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Short Paper

KINEMATIC ANALYSIS OF MECHANISMS WITH ROLLING
PAIRS USING MATRIX TRANSFORMATION METHOD

Jyh-Jone Lee*, Chen-Chou Lin and Chun-Po Chen

ABSTRACT

An efficient procedure is presented for the kinematic analysis of mechanisms
with multiple Holonomic pairs. The matrix transformation method is used for model-
ing the high pair in the mechanism. Then, displacement constraints for two links in
rolling contact are derived using the line integral of the link contour. Finally, the
displacement constraints associated with the loop closure equations from the overall
transformation matrix can be obtained as a set of simultaneous equations for the analysis
of the mechanism. These equations can be solved via the numerical method. The
procedure is also illustrated by an example with parabolic and circular link shapes.
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equation.

I. INTRODUCTION

The analysis of mechanisms with higher pairs
is not a new topic. Much attention on this subject
has been paid to the analysis of cam-linkages, geared-
linkages, and linkages with ball-and-socket joints.
Traditionally, a linkage containing higher pairs is al-
ways analyzed by a reduction to an equivalent mecha-
nism with only lower pairs. Then, the vector loop
method is applied to find equations required for the
kinematic analysis. This is a useful approach for
mechanisms with kinematic pairs made up of regular
geometry. However, for kinematic pairs of irregular
geometry, the equivalent mechanism changes its pro-
portions as the configuration varies. The equivalent
mechanism approach may not be conveniently appli-
cable in solving those kinds of problems. Therefore,
various approaches have been developed, among
which the matrix method is most frequently used.
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Denavit and Hartenberg (1955) were the first to
introduce the matrix method to the kinematic analy-
sis of mechanisms. Sheth and Uicker (1971) used
the matrix method to analyze the mechanism, in which
dealing with the high pairs was separated from the
geometry of the link shape. Sheth et al. (1990) fur-
ther developed a generalized transformation matrix
for kinematic pairs of point contacts. Gutkowski
(1990) used a similar approach in Sheth ez al. (1990)
to analyze one-degree-of-freedom spatial mechanisms
with higher pairs. It can be noted that compared with
the vector loop approach, the matrix method has the
advantage of prescribing the geometry of two paired
bodies in analytical form or discretized geometric
model where link shapes are described by surface
patches such as Bezier surfaces. Such mechanisms
can be efficiently formulated in a form that is ready
for computer-assisted analysis. '

In analyzing planar mechanisms with higher
pairs, Paul (1979) used a parametric equation to de-
scribe the cam link profile and derive an additional
equation besides the loop closure equations. This ad-
ditional equation, namely “the fundamental auxiliary
equation,” in fact is the angular displacement con-
straint for the vectors in the loop closure equation.
In addition to cam pairs, for mechanisms with gear
or rolling pairs, the loop closure equations are
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supplemented by auxiliary equations that express the
no-slip condition at the contact point.

In this work, a different approach has been taken.
We employ the matrix method for the analysis of
mechanisms with higher pairs; especially, a mecha-
nism with rolling pairs. It is shown that by suitably
defining the coordinate systems on the links, joint
parameters as well as parameters for rolling con-
straints can be identified clearly and systematically.
Subsequently, the overall loop closure matrix and
rolling constraints can be obtained in the position-
level form. These simultaneous equations can then
be solved via the analytical or numerical method. It
can be noted that the fundamental auxiliary equation
in Paul’s method is the equation derived from the
orientation submatrix in the overall loop-closure
matrix. This paper is arranged as follows. We will
first review the method for establishing the transfor-
mation matrix for kinematic pairs in point contact.
Then, the constraint for two bodies in planar rolling
contact will be established in position form rather than
in velocity form. Finally, an example will be used to
illustrate the procedure for the position analysis of
mechanisms with rolling pairs.

