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Impact of inerter nonlinearities on vehicle suspension control
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This paper discusses the nonlinear properties of inerters and their impact on vehicle suspension control.
The inerter was recently introduced as an ideal mechanical two-terminal element, which is a substitute
for the mass element, where the applied force is proportional to the relative acceleration across the
terminals. Until now, ideal inerters have been applied to vehicle, motorcycle and train suspension
systems, in which significant performance improvement was achieved. However, due to the mechanical
construction, some nonlinear properties of the existing mechanical models of inerters are noted. This
paper investigates the inerter nonlinearities, including friction, backlash and the elastic effect, and their
influence on vehicle suspension performance. A testing platform is also built to verify the nonlinear
properties of the inerter model.

Keywords: inerter; vehicle suspension; performance; nonlinear; optimisation

1. Introduction

The analogy between mechanical and electrical systems is well known. By comparing the
dynamic equations, there are two analogies, namely the ‘force-voltage’ and ‘force-current’
analogies between the mechanical and electrical networks. In the ‘force-current’ analogy, the
spring, damper and mass of mechanical systems are analogue to the inductor, resistor and
capacitor of electrical systems. However, it is noted that one terminal of ‘mass’ is always
grounded, such that the electrical networks with ungrounded capacitors do not have a direct
mechanical analogy with springs, dampers and masses. As a result, it potentially narrows the
class of passive mechanical impedances that can be physically realised [11]. It was from the
appreciation of the gap in the old analogy between mechanical and electrical networks that a
new mechanical element, called inerter, was proposed [12,14]. An inerter is an ideal mechan-
ical two-terminal element, which is a substitute for the mass element in mechanical/electrical
analogy, with the defining equation as follows:

F = b
d(ν2 − ν1)

dt
, (1)
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576 F.-C. Wang and W.-J. Su

in which F is the applied force and b the inertance of the system, while ν1 and ν2 are the
velocities of the two terminals.

With the introduction of inerters, all passive network impedance (admittance) can be
mechanically realised by three mechanical elements – springs, dampers and inerters. Conse-
quently, a broader use of passive network impedance (admittance) is allowed to achieve better
system performance. The first successful application of the inerter was to vehicle suspension
systems [11,13,16], where several layouts of inerters, dampers and springs were optimised
for various performance criteria. It was concluded that some layouts are more suitable than
others for particular performance criterion. In [9], the optimisation was further carried out by
using the Linear Matrix Inequalities method, in which all passive transfer functions with fixed
order were optimised for various performance measurements. The resulting passive networks
were then synthesised by the Bott–Duffin realisation method. It was shown that the system
performance can further be improved by allowing higher-order passive impedance, with the
drawback of very complicated network synthesis. The second application of inerter was to the
mechanical steering compensator of high-performance motorcycles [2], where the inerter was
used to replace a conventional steering damper to stabilise the system in both the ‘wobble’ and
‘weave’modes. The third inerter application was to train suspension systems [17], in which the
inerter was located in both the body–bogie and bogie–wheel connections. Significant perfor-
mance improvement was achieved, especially when employing an inerter between the bogie
and the wheel.

Inerters can be mechanically realised in various ways. Until now, two realisations of inerters
have been presented [9,11,17]. Due to the mechanical construction, some inerter nonlinearities
have been noticed [8,10,11]. In [11], the friction force and damping effect of inerters were
noted and used to simulate the frequency responses of a real inerter model. It was pointed out
that the experimental data matched better with the theoretical inerter by considering friction
forces. In [10], a model was proposed to take the backlash and elastic effect into consideration.
The parameters were then adjusted by comparing the time responses of the theoretical and
practical inerter models. In [8], a buffer network was placed in series with an inerter to
remove the nonlinear spiking of the force signals from the hydraulic testing rig. Through this
arrangement, the inerter device behaves as a damper around the crossover frequency and as
an ideal inerter in the intermediate frequency range, while at low frequencies it is dominated
by friction.

In this paper, a nonlinear inerter model is proposed by considering three nonlinear properties,
namely the friction, backlash and elastic effect. Based on the model, we discuss the influence
of inerter nonlinearities on vehicle suspension systems. This paper is arranged as follows:
in Section 2, three basic suspension layouts are introduced to evaluate the performance of
the quarter- and half-car models. In Section 3, a nonlinear inerter model is proposed by
considering three nonlinear properties. In Section 4, an experimental platform is built to verify
the nonlinearities of a ball-screw inerter model. The parameters of the nonlinear model can
be tuned by comparing the experimental and theoretical data. In Sections 5 and 6, nonlinear
inerters are applied to vehicle suspension analysis of the quarter- and half-car models. It is
shown that the suspension performance is slightly influenced by the inerter nonlinearities.
Finally, some conclusions are drawn in Section 7.

2. Vehicle suspension models

In this section, three basic suspension layouts are introduced to evaluate the performance of
the quarter- and half-car models.
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Vehicle System Dynamics 577

Figure 1. Suspension layouts.

2.1. Suspension models

Three kinds of basic suspension layouts, shown in Figure 1, are used for analyses. Among
them, S1 is the traditional suspension, while S2 and S3 are suspension models that employ ideal
inerters. It is noted that S2 is a basic parallel arrangement and S3 is a basic serial arrangement.

2.2. Quarter-car model

A quarter-car model is illustrated in Figure 2, with dynamic equations as follows:

msẑss
2 = F̂s − û, (2)

muẑus
2 = û − F̂r , (3)

where ‘ˆ’ represents the Laplace transform of the corresponding variables, while the tyre force
is F̂r = kt (ẑu − ẑr ) and the suspension force u depends on the suspension layouts:

For S1, û = (k + c · s)(ẑs − ẑu),

For S2, û = (k + c · s + b · s2)(ẑs − ẑu),

For S3, û =
(

k + b · c · s2

b · s + c

)
(ẑs − ẑu)·

The system transfer function matrix can be represented as

[
ẑs

ẑu

]
= G

[
F̂s

ẑr

]
=

[
G11 G12

G21 G22

] [
F̂s

ẑr

]
.

