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Abstract

An LMI approach for designing an H> fuzzy controller
for nonlinear dynamic systems is presented. The entire oper-
ating range for a nonlinear system is partitioned into several
regimes. A local linear model with parameter uncertainties is
identified for each region. These local models areintegrated as
the norm-bounded Tagaki-Sugeno (T-S) fuzzy model. The out-
put feedback H>° fuzzy controller design procedures are then
investigated based on the T-S fuzzy model, theirin the standard
H®° design problem is formulated as Linear Matrix Inequali-
ties (LMIs). The necessary and suficient conditions for the ex-
istence of an H°° controller isderived. One numerical example
issupplied, demonstrating the effectiveness of the proposed de-
sign procedures.

1 Introduction

Most real industrial processesare nonlinear in nature. How-
ever, the controller design for most practical nonlinear pro-
cesses is still based on local linear models and linear theories
although the adequacy of the model might be questionable for
aprocess operated far away fromitsoriginal design conditions.
Furthermore, the resulting controller is usually conservative if
the design is based on a single local linear model because the
model uncertainty is significant.

Recently, multiple local linear models have been applied
frequently to describe process dynamics. The weighted sum
of the multiple local linear models produces a global nonlinear
model. A less conservative single controller or anetwork of lo-
cal controllers can be designed based on reduced modeling er-
rors when employing multiple local linear models. Among the
various weighting methods for local linear models/controllers,
the so-called Takagi-Sugeno (T-S) fuzzy model/controller ap-
proach [9] hasbeen widely adoped. For example, [12] proposed
aparallel distributed compensation (PDC) method where alo-
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cal state-feedback controller is designed for each of the T-Slin-
ear models. The major problem in the previous related works
is that no effective method was presented to determine a spe-
cific positive definite matrix for the quadratic stability of the
overall system. This problem is reduced when a Linear Matrix
Inequality (LMI) approach is found applicable as a computa-
tional tool for inferring the required symmetrical positive def-
inite matrix in designing a fuzzy feedback controller [11, 14].
Two main drawbacks are still present. First, only state feed-
back controllers were addressed in most research works. Sec-
ond, the state feedback controller should be predetermined be-
fore checking the closed-loop stability. Thus, [8, 10] presented
fuzzy observer design to compensate the measurement problem
of state feedback control. [7] addressed the design of output
feedback controller. [6, 5, 4] used the H° control to guarantee
the overall stability requirement. Without considering multiple
models, [1] hasapplied an LMI approach for designing the H*°
output feedback control.

In this article, the LMI approach for the design of H*>°
output feedback control studied by [1], is extended to the T-S
fuzzy models. Two different design methods are investigated:
in method (A) one single H*° controller is designed for the
whole T-S fuzzy rule set, in method (B) an H*° fuzzy-logic
controller is established based on the local models in the T-S
fuzzy dynamic system. The single H° controller based on one
local linear model is aso included for comparison. One chem-
ical process, a non-isothermal continuous-stirred-tank reactor
(CSTR) with a first-order exothermic reaction in it, is illus-
trated to demonstrate the effectiveness of the proposed LMI-
based H* fuzzy output feedback control design method for
nonlinear dynamic processes.



2 Parameter Uncertainty Fuzzy Dynamic

M ode€l

Consider anonlinear dynamic system whose operating space
is partitioned into several regimes accrrding to premise vari-
ables z(t) = [z1(t), 22(t), -+ ()] . The i-th plant local
linear model in the T-Sfuzzy rule set is,

IF z(t) is 2Zz% and and z,(t) is z"
THEN #(t) = (Ai+ AA)a(t) + (B + ABy)u(t)

y(t) = Ciz(t) i= 1,
@

where z(t) € R”, u(t) € R™, y(t) € R, denote the state,
control input, and measured output, respectively; Z j@ ,j =
1,---,p, isthefuzzy term for premise variable z;(t); A;, B;,
and C; designate the model parameterswith appropriate dimen-
sions; A A; and A B; are parametric uncertainty terms.
Supposeall elementsin theuncertain parameters, (A A; and
AB;), are bounded, then anorm-bounded uncertainty form can
be reformulated, and can be expressed in a standard state-space

formulation,

IF z(t) is 2Z% and and z,(t) is z"
THEN #(t) = A;z(t) + Byu(t) + Ev(t)
q(t) = Fipz(t) + Foult)
yt) = Ciz(t) i =1,---,r

@)

where ¢(t) € R? isthefictitious output, and v(t) € R?® isthe
square-integrabl e disturbance input vector.

The local models can be integrated into a global nonlinear
model using a series of fuzzy inference procedures. By using
the product as the fuzzy intersection, and the center-of-average
method as the defuzzifer, the final output of the global fuzzy
dynamic model, Eq.(1), becomes,

i(t) = A(w)z(t) + Bw)u(t) + E(w)v(t)
q(t) = Fi(w)z(t) + Fa(w)u(t) (3)
y(t) = Clw)x(t)

Clw) = Y wi()C Blw) = wil2(t)E:

and

= ®)
ni((1) = [[ 270) = 0

Here, Z j@ (z;(t)) denotesthe grade of membership of thepremise
variable z;(¢) for the fuzzy term Zj(i) in the i-th plant local
model; h;(z(t)) isthefiringlevel of thei-th plant model; w; (z(t))

is the weighting. Notably, » ~w; = 1 V¢ and for all premise
=1

stete.

