
Impact dynamics of micromachined bidirectional electrothermal
vibromotors

Wen-Pin Shih
Department of Mechanical Engineering, National Taiwan University, Taiwan

Minfan Pai
Discera, Inc., Ann Arbor, Michigan 48105

Yu-Yun Lin
Department of Civil Engineering, National Cheng-Kung University, Taiwan

Chung-Yuen Hui
Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853

Norman C. Tien
Berkeley Sensor and Actuator Center, Department of Electrical and Computer Engineering, University of
California, Davis, California 95616

(Received 9 April 2004; accepted 18 August 2004)

The motion of micromachined bidirectional electrothermal vibromotors(BETV) is analyzed using
an impact model that takes into account friction and contact, as well as the compliance of the slider
and the impact head. This model addresses several important issues on the usage of BETV. These
include(a) how to achieve the pull and push mode;(b) avoiding multiple impacts in one actuation
cycle; (c) the existence of periodic solutions with the same period as the thermal actuator. Four
dimensionless parameters are found to govern the dynamics of the vibromotor. Depending on these
parameters, we observed periodic motion, period doubling, and aperiodic solution. A criterion is
established to separate push and pull modes. An experiment that includes fabricating and
characterizing a BETV is carried out to verify the ability of the model to predict the pull mode.
© 2004 American Institute of Physics. [DOI: 10.1063/1.1805725]

I. INTRODUCTION

Micromachined linear vibromotors are commonly used
to move microscale components for long distances. They
have been applied to optical communication systems and
self-assembly technology.1–5 These vibromotors are driven
either electrostatically or electrothermally. Generally, elec-
trothermal vibromotors have a smaller footprint and require
lower driving voltage than electrostatic vibromotors. The
scanning electron microscope(SEM) image of a typical elec-
trothermal vibromotor(ETV) fabricated by standard silicon
surface micromachining is shown in Fig. 1. The slider is
composed of two parallel beams connected at both ends. It is
driven by actuators symmetrically placed at an angleu on
both sides of the slider. A typical electrothermal actuator has
two conductive arms of differing widths through which elec-
tric current flows.6–9 The cold arm consists of an impact and
a flexure element. The width of the impact element is much
greater than that of the hot arm, resulting in a much larger
current density in the latter. Ohmic heating of this arm causes
it to expand more than the cold arm. This causes the actuator
to deflect and impact the slider. Opposing sets of actuators
allow bidirectional motion to be achieved.

The development of the vibromotor has been limited by
incomplete understanding of its impact mechanics. For ex-
ample, even if the actuators are driven periodically, the mo-
tion of the slider need not be periodic. Furthermore, multiple
impacts can occur during one actuation cycle. Experiments
have shown that in many instances the slider actually moves

opposite to the impact direction, resulting in the “pull
mode.”10 In addition, the slider can alternate between pull
and push modes resulting in the negligible displacement.11

Specifically, if the net(positive) displacement of the slider is
in the impact direction after one cycle of actuation, the slider
is said to be in push mode during that cycle. On the other
hand, the slider is in pull mode during a cycle if it has nega-
tive (opposite to the impact direction) displacement after an
actuation cycle. The pull mode is desirable in some applica-
tions. The dynamics of the micromachined vibromotors have
been studied using a nonzero coefficient of restitution by
Lee, Pisano, and Lin and Danemonet al.12,13 The impact
process is assumed to be instantaneous and the impact force
is impulsive. A drawback of this model is that it cannot pre-

FIG. 1. SEM image of micromachined electrothermal vibromotor.
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dict pull mode. To overcome these shortcomings, we con-
sider a continuous impact model which allows the slider and
the actuator to interact in a continuous manner during con-
tact. A complete literature survey of various impact model
can be found in the work of Gilardi and Sharf.14 Based on
this model, we studied the existence and dynamics of push
and pull modes and investigated the possibility of periodic
motion. We also studied the problem of multiple impacts. A
parameter study based on this model was carried out from
the viewpoint of device design and operation. Some aspect
of our theory was compared with experimental results.