To measure the vehicle system performance, three performance indexes are defined as
follows [15]:

Figure 2. A general quarter-car model.
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578 F.-C. Wang and W.-J. Su

(1) J1 (ride comfort)

J1 = 2π
√

(V κ)
∥∥Tẑr→˙̂zs

∥∥
2

= 2π
√

(V κ)
∥∥sTẑr→ẑs

∥∥
2 , (4)

where Tẑr→ẑs
is G12 and ‖sG12‖2 is the H2 norm of the system sG12.

(2) J3 (dynamic tyre loads)

J3 = 2π
√

(V κ)

∥∥∥T ˙̂zr→kt (ẑu−ẑr )

∥∥∥
2

= 2π
√

(V κ)

∥∥∥∥1

s
Tẑr→kt (ẑu−ẑr )

∥∥∥∥
2

, (5)

where Tẑr→kt (ẑu−ẑr ) is kt (G22 − 1).
(3) J5 (dynamic load carrying)

J5 = ∥∥TF̂s→ẑs

∥∥
∞ , (6)

where TF̂s→ẑs
is G11 and ‖G11‖∞ is the H∞ norm of the system G11.

In equations (4)–(6), V represents the driving velocity, while κ is the road roughness parameter.
The parameters are set as V = 25 m/s and κ = 5 × 10−7 m3 cycle−1 for performance analyses.
It was shown in [11] that system performance can be improved by adopting inerters into the
suspension design. For example, setting the parameters of ms = 181.75 kg, mu = 25 kg, kt =
120 kN/m [1], J1 is improved by 13.75% (S2) and 18.74% (S3), and J3 is improved by 8.28%
(S2) and 16.26% (S3), while J5 is improved by 46.44% (S2) and 33.06% (S3) (Table 1). It
is noted that for J1 and J3, the achievable performance is better with the serial layout (S3),
while for J5 it is better with the parallel layout (S2).

2.3. Half-car model

A half-car model is shown in Figure 3, with dynamic equations as follows:

msẑss
2 = F̂s − ûf − ûr , (7)

Iθ ẑθ s
2 = T̂θ − ûf lf + ûr lr , (8)

muf ẑuf s2 = ûf − F̂rf , (9)

mur ẑur s
2 = ûr − F̂rr (10)

Figure 3. A general half-car model. Subscript f represents the front wheel and r the rear wheel.
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Vehicle System Dynamics 579

where the tyre forces F̂rf = ktf (ẑuf − ẑrf ), F̂rr = ktr (ẑur − ẑrr ), and the suspension force ûi

depends on the suspension layouts:

For S1, ûf = (kf + cf s)(ẑs − ẑuf + lf ẑθ ), ûr = (kr + crs)(ẑs − ẑur − lr ẑθ ),

For S2, ûf = (kf + cf s + bf s2)(ẑs − ẑuf + lf ẑθ ), ûr = (kr + crs + brs
2)(ẑs − ẑur − lr ẑθ ),

For S3, ûf =
(

kf + bf cf s2

bf s + cf

)
(ẑs − ẑuf + lf ẑθ ), ûr =

(
kr + brcrs

2

brs + cr

)
(ẑs − ẑur − lr ẑθ ),

To analyse the half-car model, the time delay between the front and the rear road disturbances
is considered and represented as ẑrr = ẑrf · e−sτ with τ = L/V , where L is the wheelbase and
V is the forward velocity. Therefore, the system transfer function matrix can be rearranged as
follows:

[
ẑs ẑθ ẑuf ẑur

]T = H
[
F̂s T̂θ ẑrf ẑrr

]T = H ′ [
F̂s T̂θ ẑrf

]T
, (11)

in which H is a 4 × 4 transfer function matrix and H ′ a 4 × 3 transfer function matrix.
For the analysis of J1, considering the influence from the pitch angle ẑθ to the bounce ẑs

as ẑr = (lf + lr )ẑθ /2, J1 of the half-car model is defined as J1 = 2π
√

V κ(‖sTẑrf →ẑs
‖2 +

‖sTẑrf →ẑθ
‖2). Similarly, J3 of the half-car model is defined as J3 = 2π

√
V κ(‖(1/(s + a))

Tẑrf →ktf (ẑuf −ẑrf )‖2 + ‖(1/(s + a))Tẑrf →ktr (ẑur−ẑrr )‖2), where 1/s in Equation (5) is replaced by
1/(s + a) because the transfer functions Tẑrf →krf (ẑuf −ẑrf ) and Tẑrf →ktr (ẑur−ẑrr ) have no zero on the
origin. Hence the integral 1/s in Equation (5) is multiplied by a high-pass filter s/(s + a) for
numerical calculation. Setting a = 2π (i.e. 1 Hz) and Iθ = 200 kgm2, ms = 363.5 kg, muf =
25 kg, mur = 20 kg, lf = 0.775 m, lr = 1.265 m, ktf = 120 kN/m, ktr = 100 kN/m [1], the
performance improvement of the half-car model employing inerters is as follows: J1 improved
by 18.38% (S2) and 19.94% (S3), J3 improved by 10.78% (S2) and 16.66% (S3), and J5

improved by 48.82% (S2) and 38.48% (S3) (see Table 2). Similar to the quarter-car analyses,
the serial layout (S3) is better for J1 and J3, and the parallel layout (S2) is better for J5.

3. Nonlinearities of inerters

As a mechanical network element, an inerter can be realised in various ways. Until now,
two types of inerters have been presented, namely the rack-pinion inerter [11] and the ball-
screw inerter [8,17]. However, due to the mechanical construction, the nonlinearities of Inerter
models need to be considered [8,10,11]. In this section, three nonlinear properties of a ball-
screw inerter, including the backlash, elastic effect and friction, are discussed and a nonlinear
inerter model is proposed. Furthermore, a testing platform is introduced to experimentally
verify the parameters of the model.

3.1. Backlash and the elastic effect

The ball-screw inerter model built by the Mechanical Engineering Department of National
Taiwan University (NTU-ME) is illustrated in Figure 4. The working principle of the model is
described as follows: two equivalent forces F are applied on the bearing and the nut, such that
the screw rotates with the flywheel. When the shaft is twisted by θ , the nut has a translational
displacement x = p(θ/2π) , where p (in units of m/rev) is the pitch of the screw. Assuming
the inertia of the flywheel is I , the ideal inertance of the model is b = I (2π/p)2. As in the
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580 F.-C. Wang and W.-J. Su

Figure 4. The NTU-ME ball-screw inerter.

backlash and elastic effect of gears shown in [6,10], the backlash ε, the elasticity ks and viscous
damping cs of the ball-screw inerter can also be considered in the axial direction, as shown in
Figure 5.

