for the ther-
mophoretic velocity [17–19] and photophoretic
velocity [20,21] of a spherical particle.
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Of course, real aerosol particles are seldom
perfect spheres. In the continuum regime, the
extension of Brock’s [15] analysis to the ther-
mophoresis of a nonspherical particle has only
been made for the case of axisymmetric migration
of a prolate or oblate spheroid, without consider-
ing the effects of temperature jump and frictional
slip at the gas/particle interface [7,22]. Recently,
the photophoresis of an aggregate of two spheres
[23] and of an arbitrarily shaped particle [24] has
also been examined to some extent. In this paper
we present an analytical study of the ther-
mophoretic and photophoretic motions of a circu-
lar cylindrical particle in the direction normal to
its axis in the continuum regime. The energy and
momentum equations applicable to the system are
solved by satisfying the conditions of temperature
jump, thermal slip and frictional slip at the gas/
particle interface. The particle velocities are deter-
mined in simple closed forms as a function of
relevant parameters.

<sbm 42>2. Thermophoresis of a cylinder

In this section we consider the steady ther-
mophoretic motion of a long cylindrical particle
of radius a with internal heat conductivity kp in
an unbounded gaseous medium where the heat
conductivity is k. The cylinder is oriented perpen-
dicularly to the uniformly imposed temperature
gradient −E�ex (equal to 9T�), as shown in Fig.

1, where ex is the unit vector in the x direction. It
is assumed that E�a/T0�1, where T0 is the pre-
scribed temperature at the axis of the cylinder (or
the mean gas temperature in the vicinity of the
particle). All the physical properties of the particle
and the fluid are taken to be constant, and the
Knudsen number, Reynolds number, and Peclet
number are assumed to be small. Gravitational
effects are ignored. Our objective is to obtain the
thermophoretic velocity of the cylinder.

It is well known that in transverse motion end
effects modify the temperature distribution and
flow pattern at large distance from the axis of the
cylinder. However, near the cylinder and not too
close to the ends, the heat transfer and fluid flow
are essentially perpendicular to the cylinder axis.
Hence, it may be treated as a two-dimensional
problem in a cross section perpendicular to the
cylinder. Because the boundary conditions of the
fluid velocity field are coupled with the tempera-
ture gradient at the particle surface, it is necessary
to determine the temperature profile first.

<sbm 42>SBM 18>2.1. Temperature
distribution

The energy equations governing the tempera-
ture distribution are:

92T=0 (1a)

for the fluid and

92T. =0 (1b)

for the cylindrical particle. In the polar coordinate
system (v, f) measured from the axis of the
cylinder,

92=
1
v

#

#v

�
v
#

#v

�
+

1
v2

#2

#f2. (2)

The boundary conditions at the particle surface
(v=a) require that the normal heat fluxes be
continuous and a temperature jump which is pro-
portional to the normal temperature gradient [2]
occur. Also, the fluid temperature must approach
the linear prescribed field far from the particle
and the temperature inside the particle is finite
everywhere. Thus, one has:

Fig. 1. Geometrical sketch for the two-dimensional ther-
mophoretic motion of a cylinder.
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v=a : k
#T
#v

=kp

#T.
#v

, (3a)

v=a : T−T. =Ctl
#T
#v

, (3b)

vBa : T. is finite, (3c)

v��: T�T�=T0−E�v cos f. (3d)

Here, Ct is the dimensionless temperature jump
coefficient (of order unity) which is semi-empiri-
cally related to the thermal accommodation co-
efficient ft at the particle surface by
Ct$ (15/8)(2− ft)/ft and l is the mean free path of
the surrounding gas. The thermal accommodation
coefficient is defined by ft= (Ei−Er)/(Ei−Ew),
where Ei represents the average incident molecular
energy flux at a point on the surface, Er denotes
the average reflected energy flux at that point, and
Ew is the energy flux which would be emitted if
the gas molecules left in thermal equilibrium with
the surface at that point [2,17].

The solution to Eqs. (1a,b) and Eqs. (3a–d) is:

T=T0−E�
�

1+
1−k*+k*C*t
1+k*+k*C*t

�a
v

�2n
v cos f,

(4a)

T. =T0−
2

1+k*+k*C*t
E�v cos f, (4b)

where

k*=kp/k, (5a)

C t*=Ctl/a. (5b)

It is understood that the practical value of C*t is
less than unity with the assumption of a small
Knudsen number. Note that the dimensionless
parameter k*C*t denotes the relative resistance
caused by the temperature jump at the particle
surface with respect to the heat conduction inside
the particle.