II. IMPACT MODEL

Figure 2 depicts the impact model in this work. The
parameters used in this model are summarized in Table I.
One half of the vibromotor is modeled due to the symmetry
of the device. The rollers between the slider and the wall
representfrictionlesscontact between the slider and the sub-
strate. The impact head, which is attached to the impact ele-
ment (Fig. 1), is represented by a pad of massm. Impact
results from the collision of the pad to the slider. We assume
that there is no adhesion between the impact head and the
slider and the impact is plastic, i.e., the coefficient of resti-
tution is zero in the vertical direction. Impact compliance in
the horizontal and vertical directions is modeled by two lin-
ear springs of stiffnesskh and kn, respectively. The cart,
which represents the electrothermal actuator, is constrained
to move on a plane inclined at an angleu (impact angle) with
the slider(Fig. 1). Cart motion is assumed to be periodic;
that is, the displacement of the cart is assumed to beu sinvt,

whereu is the maximum deflection of the actuator andv is
the angular frequency of the vibration. This assumption im-
plies that the motion of the thermal actuator is unaffected by
impact. LetX be a coordinate system fixed to the side of the
slider. Let the vertical displacement of the pad be denoted by
X =xn so that the impact occurs whenxn=0. Note xnù0
since the pad cannot penetrate the slider. Without loss of
generality, we assume first impact occurs att=0, when the
vertical position of the cart with respect to the coordinate
systemX is zero sxn=0d and the vertical and horizontal
springs are both relaxed. Forxn.0 (i.e., when the impact
head swings backward), there is no contact between the
slider and the impact head, so that the force acting on the
slider is zero. Note that the tensionT in the vertical spring is
given byT=−knsu sinu sinvt+xnd. The absence of adhesion
implies that contact is impossible ifT.0. For the rest of this
paper,T.0 means that there is no contact even thoughxn

can be zero; that is,xn=0 is a necessary condition for con-
tact. Note that, since xn=0 during contact, T
=−knu sinu sinvt, this means thatT.0 only if sinvt,0.
As a result, detachment of the impact head from the slider
can be determined by checking whether the condition
sinvt,0 is satisfied. Note that the condition sinvt,0 does
not always implyxn.0, since the impact head can touch the
slider while the vertical spring is in tension.

Impact friction is assumed to follow Coulomb’s law, i.e.,

F = mN sgnsnRd, s1ad

where m is the friction coefficient,F is the force on the
slider, andN is the normal contact force.nR is velocity of
impact head relative to the slider, i.e.,

nR = ẋh − ẋs, s1bd

where the horizontal displacements of the impact head and
slider are denoted byxh andxs, respectively;ẋh andẋs denote
the differentiation with respect to time. The sgn function is
defined by

sgnsnRd = 1, nR . 0 sslipd, s1cd

sgnsnRd = − 1, nR , 0 sreverse slipd, s1dd

usgnsnRdu ø 1, nR = 0 . sstickd s1ed

For xn.0 or xn=0 and sinvt,0, the slider and the impact
head are not in contact. In this case, the equations of motion
are

mẍn = − knsu sinu sinvt + xnd, s2ad

mẍh = khsu cosu sinvt − xhd, s2bd

ẍs = 0, s2cd

wherexn denotes the vertical displacement of the pad.
During contact, the vertical spring is in compression

sT,0d and xn=0 so that sinvtù0. Since the collision is
assumed to be plastic,xn=0 andẋn= ẍn=0 immediately after
impact. The equations of motion during contact are

FIG. 2. Impact mechanics model.

TABLE I. Model parametes. The symbols inside brackets are normalized
parameters.

Parameter Intepretation

M One half of slider mass
m Mass of impact head
kh Horizontal impact compliance
kv Vertical impact compliance
u Impact angle
u Maximum deflection of actuator
v Angular frequency of vibration
t Time
xh Horizontal displacement of impact head
xv Vertical displacement of impact head
xs Slider displacement
m Coulomb friction coefficient
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mẍh = khsu cosu sinvt − xhd

− mknu sinu sinvt sgnsẋh − ẋsd, s2dd

Mẍs = mknu sinu sinvt sgnsẋh − ẋsd, s2ed

whereknu sinu sinvt is the normal compressive force on the
slider, andM is the half mass of the slider.

To reduce the number of parameters, these equa-
tions of motion are normalized using the dimensionless
variables: j;xn /u sinu, z;xh/u cosu, s;xs/u cosu,
t; tÎkn /m. Equations (2a)–(2e) in normalized form are
Noncontact phase. j.0 or j=0 and sinÃt,0:

j9 + j = − sinÃt, s3ad

az9 + z = sinÃt, s3bd

s9 = 0. s3cd

Contact phase. j=0 and sinÃtù0:

j = 0, s3dd

az9 + z = f1 − ak sgnsz8 − s8dgsinÃt, s3ed

s9 = bk sgnsz8 − s8dsinÃt, s3fd

where Ã;vÎm/kn, a;kn /kh, b;m/M, k;m tanu, and
j8;dj /dt. Based on the aforementioned assumptions of ini-
tial conditions, the initial displacement and velocity and ve-
locity for the slider are zero att=0. The initial displacement
and velocity of the impact head are zero(i.e., contact is about
to occur) in both vertical and horizontal directions.