The dynamic equations of the ball-screw inerter are similar to those of the rotating model
in [6]. Considering the displacement x in the axial direction, we define the compressed defor-
mation as xs = x1 − x3, the backlash displacement as xb = x3 − x2 and the linear displacement
between the two ports as xd = x1 − x2. Therefore, the corresponding force F can be expressed
as:

F(t) = ksxs + cs ẋs = ks(xd − xb) + cs(ẋd − ẋb).

In the point of view of contact, three regions are given:

A+ = {(xd, ẋd) : ksxd + cs ẋd ≥ ksε},
Ar = {(xd, ẋd) : |ksxd + cs ẋd| < ksε},
A− = {(xd, ẋd) : ksxd + cs ẋd ≤ −ksε}.

Three contact phenomena can be drawn from [6]:

• There can be persistent right contact (during a non-zero interval) only in A+ and persistent
left contact only in A−.

• If the system state (xd, ẋd) at the initial time t = t0 lies in A+ with xb(t0) = ε (right con-
tact), then xb(t1) = ε for all times t1 > t0 such that (xd(t), ẋd(t)) ∈ A+ for all t ∈ [t0, t1].
If (xd(t0), ẋd(t0)) ∈ A− with xb(t0) = −ε (left contact), then xb(t1) = −ε for all times
t1 > t0 such that (xd(t), ẋd(t)) ∈ A− for all t ∈ [t0, t1].

• Assuming that xb(t0) = ε or xb(t0) = −ε and the trajectory (xd(t0), ẋd(t0)) reaches the
release set Ar, contact is lost at the first time t1 > t0.

Figure 5. The inerter nonlinearities.
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Vehicle System Dynamics 581

Figure 6. (a) Ideal and (b) nonlinear inerter model.

3.2. Friction

Friction force exists in the contact surfaces. In order to reduce the friction, devices are often
lubricated to reduce the roughness of the contact surfaces. For the gear motion, friction happens
in the contact of the teeth. For the ball-screw, the contact between the nut and screw threads
is normally considered as rolling contact with a small friction coefficient [7]. However, for
the application of suspension systems, the friction force is not negligible because the normal
force on the contact surfaces is significant by preloading.

3.3. Inerter Model with nonlinear properties

Considering the aforementioned three nonlinearities, a nonlinear inerter model is proposed
in Figure 6b, where cs and ks represent the elastic effect, while ε is the backlash and f the
friction force.

4. Experimental design and results

In this section, a testing platform is established to verify the proposed nonlinear inerter model.

4.1. Testing platform

The testing platform is a motion table that is driven by a servo motor to control the displacement
of the suspension strut, as shown in Figure 7 [3,17]. The force of the device is measured by

Figure 7. The experimental platform.
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582 F.-C. Wang and W.-J. Su

an S-type load cell with the maximum load of 100 kg and resolution of 0.02 kg, while the
displacement is measured by a position encoder with an accuracy of 1 μm. Both the force and
displacement signals are transferred to a LabViewTM program to control the movement of the
platform and recorded.

4.2. Theoretical model

Considering the nonlinear properties, the nonlinear inerter model of Figure 6b is implemented
in SimulinkTM. The simulation results are then compared with the experimental data to tune
the corresponding parameters. In the simulations, there are two conditions to be considered,
namely the contact condition and the non-contact (backlash) condition, with the dynamic
equations as follows:
Contact condition:

cs(żr − żb) + ks(zr − zb) = b(z̈b − z̈w) + f . (12)

Non-contact condition (backlash):

cs(żr − żb) + ks(zr − zb) = 0. (13)

4.3. Parameter settings of the nonlinear inerter

The parameters of the nonlinear inerter model can be tuned to match the experimental data. The
inertance of the ballscrew shaft without the flywheel is 5 kg. A flywheel with corresponding
inertance of 108 kg will then be installed for test such that the total inertance is 113 kg. The
parameters ks , cs , ε and f are tuned using the least-squares steepest descent optimisation
algorithm [8] as follows:

min
ks ,cs ,ε,f

‖( f th(ks , cs , ε, f ) − f exp)‖2
2, (14)

where fexp is the force measured from the experimental platform and fth is the force calculated
from the theoretical nonlinear model.

In order to measure the friction f , the flywheel is uninstalled. The friction force f can then
be measured by giving a low-frequency sinusoidal input. Since the inerter force is negligible
in this case, the measured force accounts mainly for the friction. Setting the input as a cosine
wave of 0.1 Hz with amplitude of 1 mm, the measured displacement and force are shown in
Figure 8. It is noted that the friction f is almost a square wave, with the amplitude of 10 N
and the direction opposite to the sign of the velocity. So we consider the size of the friction f

as constant for the theoretical model such that Equation (12) can be rearranged as:

cs(żr − żb) + ks(zr − zb) = b(z̈b − z̈w) + fc · sign(żb − żw), (15)

with fc = 10 N.
Given an input r = cos(6πt), the parameters ks , cs and ε can be tuned to match the experi-

mental data, as shown in Figure 9. Using the optimisation algorithm of Equation (14), the best
fit between the experimental and the theoretical data is taken as follows: ks = 1000 kN/m,
cs = 3200 Ns/m and ε = 0.

From the optimisation results, there is no backlash in the ball-screw inerter. The reason is
that the ball-screw set is normally preloaded to eliminate the backlash in the manufacturing
process [19]. For instance, four preloading methods, namely the double nut preloading, spring
preloaded double nut, offset preloading and oversized-ball preloading, are described in [19].
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Vehicle System Dynamics 583

Figure 8. The analyses of inerter friction: (a) displacement, (b) force.

Figure 9. Parameter tuning of the nonlinear inerter model: (a) displacement, (b) force.