II. REVIEW OF THE TRANSFORMATION
MATRIX FOR A KINEMATIC PAIR IN
POINT CONTACT

In Sheth et al. (1990), the transformation for two
objects in point contact can be established as follows.
As shown in Fig. 1, two links, i—1 and i/, are in con-
tact at a point. Let the contact point on link i—1 be A
and on link i be B. A coordinate system (xyz);.; is
defined and attached to link i—1 while a different co-
ordinate systems (uvw); is defined and attached to link
i. Meanwhile, two intermediate moving coordinate
systems are defined at the position of the contact
point, one denoted by [£;_;, (r;,_1Xt;-1), B;_1], is placed
at point A and the other denoted by [¢;, (n;x¢t;), n;],
is placed at point B. Therefore, the transformation
pair matrix regarding the point contact from system
(uvw); to system (xyz),_; can be written as

i—lPl_:i—l TAATBBTi ( 1 )

where ~'T, is the transformation matrix from the
moving coordinate system at A to the system (xyz);_1;
5T, the transformation matrix from the system (uvw),
to the moving coordinate system at B; and *T the
transformation matrix from the moving coordinate
system at B to the moving coordinate system at A.
The moving coordinate system can be set up accord-
ing to the geometry of the contact surface via the dif-
ferential geometry method in Thomas (1969). De-
tails of derivation can be referred to Sheth ez al.
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Fig. 1 Choice of coordinate systems for two links in rolling con-
tact

(1990) and Gutkowski (1990). As can be seen in the
matrix method, the parameters involved are the link
parameters and joint variables. Thus, these param-
eters will be further cross related when other criteria
regarding the operating conditions of the mechanism
are introduced; for example, if two links are in pure
rolling and/or sliding contact. In what follows, we
shall consider the condition for two links in pure roll-
ing contact.

I1I. TREATMENT OF THE KINEMATICS
OF ROLLING PAIRS

It is well known that if two bodies are in rolling
contact, the constraint imposed upon the two bodies
is non-holonomic. Many studies of the kinematics
of two bodies in rolling contact can be found in the
field of robotic grasping and fine motion control
(Agrawal and Pandravada, 1993; Bottema and Roth,
1979; Cai and Roth, 1986; Chen and Kumar, 1995;
Cole et al., 1988; Kerr and Roth, 1986; Li and Canny,
1990; Montana, 1988). Generally, the rolling con-
straints are expressed in velocity form and cannot be
integrated. However, in the case of planar contact,
the velocity level constraints can be integrated and
yield position level constraints. The problem becomes
holonomic. Cai and Roth (1986) studied the instan-
taneous kinematics for a general planar motion be-
tween two bodies in point contact. The contact ve-
locities of two bodies are expressed in terms of sur-
face curvatures of the two bodies. It can be noted
that if the curvatures are not constants, then the equa-
tions cannot explicitly be integrated, either. Chen and
Kumar (1995) performed the analysis of two planar
robots with rolling contact. Agrawal and Pandravada
(1993) studied rolling contact kinematics similarly
using a line and a circle. They both limited the study
to simple geometry as a line contacting a circle. In
this study, complex geometry of the objects in roll-
ing contact is considered. The parameter of the con-
straint for rolling contact is expressed in terms of the
parameter used in the transformation matrix. As a
result, a set of position equations consisting of the
rolling constraints and the loop-closure equations are
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Fig. 2 Path traveled by the contact point on each link

obtained.

As shown in Fig. 2, two links, i—1 and { are in
rolling contact at point P. Let X;_; and X; be the co-
ordinate system fixed on the link i—1 and i,
respectively. It can be noted that the real expression
of velocity constraint for the two objects in rolling
contact may vary in form depending on the param-
eter and coordinate system defined. Let the contact
point be expressed in arc length coordinates and the
magnitude of the contact speed along the surface of
body i—1 and i be denoted as D;_; and D;, respec-
tively. Then, the velocity constraint for the rolling
contact becomes:

Di=Di—1 (2)

Integrating each term in the above equation along the
contour of each individual link, we can have the con-
straint in position form as

D=D;, 3)

Eq. (3) is a general form for the displacement con-
straint of rolling contact. It implies that for two links
in rolling contact, the length of the path of contact
point travelling along each individual body will re-
main the same. Hence, we can alternatively rewrite
the form as the line integral expressed in terms of the
surface parameter of the link contour. This yields:

b
Diy= [ Wil ora (4a)

and

D= f Vi or (4b)

where fi is the equation of the link contour (*); f’ is
the derivative of f with respect to the surface
parameter; and (a, b), and (c, d) are respectively the
set of initial and final positions of contact point on
link i—1 and i. Eqs. (4.a and b) also represent the
length of the path of the contact point traveling along

(b)

Fig. 3 (a) A four-link mechanism having parabolic and circular
link shapes; (b) Coordinate systems and initial position de-
fined on the mechanism

each individual body. Results of the equations can
be obtained analytically for a simple geometry con-
dition or numerically for a complex one. It can be
seen later, since link parameters have been defined
for the transformation matrix usage, parameters for
rolling constraint as expressed by Eq. (4) can be as-
sociated with the link parameters. Thus, combining
Eq. (4) and the loop closure equations from the trans-
formation matrix method, we can obtain sufficient dis-
placement equations for the analysis of mechanism
with rolling pairs.