III. VERTICAL MOTION OF IMPACT HEAD

Equations(3a)–(3f) imply that vertical motion of the im-
pact head is decoupled from the horizontal motion. Specifi-
cally, according to Eqs.(3a) and(3d), the vertical motion of
the impact head depends only on the normalized angular
frequencyÃ of the actuation and is not affected by the fric-
tion interaction with the slider. In this section we address the
vertical motion of the impact head, which is governed by Eq.
(3a) during the noncontact phase and by Eq.(3d) during the
contact phase, where the force in the vertical spring is com-
pressive. Note that the vertical spring in the noncontact
phase can either be in tension or in compression. This char-
acteristic of the vertical motion is similar to a linear impact
oscillator studied by Shaw and Holmes.15 It should be noted
that although the impact head is driven periodically with the
actuation frequencyÃ, the motion of the impact head need
not be periodic. Furthermore, even if the motion were peri-
odic, the impact frequency is not necessarily the same as the
actuation frequencyÃ, as shown below. Physically, this
translates to multiple impacts in one actuation cycle.

To fix ideas, consider a general impact cycle shown in
Fig. 3. An impact period starts att=t1 when the impact head
hits the slider with negative velocity and the vertical spring
in compression(point 0). Since sinÃt.0 is necessary for
the vertical spring in compression, 2mp /Ã,t1, s2m
+1dp /Ã, wherem is nonnegative integer. The plastic impact

assumption implies that the vertical velocity of the impact
head becomes zero right after the impact(the point 0 is
mapped to1). The impact head remains in contact with the
slider until the vertical spring becomes tensile. Separation
starts at sinÃt2=0 (point 2), where t2=s2m+1dpùt1.
When the cart moves backward att2, the vertical spring is
relaxed from compression and will be stretched fort.t2. As
a result,t2−t1,p /Ã. Once contact is broken, the motion of
the impact head is determined by the solution of Eq.(3a) and
has the general form,

j = a sint + b cost + sÃ2 − 1d−1sinÃt, t ù t2, s4ad

where we have assumed thatÃÞ1. The integration con-
stants, a and b, are determined by the conditionjst2d
=j8st2d=0. This results in

j = sÃ2 − 1d−1fÃ sinst2 − td − sinÃtg, t . t2. s4bd

Note thatj given by Eq.(4b) is positive untilt=t3, wheret3

is the first root of the equation,

sinÃt = Ã sinst2 − td, s4cd

which is greater thant2. At t=t3, the impact head hits the
slider again(point 3 in Fig. 3). Note that, depending onÃ, t3

can be smaller thant2+p /Ã. That is, depending onÃ, it is
possible that multiple impacts can occur beforet researches
t1+2p /Ã, i.e., before the next actuation cycle occurs.

The above analytic method is simply too tedious to carry
out for multiple impacts. Therefore, we studied the motion
by numerically integrating Eqs.(3a) and(3d) for 30 consecu-
tive impacts with the initial conditionsjs0d=j8s0d=0. Cal-
culations are also performed with 100 consecutive impacts.
The results of these calculations are identical to those ob-
tained using 30 impacts. LetP denote the time between two
consecutive impacts. The normalized duration between im-

pacts P̂=PÃ /2p or impact period is shown in Fig. 4 for
0,Ãø10. Note that 0,Ãø10 corresponds to the real
range of resonance frequencies of typical electrothermal ac-
tuators. A normalized period of 1 indicates that the solution
is periodic and the impact period is identical to the actuation
period of the thermal actuator. Figure 4(a) shows that, for
0,Ã,1/2, there are regions where two impacts occur dur-
ing one actuation cycle. One of these impacts occurs at a
higher frequency than the actuation frequency of the thermal
actuator while the second impact occurs at about the same
frequency. We define this asperiod doublingsince the im-
pact head hits the slider with two different frequencies. All
the solutions in Fig. 4(a) are periodic. Figure 4(b) shows that,

FIG. 3. Phase spacest ,j ,j8d showing trajectory of one impact period of the
impact head.
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for Ã.2, periodic solution of Eqs.(3a) and(3d) exists with
impact period being integer multiples of the actuation period
2p /Ã. For example, for 3,Ãø4, the impact period is 2, so
that one impact occurs for every two actuation cycles. Figure
4(b) also shows that period doubling occurs atÃ,2n
+0.64, wheren is the ratio of the impact period to the actua-
tion period 2p /Ã just before the occurrence of period dou-
bling. Except for 0,Ã,1/2, the regions where period dou-
bling occurs are enclosed by dotted ellipses in Fig. 4(b). For
Ã.4.64 or n.2, there exist periodic regions 2n
−1,Ã,2n+0.64. These regions are followed by period
doubling region which in turn are followed by aperiodic re-
gions, where periodic solution of Eqs.(3a) and (3d) cannot
be found[see also Fig. 5(c)]. For example,Ã=4.65 is in the
period doubling region andÃ=4.8 is in aperiodic region.
The impact periods in aperiodic regions occur in a random
way and do not follow simple patterns.