4.4. Frequency-domain responses

To compare the frequency responses of the experimental and theoretical models, the time-
domain data is transformed into the frequency domain using the method illustrated in [Section
6.2, 5]. With parameter settings as follows: f = 10 N, ks = 1000 kN/m, cs = 3200 Ns/m,
ε = 0 and b = 113 kg, the frequency responses from the displacement input to the force
output are shown in Figure 10. It is illustrated that the theoretical and experimental gains

Figure 10. Frequency responses from the displacement input to the force output. (a) Gain plot, (b) Phase plot.
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584 F.-C. Wang and W.-J. Su

match very well, with little difference in the phase plot. From Figures 9 and 10, it is noted
that the theoretical and practical inerter models have similar time- and frequency-domain
responses. Therefore, these parameter settings will be used to discuss the impact of inerter
nonlinearities on vehicle suspension design in the next sections.

5. The impact of inerter nonlinearities on the suspension design of a quarter-car
model

In this section, the nonlinear inerter model is applied to the performance analyses of the
quarter-car suspension systems. We consider the three basic suspension layouts of Figure 1,
with the linear inerter replaced by the proposed nonlinear inerter model of Figure 6b.

To investigate the performance benefits of the quarter-car model with a nonlinear
inerter, three scenarios are discussed to illustrate their individual and combined effects on
performance:

• inerter with the elastic effect only,
• inerter with friction only,
• inerter with both friction and the elastic effect.

5.1. Performance indexes by applying inerter with the elastic effect only

To consider the influence of the elastic effect, two settings of ks and cs are applied to illus-
trate their impact on suspension performance. The first is from the experimental results of
Section 4, where ks = 1000 kN/m and cs = 3200 Ns/m. The second is set twice as hard with
ks = 2000 kN/m and cs = 6400 Ns/m. Referring to Figure 6, an inerter with only the elastic
effect can be regarded as a linear model in which an ideal inerter is in series with a parallel
spring/damper set, such that the performance optimisation of this model is similar to the linear
cases. The optimisation of the performance measures is shown in Figure 11.

For J1, the performance benefit decreases with the elastic effect, and the performance is
degraded more by the softer elastic settings. For J3, the results are a little different from J1

optimisation, as shown in Figure 11c and d. For the serial arrangement (S3), the performance
improvement is slightly increased when k is less than 120 kN/m. Apart from that, the suspen-
sion performance is, in general, degraded by the elastic effect. For J5, it is noted that the softer
shaft has less performance benefits. As illustrated in Figure 11f, the serial arrangement (S3)
with elastic effect is even worse than the traditional suspension (S1) when k is about 55 kN/m.

5.2. Performance indexes by applying inerter with friction only

In this section, an inerter with friction only is applied to the quarter-car model. Using the non-
linear model described in Section 4.2, two methods are introduced to evaluate the performance
of the nonlinear systems.

5.2.1. Analysis methods

For linear systems, the performance measures can be evaluated by directly calculating the
H2 and H∞ norms of the system transfer functions, as shown in Equations (4)–(6). But for
nonlinear systems, they can not be directly obtained because the transfer functions are time-
varying and depends on the input. For example, considering the backlash of the inerter, the
transfer function when it is in the range of backlash is different from the transfer function when
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Vehicle System Dynamics 585

Figure 11. Performance measures of the quarter-car model employing inerter with the elastic effect: (a) optimal
J1, (b) J1 improvement (%), (c) optimal J3, (d) J3 improvement (%), (e) optimal J5, (f) J5 improvement (%).

it is in contact. Besides, it is also noted that the performance depends on the input signal. For
instance, when the disturbance is large, the suspension displacement and the spring force are
also large such that the friction force is relatively negligible. Since there is no backlash in the
ball-screw inerter from the experimental results, the analysis will be focused on friction and
the elastic effect.

Two methods are proposed to analyse the system performance with a nonlinear inerter.
The first is to approximate the nonlinear systems with linear transfer functions at specified
frequency such that the system performance can be approximately evaluated by finding the
integral and the maximum of system gains in the concerned frequency range. The second is
using time-domain responses to measure the performance indexes.
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586 F.-C. Wang and W.-J. Su

Method 1: approximated linear model method. For the first method, the vehicle model is
built in SimulinkTM. Using a white noise input (zr or Fs), the input and output time responses
are recorded and then transformed into the frequency-domain by fast Fourier transform (FFT).
Therefore, at a specified frequency ωi , the system gains of |Tẑr→ẑs

(jωt )|, |Tẑr→kt (ẑu−ẑr )(jωi)|
and |TF̂s→ẑs

(jωi)| can be directly calculated by dividing the FFTs of the output and input
signals and used to evaluate the performance indexes. Setting the concerned frequency range
from 0.01 to 500 Hz, the performance indexes can be approximated by the integral of the system
gains (for J1 and J3) or by searching for the maximum gain (for J5) in this range. Furthermore,
to verify the accuracy of this method, the performance indexes of linear systems, in which
ideal inerters are applied, are also estimated by this method and compared with the direct
calculation of system norms. It is shown that the results match each other. Therefore, the
performance of nonlinear systems can be estimated by this method.

Input signal. The input signals are set as follows:

• For J1 and J3, the input signal is zr . A white noise of zr is chosen with the amplitude in the
scale of 10 mm. The maximum and the mean absolute values of the signal are set as 13.91
mm and 2.53 mm, respectively, for simulations.

• For J5, the input signal is Fs . The maximum value of the signal is 1967 N with the mean
absolute value of 357.9 N for the quarter-car model. As for the half-car model where the
sprung mass is set twice as large as the quarter-car, the input signal Fs is also set twice the
size with the maximum value of 3934 N and the mean absolute value of 715.8 N.

Method 2: expected-value method. For the second method, to evaluate performance indexes
J1 and J3, a suitable input zr with the spectral density of Szr (f ) = κV/f 2 is generated to
simulate responses of the nonlinear system [11]. Then the performance indexes are calculated
by taking the expected values of the outputs. That is, the r.m.s. body vertical acceleration
discomfort parameter is J1 = √

E[z̈2
s (t)], and the r.m.s. dynamic tyre load parameter is J3 =√

(E[F 2
r (t)]), in which Fr = kt (zr − zu). It is noted that for linear systems, the expected

values equal to the system H2 norms, i.e. J1 = √
(E[z̈2

s (t)]) = 2π
√

(Vκ)‖sTẑr→ẑs
‖2, and J3 =√

(E[F2
r (t)]) = 2π

√
(Vκ)‖1/sTẑr→kt (ẑu−ẑr )‖2, as derived in [11].