<sbm 42>2.2. Fluid 6elocity distribution

With knowledge of the solution for the temper-
ature distribution, we can now proceed to find the
fluid velocity field. The fluid surrounding the par-
ticle is assumed to be incompressible and Newto-
nian. Because the Reynolds number is small, the

fluid motion caused by the thermophoretic migra-
tion of the cylinder is governed by the fourth-or-
der linear differential equation for the stream
function C(v, f),

94C=92(92C)=0. (6)

The stream function is related to the v and f

components of the fluid velocity by:

nv=
1
v

#C

#f
, (7a)

nf= −
#C

#v
. (7b)

Owing to the thermal creep and frictional slip
velocities along the solid/fluid interface [15] as
well as the fluid at rest far from the particle, the
boundary conditions for the fluid velocity are:

v=a : nv=U cos f, (8a)

v=a : nf= −U sin f+
Cml

h
tvf+

Csh

rT0

v
#T
#f

,

(8b)

v��: nv�0, (8c)

v��: nf�0. (8d)

Here, the polar coordinate system (v, f) origi-
nated from the axis of the cylinder is fixed with
the laboratory reference frame, r and h are the
density and viscosity, respectively, of the gas, Cm

is the dimensionless coefficient of the gas-kinetic
isothermal slip which is semi-empirically related
to the momentum accommodation coefficient fm

at the particle/fluid interface by Cm$ (2− fm)/fm,
Cs is the dimensionless thermal creep coefficient
about the particle surface (both Cm and Cs are of
order unity), tvf is the shear stress for the fluid
flow,

tvf=h
�

v
#

#v

�nf

v

�
+

1
v

#nv

#f

n
, (9)

and U is the thermophoretic velocity of the cylin-
der (in the x direction) to be determined.

The momentum accommodation coefficient is
defined by fm= (Gi−Gr)/Gi, where Gi and Gr are
the average tangential components of the momen-
tum of the gas molecules hitting and leaving the
surface, respectively [2,17]. A set of reasonable



H.J. Keh, H.J. Tu / Colloids and Surfaces A: Physicochem. Eng. Aspects 176 (2001) 213–223 217

Fig. 2. Plots of the normalized thermophoretic velocity U*t (=
rT0U/CshE�) of a cylindrical particle (solid curves, as com-
puted from Eq. (12)) and of a spherical particle (dashed
curves, as computed from Eq. (14)) versus the conductivity
ratio k* with C*t (=2C*m) as a parameter.

known that there exists no solution of the creeping-
flow equation (Eq. (6)) for the two-dimensional
body-force-driven motion of an infinite-length cir-
cular cylinder in an unbounded viscous fluid (some-
times referred to as Stokes’ paradox) [27]. In the
case of thermophoresis, however, the hydrody-
namic force on any boundary enclosing the particle
is zero, since the temperature field produces no bulk
(body) forces in the fluid. The existence of a
solution of irrotational flow around the force-free
thermophoretic cylinder in the form of Eq. (11) is
due to the effect of thermal slip at the particle
surface given by the third term on the right-hand
side of Eq. (8b).

<sbm 42>2.3. Thermophoretic 6elocity

Applying boundary condition (8b) together with
(4a) and (7(a,b)) to Eq. (11), one obtains the
thermophoretic velocity of the cylindrical particle
as:

U=
Cs(1+k*C*t )

(1+2C*m)(1+k*+k*C*t )
hE�
rT0

, (12)

where:

C*m=Cml/a. (13)

According to Eq. (12), particles with large ther-
mal conductivity and small Knudsen number (say,
k*=100 and l/a=0.01) will migrate at velocities
of the order of 10−5 m s−1 with E�=104 K m−1;
such a temperature gradient is easily attainable in
thermal boundary layers.

Values of the normalized thermophoretic veloc-
ity (or mobility) U*t (=rT0U/CshE�) of the cylin-
drical particle evaluated from Eq. (12) with various
values of k*, C*t , and C*m are plotted by the solid
curves in Figs. 2 and 3. The typical relation
Ct=2Cm is chosen for the calculations because
their reasonable values are so related. It is under-
stood that the practical values of C*t and C*m are
less than unity with the assumption of small Knud-
sen number. It can be found that U*t is a monotonic
decreasing function of k* for given values of C*t
and C*m. The reason for this consequence is
that a relatively high conductivity of the
particle reduces the local temperature gradient (and
thus, the thermal creep effect) along the part-
icle surface. When the value of k* is large-

kinetic-theory values for complete thermal and
momentum accommodations appear to be Cs=
1.17, Ct=2.18, and Cm=1.14 [25]. The validity of
the expression for the thermal creep velocity in Eq.
(8b) is based on the assumption that the fluid is only
slightly nonuniform in the undisturbed temperature
on the length scale of the particle radius. The
derivative #T/#f can be evaluated from the temper-
ature distribution given by Eq. (4a).