The trajectories of the periodic motion of the impact
head are shown in Figs. 5(a) and 5(b) for different values of
Ã. Note that the trajectories in these figures are discontinu-
ous at j=0. The trajectories during the noncontact phase
sj.0d are shown by smooth curves. During the contact
phasesj=0d, j8 is mapped from negative value to zero due
to plastic impact. Figure 5(c) shows the trajectories of ten
consecutive impact of the aperiodic solution whenÃ=4.8.

The numerical results in Fig. 4 indicate that the impact
period is identical to the actuation period of the thermal ac-
tuator only when 0.5øÃø2.6. In addition, the impact pe-
riod is always a multiple of actuation period whenÃ is out-
side of the period doubling and aperiodic regions. Since the
motion of the impact head in these period doubling and ape-
riodic regions is complex or unpredictable, we restrict our
analysis in the frequency range 0.5øÃø2.6. WhenÃ=1,
the impact head vibrates in the vertical direction with a fre-
quency close to the resonance frequency of typical electro-
thermal actuators. It should also be noted that even if the

actuation frequency is in the range where periodic impact
exists, i.e., 0.5øÃø2.6, periodic motion of the slider is not
assured. Two issues come into play as far as the periodicity
of the slider is concerned. The first is the interaction of the
slider with the impact head in the horizontal direction, which
will be studied next. The second is the contact duration. The
numerical results in Fig. 6 show that the contact duration in
an impact period vanishes for 2øÃ,2.6. Physically, this
means the impact head leaves the slider immediately after
impact because the vertical spring is under tension. In this
case, the motion of the slider is governed by an impulse
force and cannot be predicted by our continuous contact
model. This phenomenon can be eliminated using an adhe-
sion model for the contact interfaces. Since adhesion is not
considered in this work, only actuation frequencies in the
range 0.5øÃ,2 will be considered below.

IV. SLIDER DYNAMICS FOR 0.5 ÏÃ<2

The preceding section shows that the vertical motion of
the impact head is periodic as long as the actuation frequen-

FIG. 4. Bifurcation diagram summarizing the periodic motion of the impact
head in the vertical direction:(a) 0,Ã,1, (b) 1øÃ,10. Dots are nu-
merical data. Number above branch indicates the impact period, which is the
impact duration normalized with the actuation period of the thermal actuator
s2p /Ãd. The regions where period doubling occurs are enclosed by dotted
ellipses.

FIG. 5. Trajectories of the vertical motion of the impact head under different
actuation frequencies of the thermal actuator.(a) Periodic solution,Ã=2;
(b) period doubling,Ã=2.9; (c) aperiodic solution,Ã=4.8.

FIG. 6. Contact duration vs angular actuation frequency. Here the contact
duration is normalized by actuation periods2p /Ãd.
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cies of the thermal actuator are confined within 0.5øÃ,2.
In this range, the normalized impact period is 2p /Ã and
impulsive impact does not exist. When the vertical motion
reaches its periodic state, the impact head separates from the
slider at t2=s2n−1dp, wheren is a positive integer, since
sinÃt2=0. Substitutingt2=s2n−1dp into Eq. (4c), the next
contact occurs att3, whereÃ sint3=sinÃt3 andt3.t2. In
this section, the vertical motion of the impact head is as-
sumed to be in periodic state(i.e., 0.5øÃ,2) and the con-
ditions which favor the push or pull modes are studied. Pe-
riodic motion of the slider is also investigated.

The dynamics of the push/pull mode and the conditions
for periodic motion are governed by the interplay between
slip, stick, and reverse slip when the slider and the impact
head are in contact. Specifically, slip occurs when the impact
head has greater horizontal velocity than the slider, i.e.,
z8.s8. Conversely, reverse slip is defined byz8,s8. When
the slider and the impact head reach the same velocity during
contact, sticksz8=s8d will occur provided that the condition
z9=s9 is also satisfied.