To evaluate the performance index J5, we note that J5 in Equation (6), which repre-
sents the dynamic load carrying, can be regarded as the induced 2-norm of the systems as
follows:

J5 = ‖TF̂s→ẑs
‖∞ = sup

F̂s 
=0

‖ẑs‖2

‖F̂s‖2

= sup
Fs 
=0

‖zs‖2

‖Fs‖2
, (16)

where the last equivalence is from Paseval’s relations [18]. That is, the performance index
is considered as the maximum ratio of the output energy to the input energy, which can be
approximated from the time responses of the system.

Input signal. For J1 and J3, the input signal is zr . Considering the spectral density Szr (f ) =
κV/f 2 [11], a time sequence

zr =
N∑

i=1

Ai sin(ωi t + θ) (17)

is generated to represent the input, where N is the number of frequency points. The magnitudes
are taken as Ai = √

8πκV · 	ωi/ωi , In which 	ωi = ωi+1 − ωi and 	ωN = 	ωN−1, and the
phase θ is random such that the spectral density of zr is close to κV/f 2. In the simulation,
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Vehicle System Dynamics 587

Figure 12. Input signal zr for the expected-value method.

the frequency points ωi are set between 0.1 and 1000 Hz with intervals of 0.1 Hz, i.e. ωi =
[0.1, 0.2, 0.3, . . . , 1000] Hz. An input signal generated from Equation (17) is illustrated in
Figure 12. To verify the accuracy of this method, the performance indexes of the linear systems
are evaluated by this method and compared with the direct calculation of system norms. The
results are shown to match with each other. Therefore, the performance of nonlinear systems
can be estimated by this method.

For J5, the input signal is Fs . First, the peak frequency ω0 where the infinity norm of the
linear system occurs is found. Then, for the nonlinear systems, the input signal is taken as
Fs = A sin(ωt), in which we set A = 1000 N for the quarter-car model and A = 2000 N for
the half-car model. Then we search the nearby frequency by setting ω ≈ ω0 to simulate the
output responses in order to numerically find the maximum energy ratio by Equation (16).

5.2.2. Performance indexes by the approximated linear model method

In order to to illustrate the impact of friction on suspension performance, two settings are
applied to the inerter models. The first is f = 10 N from the experimental results of Section 4,
and the second is twice as big with f = 20 N. The optimisation of the performance measures
is shown in Figure 13.

For J1, the results are shown in Figure 13a and b, where the performance benefits are
degraded by friction, especially with larger friction. When the suspension stiffness k is small
(k ≤ 15 kN/m), the performance is even worse than the traditional suspension. But when k is
large, although the achievable performance is decreased by friction, the overall suspension per-
formance with the frictional inerter is still better than the traditional one (S1). For J3, the results
are similar to J1, i.e. the performance improvement is decreased by friction, as illustrated in
Figure 13c and d. When k is small, the performance of S2 and S3 is even worse than the tradi-
tional suspension (S1). For J5, the results are shown in Figure 13e and f where larger friction
implies more performance decrease for both S2 and S3 layouts.And, when the system stiffness
k is soft, it is shown that S2 with friction is even worse than the traditional suspensions (S1).

5.2.3. Performance indexes by the expected-value method

Similarly, to consider the influence of friction on system performance, two settings off = 10 N
and f = 100 N are applied to the nonlinear simulations. Note that a much larger friction is
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588 F.-C. Wang and W.-J. Su

Figure 13. Performance measures of the quarter-car model employing frictional inerter by the approximated linear
model method: (a) optimal J1, (b) J4 improvement (%), (c) optimal J3, (d) J3 improvement (%), (e) optimal J5, (f)
J5 improvement (%).

set here for comparison, in order to emphasis the impact of inerter friction by this method.
Setting the suspension stiffness k = 120 kN/m, the impact of Inerter friction on performance
is illustrated in Table 1, where cases 1, 2, and 7 are with ideal inerters and cases 4, 5, 9 and
10 are with frictional inerters. The expected values of J1, J3 and J5 are taken as the average
of four simulations. For accurate comparison, the expected values of the linear models (cases
1, 2 and 7) are compared with the direct calculations of the system norms. It is shown that the
errors are within 1%, so the expected value is a reliable performance index.

For J1, when the friction is small (cases 4 and 9), it is noted that the performance variation is
relatively negligible. But when the friction is large (cases 5 and 10), the performance decrease
is obvious. For J3, the influence of friction is similar. When the friction is small (10 N), the
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Table 1. Performance measures of the quarter-car model employing inerter with both friction and the elastic effect
by the expected-value method (k = 120 kN/m).

c b J Improvement
Case Layout (Ns/m) (kg) (ideal) Expectation (%)

J1 1 S1 4981 2.9882 2.9878
2 S2 3705.4 128.57 2.5773 2.5885 13.364
3 S2 (elastic) 3834.4 110.84 2.6488 2.6492 11.332
4 S2 (friction, f = 10 N) 3705.4 128.57 2.5878 13.389
5 S2 (friction, f = 100 N) 3705.4 128.57 2.6188 12.352
6 S2 (both) 3834.4 110.84 2.6482 11.366
7 S3 7544.2 366.52 2.4281 2.4293 18.694
8 S3 (elastic) 7353 328.72 2.5027 2.5039 16.198
9 S3 (friction, f = 10 N) 7544.2 366.52 2.4355 18.485

10 S3 (friction, f = 100 N) 7544.2 366.52 2.5000 16.326
11 S3 (both) 7353 328.72 2.5103 15.981

J3 1 S1 4674.8 598.52 601.13 0
2 S2 3933 104.89 548.98 552.07 8.162
3 S2 (elastic) 3955.8 93.198 552.50 555.54 7.585
4 S2 (friction, f = 10 N) 3933 104.89 551.90 8.190
5 S2 (friction, f = 100 N) 3933 104.89 557.98 7.179
6 S2 (both) 3955.8 93.198 555.11 7.657
7 S3 6666.4 363.55 501.20 504.65 16.050
8 S3 (elastic) 6736.6 325.42 501.94 505.38 15.929
9 S3 (friction, f = 10 N) 6666.4 363.55 506.07 15.815