IV. KINEMATICS OF MECHANISM HAVING
ROLLING PAIRS

In this section, we assume the shapes of the links
in rolling contact are parabolic and circular curves.
As shown in Fig. 3(a), a four-link mechanism has
two rolling pairs at A and B. The profile of link 2 is
parabolic while the shape of link 3 and 4 are both
circular. The coordinate systems are defined as shown
in Fig. 3(b). Denote [, as the horizontal distance
between O4 and Og; [}, as the vertical distance be-
tween O4 and Op; [, as the distance between two
origins of (xyz), and (uvw),; and [, as the distance
between two origins of (xyz)s and (uvw),. For the
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system presented, the shape matrices are

100 -1, 010 -0
o101, 1100 o
51"0010’S2‘001o’

000 1 000 1

IR 050
= — iy
$3=l0 01 0| adSa=1g o 1 o

0001 000 1

Assume that the surface equation of link 2 with re-
spect to the coordinate system (xyz), is y=ax’. The
pair matrices from (uvw); to (xyz), and from (uvw)y
to (xyz); can be established according to the method
described in Sheth er al. (1990). The results are as
follows.

INT+4a%%%? 0 —2ax/V1+4a%x? x
2p = 20x/W1 +4a?x%2 1 IW1+4a%x% ax?
’ 0 0 1 0

0 0 0 1
10 0 0f|-sinfy cosb; 0 O
01 06 0 0 0 1 0
0 0 -1 0| cosf,; sinf,; 0 —ry
0 0 0 1 0 o 0 1
(5a)
and
—sinfy, 0 cosBy, r;cos0s3,
p = cosfy, 0 sinfy, risinfs,
4= 0 1 0
0 0 0 1
10 0 0f|-sinfs cos6, 0 0O
01 0 0 0 0 1 0
0 0 -1 0| cos§, sin8, 0 —ry
0 0 0 1

0 0 0 1

(5b)

where 6,3 is the angle measured from axis u3 to the
contact point A, 834 the angle measured from axis x3
to the contact point B, 84 the angle measured from
axis u4 to the contact point B, r3 the radius of link 3
and 7, the radius of link 4. After the shape matrices
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Fig. 4 Plot of joint variables versus input 6,

and pair matrices are established, the loop closure
equation can be written as

[S1 'P2(0)]1[S7 *P3(x, 023)1[S3 *P4y(634, O4)]
-[S4 “P1(65)]=I (6)

where 65 is the joint variable at Op. On the other
hand, by using Eq. (4), the rolling constraints for the
pairs between link (2, 3), and (3, 4) are,

J\. Y 1 +(2at)2dt—r3(023—623’1-):0 (7a)

r3(034— 034, )—14(64— 0,4, )=0 (7b)

where the subscript in (#) ; represents the initial value
of (#). Thus, combining the three equations from the
loop closure matrix and two rolling constraints, it is
possible to solve for (x, 63, O34, 64, 05). A set
of numerical data are given as follow: [|,=7, [;,=2,
b= 1,=2, r3=1, r4=4 and a=-0.5; initial values x;=0,
0,3, =m, 034 =0, and 6, =n. The numerical analysis
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is performed via the Newton-Cotes method. Results
of the analysis as variables (623, 034, 6;, 65) versus
input 8, are shown in Fig. 4.

V. CONCLUSION

This paper presents a systematic method for the
kinematic analysis of planar mechanisms with roll-
ing pairs. It is shown that by using the matrix method,
the link parameters and joint variables can be clearly
identified and modeled. The rolling constraints can
also be obtained easily using the links parameters.
Thus, combining the loop closure equations with the
rolling constraints, the set of simultaneous equations
required for the kinematic analysis is readily
achieved. These displacement equations can be
solved via the numerical method. It is hoped that this
work can be helpful in the analysis of mechanisms
with rolling pairs.
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NOMENCLATURE

D; length of the path of the contact point travel-
ing along the surface of two bodies in rolling
contact

D;_, magnitude of the contact speed along the sur-
face of two bodies in rolling contact

“lp;  transformation pair matrix regarding the point
contact from system i to system i—1

4Ty transformation matrix from the coordinate sys-
tem B to the coordinate system A

0 joint angle
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