Suppose the slider and the impact head both have posi-
tive velocity in the beginning of an impact cycle andz8.s8.
Friction force will impede the motion of the impact head
while increases the velocity of the slider. If the contact con-
dition changes from slip to reverse slip during impact, the
slider could maintain positive velocity when the impact head
separates from the slider. In this case, the slider will have a
net positive displacement at the end of the impact cycle and
is hence in push mode. On the other hand, the slider and the
impact head would move together with identical negative
velocity if the contact changes from slip to stick. This could
cause pull mode, i.e., negative net displacement to the slider.
The conditionz9=s9, together with Eqs.(1e), (3e), and(3f)
implies that stick occurs if

f1 − aks1 + bdgsinÃt ø z ø f1 + aks1 + bdgsinÃt.

s5ad

Similarly, slip or reverse slip will occur whenz8=s8 if
z9.s9 or z9,s9, respectively. These conditions correspond
to

z , f1 − aks1 + bdgsinÃt sslipd, s5bd

z . f1 + aks1 + bdgsinÃt sreserve slipd. s5cd

Based on Eqs.(5a)–(5c), the equations of motion in(3e) and
(3f) can be simplified to piecewise linear differential equa-
tions, which are

Slip. z8.s8 or z8=s8 and Eq.(5b) is satisfied:

az9 + z = s1 − akdsinÃt, s6ad

s9 = bk sinÃt. s6bd

Reverse slip. z8,s8 or z8=s8 and Eq.(5c) is satisfied:

az9 + z = s1 + akdsinÃt, s7ad

s9 = − bk sinÃt. s7bd

Stick. z8=s8 and Eq.(5a) is satisfied:

as1 + 1/bdz9 + z = sinÃt. s8d

The behavior of the solution depends on four parameters
sa ,b ,k ,Ãd. The definitions of these parameters are summa-
rized in Table II. To evaluate the effects of these four param-
eters on the dynamics of the slider, Eqs.(6)–(8) are numeri-
cally integrated assuming vertical motion of the impact head
is periodic (i.e., 0.5øÃ,2). The initial conditionss8s0d
=ss0d=z8s0d=zs0d=0 are used. Each simulation is carried
out with fixed values ofa, b, andk. A total of 720 simula-
tions are carried out. The values ofa, b, andk used in these
simulations are k=0.1,0.4; b=0.1,0.5,1,1.5; a
=0.1,0.5,1,1.5,2,2.5,3,3.5,4.Ã is swept from 0.5 to 2
with increment of 0.1. Numerically, the slider motion is said
to be periodic if the net displacement between two actuation
cycles differs by less than 10−4. Unlike the vertical motion,
where periodic motion is achieved within 30 impact cycles,
the number of impact cycles required to achieve periodic
slider motion depends on the values of the parameters and is
sensitive to the initial conditions. The number of cycles re-
quired to reach periodic state varies from 300 to 105 cycles.
To ensure convergence of periodic solutions, we also monitor
Poincare’s section t=2mp /Ã of the phase space
sDsm,s8 ,z ,z8 ,td, where

Dsm = sft = 2sm+ 1dp/Ãg − sst = 2mp/Ãd, mù 1

is the displacement increment inmth actuation cycle.
Figure 7 shows four examples of our integration results

for sk ,bd=s0.1,0.1d, (0.1,1.5), (0.4,0.1), and (0.4,1.5), re-
spectively. Push mode, shown as dots in Fig. 7, is obtained if

TABLE II. Governing parameters.

Parameter Definition Interpretation

a kv /kh Relative impact compliance
b m/M Relative mass
k m tanu Normalized friction force
Ã vÎm/kv Normalized vibration frequency

FIG. 7. Integration results of push and pull modes when the slider is in
periodic state. Push mode is denoted by dots. The separation between the
push and pull modes is represented by a dashed line. Different parameters of
k and b are used for the numerical integration:(a) k=0.1, b=0.1; (b) k
=0.1, b=1.5; (c) k=0.4, b=0.1; (d) k=0.4, b=1.5.
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the displacement increment in one impact cycleDs is posi-
tive. Pull mode is obtained if the displacement increment is
negative. It should be noted that periodic solution exists for
all combinations ofsa ,b ,k ,Ãd. Therefore, the push and pull
modes in Fig. 7 are evaluated based on the displacement
increment in one period. Our numerical results show the fol-
lowing important result: there exists a curve with equation

1

Ã2F 1

ak
−

− b + 1/b

22sk + 1d G =
1

k
s9d

in the s1/Ã2,1 /akd plane such that all push modes lie to the
left of this curve whereas all pull modes lie to the right. The
manner by which Eq.(9) is found will be explained below.
Our numerical results also show that increasingÃ anda will
provide a larger operation window for the push mode. This is
because increasing the actuation frequency,Ã, decreases the
stick duration. Decreasing the stick duration will result in
smaller negative slider displacements which favor the push
mode. Likewise, decreasing the actuation frequency tends to
suppress the push mode.