10 S3 (friction, f = 100 N) 6666.4 363.55 519.76 13.537
11 S3 (both) 6736.6 325.42 506.80 15.692

J5 1 S1 10230.2 3.8761 × 10−5 3.8686 × 10−5 0
2 S2 9301.3 328.34 2.0761 × 10−5 2.0736 × 10−5 46.399
3 S2 (elastic) 9374.5 271.71 2.1238 × 10−5 2.1228 × 10−5 45.127
4 S2 (friction, f = 10 N) 9301.3 328.34 2.0848 × 10−5 46.110
5 S2 (friction, f = 100 N) 9301.3 328.34 2.1869 × 10−5 43.471
6 S2 (both) 9374.5 271.71 2.1123 × 10−5 45.399
7 S3 11174.5 1232.42 2.5946 × 10−5 2.5924 × 10−5 32.989
8 S3 (elastic) 10174.3 888.29 2.8606 × 10−5 2.8571 × 10−5 26.146
9 S3 (friction, f = 10 N) 11174.5 1232.42 2.5866 × 10−5 33.139

10 S3 (friction, f = 100 N) 11174.5 1232.42 2.5396 × 10−5 34.354
11 S3 (both) 10174.3 888.29 2.8584 × 10−5 26.113

influence on the performance is almost negligible. But when the friction is large (100 N),
the performance degrades ∼1% for S2 and 2.5% for S3 layouts. To numerically evaluate J5,
the peak frequency at which the linear system achieves infinity norm is found. Then, for the
nonlinear systems, an input signal Fs = A sin(ωt) with 0 ω = ω0 is taken to simulate the
output responses in order to find the numerical optimisation for each case of Table 1. For
the linear systems (cases 1, 2 and 7), J5 is calculated from both the theoretical H∞ norm of
Equation (6) and the energy ratio of Equation (16) to illustrate the accuracy of this method. It
is shown that the performance is decreased by friction for the parallel arrangement and slightly
improved for the serial arrangement. The tendency is more obvious with larger friction settings
(cases 5 and 10).

5.3. Performance indexes by applying inerters with both friction and the elastic effect

Considering both friction and the elastic effect, a nonlinear inerter model of Figure 6b with the
following parameters will be used for analyses: ks = 1000 kN/m, cs = 3200 Ns/m, f = 10 N,
ε = 0, and c and b the same as the optimal suspensions settings obtained in Section 5.1 (inerter
with the elastic effect only).
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590 F.-C. Wang and W.-J. Su

5.3.1. Performance indexes by the approximated linear model method

Using the first method, a nonlinear inerter is applied to the quarter-car model. From the
simulation responses, the system gains are obtained at specified frequencies and used to
estimate the performance indexes. The results are also compared with the norms of the linear
systems. The optimisation results are shown in Figure 14.

For J1, the optimisation using S2 and S3 are separately illustrated in Figure 14a and b. When
k is large, an inerter with only friction is better than an inerter with only the elastic effect. But
when k is smaller than 50 kN/m in S2 and 150 kN/m in S3, the result is contrary. And, an
inerter with both the elastic effect and friction is always the worst one.

Figure 14. Performance measures of the quarter-car model employing inerter with both friction and elastic effect
by the approximated linear model method: (a) optimal J1 by S2, (b) optimal J1 by S3, (c) optimal J3 by S2, (d)
optimal J3 by S3, (e) optimal J5 by S2, (f) optimal J5 by S3.
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Vehicle System Dynamics 591

For J3 analyses, the results are shown in Figure 14c and d, where the serial arrangement
(S3) is slightly different from the parallel arrangement (S2). For S2, when k is soft, the ideal
inerter is the best one, followed by the inerter with only the elastic effect, the inerter with
friction only and the inerter with both friction and the elastic effect. On the other hand, when k

is stiffer than 140 kN/m, the ideal inerter is the best one, followed by the inerter with friction
only, the inerter with the elastic effect only, and the inerter with both friction and the elastic
effect. But for S3, when k is softer than 30 kN/m, the inerter with only the elastic effect is the
best one, followed by the inerter with both friction and the elastic effect, the ideal inerter and
the inerter with friction only. On the other hand, when k is stiffer than 230 kN/m, the ideal
inerter is the best one, followed by the inerter with friction, the inerter with the elastic effect
and the inerter with both friction and the elastic effect. That is, J3 is improved by the elastic
effect for the serial arrangement (S3) when k is soft.

For J5, the results are shown in Figure 14e and f, where the inerter with both the elastic
effect and friction is the worst one. For the S3 model, the performance benefit is much more
influenced by the elastic effect than friction. For the S2 model, the performance is much
influenced by the elastic effect when k is large, while it is much influenced by friction when
k is less than 140 kN/m.

We did not discuss the impact of inerter backlash on system performance, not only because
the ball-screw model was preloaded to eliminate backlash, but also the weight of the car can be
seen as a preloading. That is, even if there is backlash in the inerter model, the inerter should
normally remain in the contact condition considering the weight of the vehicle. Therefore, the
influence of backlash might be ignored for vehicle applications.

5.3.2. Performance indexes by the expected-value method

Using the second method, an inerter with both friction (f = 10 N) and the elastic effect
(ks = 1000 kN/m and cs = 3200 Ns/m) is applied to the quarter-car model. Similarly, those
results are compared with the norms of the linear systems to demonstrate the accuracy of this
method. Setting the suspension stiffness k = 120 kN/m, the impact of inerter nonlinearities
on performance is illustrated in Table 1, where cases 3 and 8 are suspension models with
inerters applying the elastic effect only, and cases 6 and 11 are the suspension models with
inerters applying both friction and the elastic effect.

For J1, it is shown that the performance is much more influenced by the elastic effect than
friction, and the overall performance is degraded by inerter nonlinearities by 2–3%. For J3,
the influence of inerter nonlinearities is less significant, with the overall degradation of about
0.5%. For J5, the performance is in general decreased by the elastic effect (cases 3 and 8), but
slightly improved by friction for the serial arrangement (S3).