The general solution to Eq. (6) in the polar
coordinate system (v, f) is [26]:

C= (d1v
−1+d2v+d3v ln v+d4v

3) sin f,
(10)

where the constants d1, d2, d3 and d4 are to be
determined from boundary conditions Eq. (8a), Eq.
(8c) and Eq. (8d) using Eq. (9). The result of the
stream function is given by:

C=Ua2 sin f

v
, (11)

which shows that the fluid flow around the cylinder
undergoing thermophoretic motion is irrotational
and exerts no drag force on the cylinder. It is well
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(say, \10), U*t increases with the increase in C*t
or C*m (or the decrease in the radius of the parti-
cle) for a fixed value of k*; however, when the
value of k* is small (say, B1.5), U*t decreases
with the increase in C*t or C*m for a fixed value of
k*. This behavior is physically explainable: a large
particle will enhance the effect of the relative
conductivity of the particle on the thermophoretic
mobility, while a small particle will lessen this
effect. In the limiting case of C*t =0 and C*m=0,
U*t =1 as k*=0 and U*t =0 as k*��.

For the corresponding thermophoresis of an
aerosol sphere of radius a, Brock [15] obtained the
analytical formula for the particle velocity,

U=
2Cs(1+k*C t*)

(1+2C*m)(2+k*+2k*C t*)
hE�
rT0

, (14)

where k*, C*t , and C*m are still defined by Eq.
(5ab) and Eq. (13). The normalized migration
velocity U*t of the thermophoretic sphere calcu-
lated from Eq. (14) for various values of k*, C*t ,
and C*m are drawn by the dashed curves in Figs. 2
and 3 for comparison. One can see that the be-
havior of the dependence of U*t on the parameters

k*, C*t and C*m for a cylindrical particle undergo-
ing thermophoresis normal to its axis is quite
similar to that for a thermophoretic sphere. For a
set of given values of k*, C*t and C*m, the normal-
ized thermophoretic velocity of a cylindrical parti-
cle is always smaller than that of a sphere (even in
the limit l/a=0, or C*t =C*m=0), except for the
limiting case of k*=0, in which the normalized
thermophoretic velocities are equal for both parti-
cle shapes. For the case of large k* and small C*t ,
the cylinder has a thermophoretic mobility only
about half of that of the sphere.

3. Photophoresis of a cylinder

We now consider the steady two-dimensional
photophoretic motion of a long circular cylindri-
cal particle in the direction normal to its axis. The
incident light is imposed in the x direction with
intensity (incoming illumination energy flux) I.
Again, the Knudsen number, Reynolds number,
and Peclet number are assumed to be small and
all the physical properties of the particle and the
surrounding gas are taken to be constant. Our
objective is to determine the photophoretic veloc-
ity of the cylinder.

3.1. Temperature distribution

The temperature distribution for the fluid is still
governed by the Laplace equation (1a). However,
instead of Eq. (1b), the temperature distribution
inside the radiation absorbing particle is described
by:

92T. = −
1
kp

Q(v, f), (15)

where Q(v, f) is the volumetric thermal energy
generation rate resulting from local radiation ab-
sorption. For a plane monochromatic wave, the
function Q(v, f) is related to the electric field
E(v, f) inside the particle according to the
Lorenz–Mie theory [14]:

Q(v, f)=
4pykI

l

�E(v, f)�2
�E0�2 =

4pnkI
l

B(z, f).

(16)

Fig. 3. Plots of the normalized thermophoretic velocity U*t (=
rT0U/CshE�) of a cylindrical particle (solid curves, as com-
puted from Eq. (12)) and of a spherical particle (dashed
curves, as computed from Eq. (14)) versus C*t (=2C*m) with k*
as a parameter.
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Here, y and k are the real and imaginary parts
of the complex refractive index N (N=y+ ik) of
the particle, E0 is the incident electric field
strength, l is the wavelength of the incident radia-
tion, B(z, f) is the dimensionless electric field
distribution function, and z=v/a.