An important insight can be gained by studying the case
a=kn /kh→0, where the horizontal impact compliance van-
ishes. The absence of the horizontal spring implies that the
impact head has the same motion as the impact element(the
cart in Fig. 2) and hence multiple horizontal impacts within
one actuation cycle cannot occur. Indeed, substitutinga=0
into Eqs.(3b) and (3e) the horizontal motion of the impact
head both in contact and noncontact phases is

z = sinÃt. s10ad

Numerically, we found that the slider motion will always be
driven into a periodic motion, irrespective of the initial con-
ditions, as long as the vertical motion of the impact head is
periodic (i.e., 0.5øÃ,2). This condition will be assumed
in the discussion below. Substitutea=0 in Eqs. (3e) and
(5a), it is easy to show that(5a) is satisfied so that stick will
always occur whenever the slider and the impact head reach
the same velocity during contact. In addition, the slider ve-
locity during stick contact is

s8 = Ã cosÃt. s10bd

When the slider sticks to the impact head, both the governing
equations,(5a) and (8), are satisfied until separation occurs
when sinÃt=0, i.e., t=s2n−1dp /Ã. Using Eq.(10b), the
velocity of the slider at the instant of separation iss8=−Ã. If
s8=−Ã is used as the initial condition att=s2n−1dp /Ã,
then it can be directly verified that the slider motion is peri-
odic. Thus, this implies that if stick occurs, then a periodic
motion will result after separation. To understand our nu-
merical results which show that the slider motion will always
be driven into periodic motion, we demonstrate that all initial
conditions will eventually lead to sticking of the slider to the
impact head. Consider two scenarios in Fig. 8, wheres8 /Ã is
plotted against the normalized timeÃt /p. In Fig. 8, the
dotted sinusoidal curve is Eq.(10b) and is the velocity of the
impact head. The first scenario corresponds to the slider
starting with a velocity higher than the impact head at
Ãt /p=1, when separation has just occurred. After separa-
tion, the slider moves with constant velocity until contact

occurs atÃt /p.2. Note that contact cannot occur any ear-
lier, i.e., 1,Ãt /p,2 since the vertical spring will be in
tension. Since the slider velocity is greater than the velocity
of the impact head(reverse slip), friction force will lower the
slider velocity until the next separation, which must occur at
sinÃt=0. If the slider velocity is still higher than the impact
head during the next contact, then friction force will again
lower its velocity. This process continues until the slider ve-
locity is smaller than the impact head(see Fig. 8, where one
cycle is needed to satisfy this condition). Once the slider is
slower than the impact head, slip will occur in the next con-
tact. That is, the friction force will increase the slider veloc-
ity until it reaches the velocity of the impact head. Once this
condition is met, stick occurs and periodic motion will occur
after separation as shown earlier. For the second scenario, the
slider velocity is smaller than the impact head atÃt /p=1.
The friction force increases the slider velocity until stick oc-
curs after which the slider motion will be periodic. There-
fore, one expects that all initial conditions will lead to peri-
odic motion, which is consistent with our simulation results.
This fact allows us to show that only pull mode can occur in
a system without horizontal impact compliance(assuming
periodic motion has been achieved). Indeed, the slider moves
with constant velocity −Ã during the noncontact phase and
hence the displacement increment during this phase is
−ÃDt1, whereDt1 is the duration of the noncontact phase
and Dt1ùp /Ã. In contact phase, the slider starts with ve-
locity −Ã while the horizontal velocity of the impact head is
somewhere betweenf0,Ãd, depending on the position of the
impact element. Thus slip will always occur in the beginning
of an impact cycle and the friction force will always increase
the slider velocity. As a result, the magnitude of the displace-
ment increment of the slider during contact is always less
than ÃDt2, whereDt2 is the contact duration which must
be less thanp /Ã. Therefore, the displacement increment
of a periodic slider motion Dsp is bounded by
Dsp,−ÃDt1±ÃDt2,0. To summarize,a=0 always results
in pull mode; thus, increasinga will favor the push mode.
Furthermore,horizontal impact compliance is necessary for
push mode to occur.