6. Impact of inerter nonlinearities on the suspension design of a half-car model

Similar to the quarter-car model, the performance benefits of inerters for the half-car model
are investigated. Setting the suspension stiffness kf = kr = 120 kN/m, the influence of inerter
nonlinearities on suspension performance is illustrated in Tables 2 and 3. In the tables, the
optimisation is carried out using several suspension layouts and settings. There are 13 cases
in the tables. Case 1 is the traditional suspension. Cases 2 and 8 are the parallel and serial
arrangements with an ideal inerter. Cases 3, 4, 9 and 10 are the suspension layouts applying
inerters with friction only. Cases 5, 6, 11 and 12 are the suspension layouts applying inerters
with the elastic effect only, with ks = 1000 kN/m and cs = 3200 Ns/m in cases 5 and 11, and

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
i
o
n
a
l
 
T
a
i
w
a
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
6
:
5
1
 
2
9
 
O
c
t
o
b
e
r
 
2
0
0
8



592 F.-C. Wang and W.-J. Su

ks = 2000 kN/m and cs = 6400 Ns/m in cases 6 and 12. Cases 7 and 13 are the suspension
layouts applying inerters with both friction and the elastic effect, in which ks = 1000 kN/m,
cs = 3200 Ns/m and f = 10 N.

6.1. Approximated linear model method

Using the first method, the nonlinear inerters are implemented to the half-car model to evaluate
the performance indexes. The results are shown in Table 2, where the comparing friction force
is taken as f = 20 N in cases 4 and 10 in order to emphasise the influence of inerter friction.

For J1, the results are similar to the results of the quarter-car model. First, the performance
benefits of an inerter are decreased by both friction and the elastic effect. Second, from cases
2–4 and 8–10, the performance is degraded more by larger friction forces. Third, from cases 5,
6, 11 and 12, the performance is decreased more by softer elastic settings. Finally, the inerter
with both friction and the elastic effect is always the worst one.

Table 2. Performance measures of the half-car model by the approximated linear model method (k = 120 kN/m).

Improvement cf cr bf br

Case Layout J (%) (Ns/m) (Ns/m) (kg) (kg)

J1 1 S1 6.1101 0 3710.2 4385.6
2 S2 (ideal) 4.9873 18.376 2702.3 2852.1 64.15 111.18
3 S2 (f = 10 N) 5.0225 17.800 2702.3 2852.1 64.15 111.18
4 S2 (f = 20 N) 5.1629 15.502 2702.3 2852.1 64.15 111.18
5 S2 (soft) 5.1156 16.276 2783.9 2939.5 53.651 96.434
6 S2 (hard) 5.0575 17.227 2731.8 2896.8 58.551 103.18
7 S2 (f = 10 N + soft) 5.1788 15.242 2783.9 2939.5 53.651 96.434
8 S3 (ideal) 4.892 19.936 5097.7 7267.2 394.58 227.93
9 S3 (f = 10 N) 5.0105 17.996 5097.7 7267.2 394.58 227.93

10 S3 (f = 20 N) 5.1595 15.558 5097.7 7267.2 394.58 227.93
11 S3 (soft) 5.0587 17.208 5108.6 7057.4 366 200.5
12 S3 (hard) 4.9763 18.556 5104.9 7158 379.91 213.31
13 S3 (f = 10 N + soft) 5.1358 15.946 5108.6 7057.4 366 200.5

J3 1 S1 1170.5 0 4404.4 4061.2
2 S2 (ideal) 1044.3 10.783 4098.7 2939.3 60.441 96.395
3 S2 (f = 10 N) 1050.6 10.243 4098.7 2939.3 60.441 96.395
4 S2 (f = 20 N) 1073 8.330 4098.7 2939.3 60.441 96.395
5 S2 (soft) 1053.2 10.021 4119 2976.9 52.561 84.662
6 S2 (hard) 1048.9 10.389 4109.5 2959 56.231 90.107
7 S2 (f = 10 N + soft) 1060.4 9.406 4119 2976.9 52.561 84.662
8 S3 (ideal) 975.46 16.660 5849.6 6279.7 456.59 224.47
9 S3 (f = 10 N) 1002.6 14.344 5849.6 6279.7 456.59 224.47

10 S3 (f = 20 N) 1032.8 11.764 5849.6 6279.7 456.59 224.47
11 S3 (soft) 982.15 16.091 6091.7 6257.2 414.21 197.37
12 S3 (hard) 978.6 16.395 5971.9 6269.5 434.36 210
13 S3 (f = 10 N + soft) 1013.1 13.447 6091.7 6257.2 414.21 197.37

J5 1 S1 2.0532 × 10−5 0 9666.8 27537
2 S2 (ideal) 1.0509 × 10−5 48.818 8584.8 10322 304.15 1396.8
3 S2 (f = 10 N) 1.0843 × 10−5 47.190 8584.8 10322 304.15 1396.8
4 S2 (f = 20 N) 1.1244 × 10−5 45.237 8584.8 10322 304.15 1396.8
5 S2 (soft) 1.0939 × 10−5 46.722 8905.6 9949 247.77 824.16
6 S2 (hard) 1.0791 × 10−5 47.443 8357.4 10247 288.54 1092.6
7 S2 (f = 10 N + soft) 1.2238 × 10−5 40.395 8905.6 9949 247.77 824.16
8 S3 (ideal) 1.2632 × 10−5 38.476 10875 57663 1051.1 3720.1
9 S3 (f = 10 N) 1.3428 × 10−5 34.600 10875 57663 1051.1 3720.1

10 S3 (f = 20 N) 1.4907 × 10−5 27.396 10875 57663 1051.1 3720.1
11 S3 (soft) 1.3954 × 10−5 32.038 9991.5 64695 785.31 2562.2
12 S3 (hard) 1.3292 × 10−5 35.262 10420 56069 899.79 2865.8
13 S3 (f = 10 N + soft) 1.4272 × 10−5 30.489 9991.5 64695 785.31 2562.2
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For J3, it is noted that the performance is much more influenced by friction than the elastic
effect. With a slight increase in friction, the performance is significantly degraded. On the
other hand, the performance change is not much when the elastic effect is doubled. Finally,
the performance is the worst when considering both the nonlinearities.

The analyses of J5 suggest that the performance is significantly influenced for the S3 model
(cases 9–12), considering either friction or the elastic effect. On the other hand, for the S2
model, the individual influence of inerter nonlinearities is not significant (cases 3–6). However,
with both friction and the elastic effect, the overall performance degradation is about 8% for
both the S2 and S3 models.