The boundary conditions for the temperature
field at the particle surface and inside the particle
are still given by Eqs. (3a–c). We further require
that the fluid temperature far from the cylinder be
unaffected by the cylinder’s presence so that:

v��: T�T�, (17)

where T� is the temperature
of the bulk gas which is a constant now.

A sufficiently general solution to
Eqs. (1a) and (15) is:

T=T�+T� %
�

n=1

[An cos(nf)+Bn sin(nf)]z−n,

(18a)

T. =T0+T� %
�

n=1

{[Cnz
n+Rn(z)]cos(nf)

+ [Dnz
n+Sn(z)]sin(nf)}, (18b)

where:

!Rn(z)
Sn(z)

"
=

2yka2I
nl. k̂T�

�
zn & 1

z

t−n+1 & 2p

0

B(t, f)
!cos(nf)

sin(nf)
"

×dfdt

+z−n & z

0

tn+1 & 2p

0

B(t, f)
!cos(nf)

sin(nf)
"

dfdt
n

,

(19)

and T0 is the temperature at the axis of the
cylinder. A solution of this form immediately
satisfies boundary conditions (3c) and (17). The
unknown coefficients An, Bn, Cn and Dn are to be
determined using the boundary conditions at the
particle surface. The derivation of solution (18b)
is presented in Appendix A.

Applying the boundary conditions (3a) and (3b)
along the surface of the cylinder to Eqs. (18a,b),
we obtain:

An=
k* [nRn(1)−Rn

/ (1)]
n+nk*+n2k*C*t

, (20a)

Bn=
k* [nSn(1)−Sn

/ (1)]
n+nk*+n2k*C*t

, (20b)

Cn=
(nk*+n2k*C*t )Rn

/ (1)−Rn(1)
1+n2k*+n3k*C*t

, (20c)

Dn=
(nk*+n2k*C*t )Sn

/ (1)−Sn(1)
1+n2k*+n3k*C*t

, (20d)

where k* and C*t have been defined by Eqs. (5a,b)
and the prime on Rn(z) and Sn(z) means differen-
tiation with respect to z. Thus, the temperature
distribution expressed by Eqs. (18a,b) is com-
pletely solved.

<sbm 42>3.2. Fluid 6elocity distribution

Having determined the temperature distribu-
tion, we can begin finding out the fluid velocity
field. The fluid motion generated by the pho-
tophoretic migration of the cylinder is still gov-
erned by the Stokes equation (Eq. (6)) and subject
to the boundary conditions 8a–d. But now, the
derivative #T/#f in Eq. (8b) should be evaluated
from the temperature distribution given by Eq.
(18a).

It can be shown that, similar to the case of
thermophoresis considered in the previous section,
the fluid flow around the force-free cylinder un-
dergoing photophoretic motion is also irrotational
and described by the stream function in the form
of Eq. (11).

3.3. Photophoretic 6elocity

Using Eqs. (7a,b) and (18a) and applying
boundary condition (8b) to Eq. (11), we obtain
the photophoretic velocity of the cylinder,

U=

−
Cs J1

2(1+2C*m)(1+k*+k*C*t )
hI

krT�
. (21)

Here, J1 is the so-called photophoretic asymme-
try factor [21],
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Fig. 4. Plots of the normalized photophoretic velocity U*p(=
−2krT�U/CsJ1hI) of a cylindrical particle (solid curves, as
computed from Eq. (21)) and of a spherical particle (dashed
curves, as computed from Eq. (24)) versus the conductivity
ratio k* with C*t (=2C*m) as a parameter.

in J1= −1/2 knowing that R1
0 g(z)d(z−1)dz= (1/

2)g(1). It is obvious that the range of the asymme-
try factor is −1/25J151/2. According to Eq.
(21), the photophoretic velocity at illumination of
an intensity comparable with the solar constant
(1353 W m−2) is of the order of 10−5 m s−1.

The corresponding photophoresis of an aerosol
sphere of radius a was analytically studied by
Reed [16] and Mackowski [14]. The photophoretic
velocity of the sphere can be expressed as:

U=

−
2Cs J1

3(1+2C*m)(2+k*+2k*C*t )
hI

krT�
. (24)

Here, the photophoretic asymmetry factor J1

becomes:

J1=
6pyka

l

& 1

0

& p

0

B(j, u)j3 cos u sin ududj,

(25)

where j=r/a, (r, u, f) is the spherical coordi-
nates measured from the center of the particle,
and the dimensionless electric field distribution
function B(j, u) is related to the volumetric en-
ergy generation rate Q(r, u) through a formula in
the form of Eq. (16). For a completely opaque
sphere of radius a,

B(j, u)=

Á
Ã
Í
Ã
Ä

−l

2pyka
cos ud(j−1) for

p

2
5u5p

0 for 05u5
p

2
.