The separation between the regions of push and pull

FIG. 8. Slider driven into periodic state. Shadowed regions indicate the
noncontact phase. Two different initial slider velocities are considered,s8
=−1.5Ã and s8=1.5Ã at t=p /Ã. Slider velocity as a function of time is
plotted as solid lines. Dotted line is the horizontal velocity of the impact
head. Dashed line is the periodic solution.bk /Ã2=1 has been used in this
simulation.
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mode on thes1/Ã2,1 /akd plane is shown as dashed lines in
Fig. 7. To find an equation of this separation criterion which
applies to all combinations ofsa ,b ,k ,Ãd, an equation of the
form s1/ak−C1d /Ã2=C2 is used to fit the integration re-
sults, whereC1 and C2 are both functions ofk and b. If
s1/ak−C1d /Ã2,C2, the slider is in push mode. When
s1/ak−C1d /Ã2.C2, the slider is in pull mode. This model
satisfies the requirement that whena→0, the slider is al-
ways in pull mode sinceÃ is bounded between 0.5øÃ
ø2. Using a least-square fit, it is found thatC1<f−b
+1/bg / f22sk+1dg and C2sk ,bd<1/k. Thus, the curve
which separates push and pull mode is given by Eq.(9).

Equation(9) gives reasonable answers to three extreme
cases, namely,k→` (infinite friction), b→` (massless
slider), andb→0 (massless impact head). Whenk→`, the
separation curve approaches the two axes, 1/Ã2=0 and
1/ak=0, and the push mode disappears. This is because
when impact friction is large, the slider and the impact head
sticks to each other throughout contact. The slider has nega-
tive velocity when separation occurs; resulting in a negative
displacement increment after one actuation cycle. For the
caseb→`, i.e., m@M, push mode also disappears. In this
case, the direction of motion of the slider follows the impact
head. Because the slider and impact head is in contact during
forward motion, the distance travelled by the slider during
forward motion is less than the backward motion during the
noncontact phase. Conversely, pull mode will vanish when
b→0.

Two examples of trajectories of the periodic solutions in
the velocity planesz8 ,s8d are shown as solid lines in Fig. 9.
Figure 9(a) shows a push mode trajectory witha=2.5, Ã
=1.5,b=1.5, andk=0.4. When the slider separates from the
impact head, it moves with constant velocity. Therefore, the
trajectory in the noncontact phase is a horizontal line[dotted
line in Fig. 8(a)]. Regions in the velocity plane where slip
and reverse slip occur are separated by a dashed line,z8

=s8, in Fig. 9(a). The trajectory shows that contact starts with
reverse slip and that the slider and the impact head both have
positive velocities. Friction force reduces the velocity of the
slider and increase the impact head velocity until stick oc-
curs. During contact, the velocity of the slider remains posi-
tive and results in a positive displacement increment ofDs
=1.1796. For the pull mode in Fig. 9(b), the parameters are
a=0.5, b=1.5, k=0.4, and Ã=0.6. The trajectory starts
from slip and ends at reverse-slip contact with a negative
velocity when the slider separated from the impact head,
which causes negative displacement during the noncontact
phase. The displacement increment of this periodic solution
is Ds=−3.5512. These two examples indicate that the push/
pull mode is primarily controlled by the velocity of the slider
at the instant of separation. This result is observed in all our
numerical simulations.

V. DEVICE CHARACTERIZATION AND MODEL
VERIFICATION

Electrothermal vibromotors with different configurations
were fabricated using a three-layer polysilicon surface mi-
cromachining technology. Details can be found in Pai and
Tien.10 The slider and the electrothermal actuators are real-
ized from the second polysilicon layer which has thickness
of 2 mm. The slider is composed of two beams which are
170 mm long and exhibits a 40mm travel range. Beam width
is varied from 5mm to 45mm. The impact angle is fixed at
45° for all vibromotor configurations. The shape of the im-
pact head is round as shown in the inset of Fig. 10. The
motion of the slider is recorded at 30 frames per second
using a microscope. The electro thermal actuators are driven
by ac waveform with zero dc bias. The input current has
frequency ranges from 1 Hz to 15 kHz. It can be shown
that the actuation frequencyv is twice the input current fre-
quency if no dc bias has been applied.11

The displacement of the slider in pull mode(5 mm wide
in each beam) is plotted against time in Fig. 10. The input
current frequency is 500 Hz. The measured displacement,
denoted as dots in Fig. 10, is in good agreement with the
prediction of our model withÃ=0.9, a=0.1, b=0.9, andk
=0.4 with 30 impacts. The choice of 30 impacts is deter-
mined by these parameters. Specifically, the slider moves
40 mm after 30 impacts with these parameters. Figure 10
shows that the slider has not reached its periodic state within

FIG. 9. Trajectories of the periodic solutions:(a) push mode,(b) pull mode.
Solid lines are the trajectories in contact phase. Dotted lines are the trajec-
tories in noncontact phase. Dashed lines denote the condition when the
impact head and the slider stick together.