Table 3. Performance measures of the half-car model by the expected-value method (k = 120 kN/m).

cf cr bf br Improvement
Case Layout (Ns/m) (Ns/m) (kg) (kg) J Expectation (%)

J1 1 S1 3710.2 4385.6 6.1101 6.1126 0
2 S2 (ideal) 2702.3 2852.1 64.15 111.18 4.9873 4.9959 18.269
3 S2 (f = 10 N) 2702.3 2852.1 64.15 111.18 4.9943 18.295
4 S2 (f = 100 N) 2702.3 2852.1 64.15 111.18 5.0724 17.017
5 S2 (soft) 2783.9 2939.5 53.651 96.434 5.1156 5.1295 16.082
6 S2 (hard) 2731.8 2896.8 58.551 103.18 5.0575 5.0715 17.032
7 S2 (f =

10 N + soft)
2783.9 2939.5 53.651 96.434 5.1288 16.095

8 S3 (ideal) 5097.7 7267.2 394.58 227.93 4.892 4.8981 19.868
9 S3 (f = 10 N) 5097.7 7267.2 394.58 227.93 4.9090 19.690

10 S3 (d N) 5097.7 7267.2 394.58 227.93 5.0320 17.678
11 S3 (soft) 5108.6 7057.4 366 200.5 5.0587 5.0598 17.223
12 S3 (hard) 5104.9 7158 379.91 213.31 4.9763 4.9799 18.530
13 S3 (f =

10 N + soft)
5108.6 7057.4 366 200.5 5.0711 17.039

J3 1 S1 44404.4 4061.2 1170.50 1173.68 0
2 S2 (ideal) 4098.7 2939.3 60.441 96.395 1044.30 1047.95 10.712
3 S2 (f = 10 N) 4098.7 2939.3 60.441 96.395 1047.78 10.727
4 S2 (f = 100 N) 4098.7 2939.3 60.441 96.395 1061.75 9.536
5 S2 (soft) 4119 2976.9 52.561 84.662 1053.20 1056.90 9.950
6 S2 (hard) 4109.5 2959 56.231 90.107 1048.90 1052.60 10.316
7 S2 (f =

10 N + soft)
4119 2976.9 52.561 84.662 1056.55 9.979

8 S3 (ideal) 5849.6 6279.7 456.59 224.47 975.46 979.38 16.555
9 S3 (f = 10 N) 5849.6 6279.7 456.59 224.47 982.09 16.323

10 S3 (f = 100 N) 5849.6 6279.7 456.59 224.47 1009.73 13.969
11 S3 (soft) 6091.7 6257.2 414.21 197.37 982.15 986.04 15.987
12 S3 (hard) 5971.9 6269.5 434.36 210 978.60 982.48 16.291
13 S3 (f =

10 N + soft)
6091.7 6257.2 414.21 197.37 988.85 15.748

J5 1 S1 9666.8 27537 2.0532 × 10−5 2.0483 × 10−5

2 S2 (ideal) 8584.8 10322 304.15 1396.8 1.0509 × 10−5 1.0506 × 10−5 48.709
3 S2 (f = 10 N) 8584.8 10322 304.15 1396.8 1.0486 × 10−5 48.806
4 S2 (f = 100 N) 8584.8 10322 304.15 1396.8 1.0948 × 10−5 46.551
5 S2 (soft) 8905.6 9949 247.77 824.16 1.0939 × 10−5 1.0936 × 10−5 46.609
6 S2 (hard) 8357.4 10247 288.54 1092.6 1.0791 × 10−5 1.0777 × 10−5 47.386
7 S2 (f =

10 N + soft)
8905.6 9949 247.77 824.16 1.0873 × 10−5 46.917

8 S3 (ideal) 10875 57663 1051.1 3720.1 1.2632 × 10−5 1.2598 × 10−5 38.495
9 S3 (f = 10 N) 10875 57663 1051.1 3720.1 1.2599 × 10−5 38.490

10 S3 (f = 100 N) 10875 57663 1051.1 3720.1 1.2593 × 10−5 38.520
11 S3 (soft) 9991.5 64695 785.31 2562.2 1.3954 × 10−5 1.3940 × 10−5 31.944
12 S3 (hard) 10420 56069 899.79 2865.8 1.3292 × 10−5 1.3396 × 10−5 34.599
13 S3 (f =

10 N + soft)
9991.5 64695 785.31 2562.2 1.3944 × 10−5 31.924
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6.2. Expected-value method

Similarly, using the expected-value method, the impact of inerter nonlinearities on the per-
formance of the half-car model is illustrated in Table 3, where the comparing friction force is
taken as f = 100 N in cases 4 and 10 for emphases.

For J1, it is shown that the influences of inerter friction are negligible when it is small,
where the performance degradation is mainly caused by the elastic effect (cases 3–7 and
9–13). Considering both the nonlinearities, the overall performance is decreased by 2–3%.

For J3, it is first noted that the influence of friction is negligible unless it is largely increased
to f = 100 N (cases 3–4 and 9–10). Furthermore, the elastic effect also seems to have little
impact on the performance (cases 5–6 and 11–12) at the stiffness setting kf = kr = 120 kN/m.
The overall performance degradation is less than 1% when considering both of the inerter
nonlinearities.

For J5, the performance degradation is not obvious for the S2 arrangement (cases 2–7), but
reaches 6.5% for the S3 arrangement (case 13). Taking the nonlinearities individually, it is
shown that the influence is mainly caused by the elastic effect for S3 (cases 11–12), especially
for the soft settings.

7. Conclusions

This paper has discussed three nonlinear properties of inerters and proposed a nonlinear
inerter model. From the experimental results, it was shown that a ball-screw inerter has both
friction and the elastic effect. The nonlinear inerter was then applied to vehicle suspension
design. The individual and combined effects of inerter nonlinearities were discussed in three
scenarios. Considering the nonlinearities, two analysis methods were proposed to investigate
the performance of the suspension systems. From the results, it was noted that the suspension
performance was influenced by inerter nonlinearities. In general, the performance benefits of
inerters were degraded by considering inerter nonlinearities, except for the S3 model where J3

was slightly improved by the elastic effect when the suspension stiffness k was small. From the
analyses, the performance benefits were slightly degraded by inerter nonlinearities. However,
it was illustrated that the overall suspension performance with a nonlinear inerter is still better
than the traditional suspensions, especially when the suspension stiffness k is large.
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