(26)

Again, for this situation, Eq. (25) and Eq. (26)
lead to J1= −1/2.

Numerical values of the normalized pho-
tophoretic velocity (or mobility) U*p (= −
2krT�U/CsJ1hI) of a cylindrical particle,
calculated from Eq. (21) for various values of k*,
C*t and C*m are plotted by solid curves in Figs. 4
and 5. The corresponding results for the pho-
tophoresis of an aerosol sphere given by Eq. (24)
are also drawn by dashed curves in the same
figures for comparison. For both particle shapes,
U*p decreases monotonically with increasing k*
for fixed values of C*t and C*m and with increasing
C*t or C*m (or decreasing radius of the particle)
for a given value of k*. In the limiting case of

J1=
4yka

l

& 1

0

& 2p

0

B(z, f)z2 cos fdfdz, (22)

which depends on the complex refractive index
(N=y+ ik) and the normalized size (2pa/l) of
the particle. The asymmetry factor represents a
weighted integration of the heat source function
over the particle volume and defines the sign (and
the magnitude) of the photophoretic force. If
J1B0, the particle moves in the direction of the
light beam (positive photophoresis). If J1\0, the
particle moves in the opposite direction (negative
photophoresis). For a completely opaque cylindri-
cal particle the heat sources are concentrated on
the illuminated part of the particle surface,
namely,

B(z, f)=

Á
Ã
Í
Ã
Ä

−l

2pyka
cos fd(z−1) for

p

2
5f5

3p

2
0 otherwise,

(23)
where d(z−1) is a Dirac delta function which
equals infinity if z=1 and vanishes otherwise.
The substitution of Eq. (23) into Eq. (22) results
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k*��, U*p =0. For a set of fixed values of k*,
C*t and C*m, the normalized migration velocity of
a cylindrical particle undergoing photophoresis
normal to its axis is greater than that of a pho-
tophoretic sphere if C*t ]1/2 or if C*t B1/2 but
k*B2/(1−2C*t ), and is smaller than that of a
photophoretic sphere if C*t B1/2 and k*\2/(1−
2C*t ). Of course, when C*t B1/2 and k*=2/(1−
2C*t ), the cylindrical and spherical particles will
have identical normalized photophoretic velocity
for constant values of k*, C*t , and C*m. For the
case of small k*, the cylinder can have a pho-
tophoretic mobility about 50% larger than that of
the sphere. For the case of large k* and small C*t
however, the photophoretic mobility of the cylin-
der is about 25% less than that of the sphere.

4. Conclusions

Two problems of similar physical and mathe-
matical structures are analytically studied in this
work: the thermophoresis of a cylindrical particle

normal to its axis in a nonisothermal gaseous
medium and the photophoresis of an aerosol
cylinder normal to its axis illuminated by a beam
of light of sufficient intensity. It is assumed that
the Knudsen number is low so that the fluid flow
is in the continuum regime. Under the condition
of vanishingly small Peclet and Reynolds num-
bers, the temperature distribution inside and out-
side the particle and the flow field for the
surrounding fluid are obtained with taking ac-
count of the effects of temperature jump, thermal
slip, and frictional slip at the gas/particle inter-
face. Closed-form expressions for the ther-
mophoretic and photophoretic velocities of the
cylindrical particle as functions of relevant
parameters are obtained in Eq. (12) and Eq. (21),
respectively. Compared with an aerosol sphere
under the same condition, the cylindrical particle
always has a smaller thermophoretic mobility, but
can have a greater or smaller photophoretic mo-
bility, depending on the relative magnitudes of the
temperature jump coefficient and of the thermal
conductivities of the gas–particle system.