FIG. 10. Displacement of the slider with round impact head. Driving volt-
age is 8 V. Dots are testing results. Solid line is integration results. The inset
shows the shape of the impact head of the device under test.
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30 impacts since the displacement increment is not linear
with time. This is consistent with our numerical simulations
which show that it takes at least 300 impacts before the slider
can achieve periodic motion. It should also be noted that
these fitting parameters may not be unique. Specifically,k

=0.4 is chosen because the impact angle is 45° and the co-
efficient of friction of polysiliconm is taken to be 0.4.16 The
impact amplitude is chosen to beu=0.11mm, which is about
one-tenth of the initial gap between the impact head and the
slider. This implies that the deflection of the actuator is about
1.11mm, which is in the range of typical actuator deflec-
tions. The stiffness of the vertical spring is determined by
choosing the resonance frequency of the impact head in the
vertical direction to be 2pÎkn /m=2.94 kHz, which is on the
order of typical resonance frequencies of electrothermal ac-
tuators. Since the density of polysilicon isr=2330 kg/m3,
the mass of half the slider can be calculated asM =3.96
310−3 mg and that of the impact head has been assumed to
be m=0.036mg.

Figure 10(a) shows that, for the same input current fre-
quency of 500 Hz, the average slider speed in the character-
ization [dots in Fig. 11(a)] increases with the applied input
voltages. The average speed is defined as the total distance
traveled by the slider divided by the total travel time. The
total travel distance is fixed at 40mm. According to the
model in Eqs.(3a)–(3f) and its normalization, the actual dis-
placement is directly proportional to the impact amplitude.
When fitting the model into the characterization results with
Ã=0.9, a=0.1, b=9, andk=0.4, it is necessary to use dif-
ferent impact amplitude for different driving voltages. The
impact amplitude used to fit the data in Fig. 11(a) is given in
Fig. 11(b). As expected, increasing the applied voltage in-
creases the amplitude of the impact element proportionally.

VI. DISCUSSION AND CONCLUSION

Our results show that periodic solution with actuation
frequency is possible if 0.5,Ã,2. In addition, the condi-
tions for push/pull mode to occur in this regime
s0.5,Ã,2d is

l , 1 spush moded. s11ad

l . 1 spull moded, s11bd

where l=sk /Ã2d(s1/akd−fs−b+1/bd /22sk+1dg). Figure
12 shows the displacement increment of one actuation cycle
in periodic state as a function ofl for k=0.4 andb=1.5. It
is found that the magnitude of the displacement increment
increases asl approaches 1. There is an abrupt velocity
change atl=1. As a result, although the slider moves with
higher speed whenl is closer to 1, any fabrication variation
could easily affect the property of contact and can cause an
undesirable change of push/pull mode.

In conclusion, a continuous impact model based on Cou-
lomb friction during the contact phase has been developed to
simulate the dynamics of micromachined vibromotors. To
simplify the model, the spring stiffness of the impact head is
treated as phenomenological parameters. We showed that the
horizontal impact compliance is necessary for the existence
of push mode. Even with this simple model, the dynamics of
the slider motion is extremely complicated. Our formulation
shows that slider motion is controlled by four dimensionless
parametersÃ, a, b, andk. We demonstrated that there are
regions in this parameter space where the motion of the im-
pact head is periodic and has the same period as the thermal
actuator. We also showed that there are regions in the param-
eter space where multiple impact as well as aperiodic solu-
tion can occur. Furthermore, we have also demonstrated the
existence of pull and push mode as well as periodic solution
and established a simple criterion for the achievement of
these modes. In general, the pull mode can be suppressed by
operation of the thermal actuator at a higher vibration fre-
quency, i.e., increasingÃ. Increasinga as well as decreasing
b and k also helps to suppress the pull mode. Finally, we
fabricated and characterized a BETV to verify the ability of
our model to predict pull mode. We hope our results can be
used for the reliable operation of micromachined vibromo-
tors.

FIG. 11. (a) Slider speed vs applied voltage. Dots are testing results. Solid
line is modeling results.(b) Impact amplitude used in the modeling.

FIG. 12. Displacement incrementsDsd as a function ofl whenk=0.4 and
b=1.5. The separation between push and pull modes is plotted by a dashed
line, l=1.
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