Because a simple analytical solution is not feasi-
ble in prolate and oblate spheroidal coordinate
systems if the temperature jump or frictional slip
at the particle surface is included [22], it is a
formidable task to obtain analytical formulas for
the thermophoretic or photophoretic velocity of a
spheriodal particle as a function of C*t and C*m.
Therefore, our analysis for a circular cylindrical
particle should be worthwhile in understanding
the effects of particle shape on thermophoresis
and photophoresis.
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Appendix A. Derivation of Eq. (18b)

For conciseness the derivation of Eqs. (18b)
and (19) is given here. If we define dimensionless
quantities T( = (T. −T0)/T�, z=v/a, and g=
a2Q/k. T0, then Eq. (15) becomes:

Fig. 5. Plots of the normalized photophoretic velocity U*p(=
−2krT�U/CsJ1hI) of a cylindrical particle (solid curves, as
computed from Eq. (21)) and of a spherical particle (dashed
curves, as computed from Eq. (24)) versus C*t (=2C*m) with k*
as a parameter.
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z
#

#z

�
z
#T(
#z

�
+
#2T(
#f2= −z2g(z, f). (A1)

The solution to Eq. (A1) can be taken as the
sum of the homogeneous and particular solutions,
denoted by T1 and T2, respectively. The homoge-
neous solution that is valid at the axis of the
cylindrical particle is:

T1= %
�

n=1

zn[Cn cos(nf)+Dn sin(nf)], (A2)

where Cn and Dn are undetermined coefficients.
The particular solution T2 can be obtained from a
transformation of Eq. (A1) into ordinary differen-
tial equations. Multiplying Eq. (A1) through by
cos(nf)df and sin(nf)df, respectively, and inte-
grating from 0 to 2p leads to:

z
#

#z

�
z
#R
#z

�
−n2Rn= −gn, (A3a)

z
#

#z

�
z
#Sn

#z

�
−n2Sn= −hn, (A3b)

where:

Rn(z)=
1
p

& 2p

0

T2(z, f) cos(nf)df, (A4a)

Sn(z)=
1
p

& 2p

0

T2(z, f) sin(nf)df, (A4b)

and

gn(z)=
1
p

z2& 2p

0

g(z, f) cos(nf)df, (A5a)

hn(z)=
1
p

z2& 2p

0

g(z, f) sin(nf)df. (A5b)

Obviously, Eqs. (A4a,b) yield:

T2=Rn(z) cos(nf)+Sn(z) sin(nf). (A6)

The solution to Eqs. (A3a,b) can be obtained
by the method of variation of parameters, with
the result:

Rn=
1
2n

zn & 1

z

t−n−1 · gn(t)dt

+
1
2n

z−n & z

0

tn−1 · gn(t)dt, (A7a)

Sn=
1
2n

zn & 1

z

t−n−1 · hn(t)dt

+
1
2n

z−n & z

0

tn−1 · hn(t)dt. (A7b)

The combination of Eq. (A2) and (A6) results
in Eq. (18b) and the substitution of Eqs. (A5a,b)
into Eqs. (A7a,b) gives Eq. (19).

Appendix B. Nomenclature

particle radius (m)a
B dimensionless electric field distribution

function defined by Eq. (16)
dimensionless coefficient accounting forCm

the frictional slip
dimensionless parameter defined by Eq.C*m
(13)
dimensionless coefficient accounting forCs

the thermal slip
dimensionless coefficient accounting forCt

the temperature jump
C*t dimensionless parameter defined by Eq.

(5b)
ex unit vector in x direction
E� prescribed temperature gradient in the

absence of the particle (K m−1)
intensity of the incident light beam (WI
m−2)
the photophoretic asymmetry factor ofJ1

the particle
thermal conductivity of the fluid (Wk
m−1 K−1)

kp thermal conductivity of the particle (W
m−1 W−1)

k* ratio of thermal conductivities between
the particle and the fluid

l mean free path of the gas molecules (m)
the volumetric thermal energy generationQ
rate inside the particle (W m−3)
radial spherical coordinate (m)r
temperature distribution in the fluidT
phase (K)
temperature distribution inside the parti-T.
cle (K)
absolute temperature at the center of theT0

particle (K)
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bulk-gas absolute temperature in the ab-T�
sence of the particle (K)

migration velocity of the particle (mU
s−1)

normalized photophoretic velocity of theU*p
particle (=−2krT�U/CsJ1hI)

U*t normalized thermophoretic velocity of
the particle (=rT0U/CshE�)

components of the fluid velocity in polarnv, nf

coordinates (m s−1)

Greek letters

dimensionless radial polar coordinate (=z

v/a)
h viscosity of the fluid (kg m−1 s−1)
u, f angular spherical coordinates

imaginary part of the complex refractivek

index of the particle
the wavelength of the incident light beaml

(m)
real part of the complex refractive indexn

of the particle
j dimensionless radial spherical coordinate

(=r/a)
r density of the fluid (kg m−3)

angular polar coordinatef

C stream function of the fluid flow (m2 s−1)
radial polar coordinate (m)v
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