3 H* Fuzzy Controller Design

Supposeone H*° controller isdesigned for each local model
in Eq.(2).

IF Zl(t) is Zy) and and Zp(t) is Zzgl)
THEN &(t) = Agi(t) + Buy(t)
u(t) = Cpi(t)+ Dey(t) € =1,---,r

(6)

For a given premise state, z(t), the final output of the global
fuzzy controller can be inferred as following:

2(t) = A(w)i(t) + Bw)y(t) @
u(t) = C(w)i(t) + D(w)y(t)
where
A(’LU) = Z’LU@A@ B(w) = Z’LU@B@
Z:l 5?1 (8)
C’(w) = széz ﬁ(w) = szbg
=1 =1

Applying the fuzzy controller, Eq.(7), on the global fuzzy pro-
cess model, Eq.(3), resultsin the overall closed-loop system,

[ﬂb(t) _ F(wHF(w)D(w)C(w) B(w)C(w) [w(t)]
i(t) B(w)C(w) A(w) (t)
0 v(t)
. . (t)
q(t) = [Fi(w) + F2(w)D(w)C(w) Fa(w)C(w)] #(0)
9)
Or in amore compact form,
E1) = AR +Bw)o(t)
(10)

q(t) = C(w)¢(t)



The transfer function of Eq.(10) is,
Tyo(s;w) = C(w) (sT — A(w)) ™" B(w) (11)

The H*° control design problem involves determining a set of
controller parameters Ay, By, Cy, and Dy, ¢ = 1,--- ,r, such
that theinfinity norm of the closed-loop transfer functionislim-
ited, i.e, ||Tg,0(s; w)||so < 7. Thefollowing theorem givesthe
necessary and sufficient conditions for the H>° controller de-
sign problem.

Theorem 1. If there exist positive definite matrices R and S
simultaneously satisfying the following LMI’s,
[Ar+RA] B REL]
—T

{E —~I 0

! < 0 Vi=1,---,r
FﬂR 0 —’7]_

A, S+ 54, SE;, FT]

ElTS —’}/I 0 < 0 vi:l?"'ar
F; 0 —'yI_
R I
and L. S} > 0

(12)

then there exists the local controllers, Eq.(6), for the system of
Eq.(3) or Eq.(2), such that the closed-loop system is quadrati-
cally stable.

Proof. See[2]. O

With the R, S matrices, one can compute two full-column-rank
matrices M, N such that

MNT =1 —-RS (13)

The required positive definite matrix P can thus be obtained
uniquely by solving the following relation,

S I I R
R R (O
The fuzzy controller parameters ©, can then be solved using
the LMI eguations,

r I T T T I
Zwkﬂk + (Z wﬂ%) (Z ’wg@z> (Z wj\I/pj)
k=1 i=1 =1 j=1

(o) (e (ge)

(15)

or

SN wiwjwe (Mi—iojue + 0 OF Up; + Vh,0,;)
i=1 j=1 ¢=1
<0
(16)

where
A, By
@ = ~ A~
‘ [Ce DJ
AfP—i—PAk P&, .7'-,31
0 = &rp —~I 0 (k=iorjort)
Fr1 0 —~I

®;= [C; 0 0

Wp, = [P 0 FL)

Certaintly, one can determine the fuzzy controller coefficients
by solving a set of LMI’s. There are two conditions: the first
case involves finding parameters for an H>° fuzzy controller,
O¢,¢ = 1,--- ,r; and the second case involves determining
parameters for asingle H* controller, ©.

Case 1. fuzzy controller parameters©y, ¢ =1,--- ,r
We can find the H°° fuzzy controller by selecting
k = £ in Eqg.(15) and then solving the following r
sets of LMI’s sequentially.

I, + @?@g\l/pj + \I/Ej@géi <0

Vi, j=1,---,r;=1,---,r (17)

Case 2: single controller parameter ©
We can find a single H° controller by selecting
k = i(or k = 7) in EQ.(15) and then solving the
following LMI’s simultaneously. Notably, only one
controller canbefoundinthiscase,i.e,©; = --- =
O, = 0. Thuswe need to solve these LMI’s once.

TQT T
1L + ¢,i (S \I/pj —l—.\I/.Pj@(I)i <0 (18)
Vi, j=1,---,r
Notably, we consider the single H°° controller based on the
sole local linear model as a specia case of these two designs.

4 [llustrative Example

Here we use one example to illustrate the proposed output
feedback H*° controller design method. Consider a continu-
ous stirred-tank reactor (CSTR), where a first-order exother-
mic reaction is conducted with the following balance relations.
equations [13],

VdCCZS(t) q (CAf - CA) - VkoCAefE/RT
dT'(t
PCPV% = pCpq(Ty —T)+

pCp(—AH)koCae E/RT 4
chpc(Zc (1 _ e—hA/pccpcqc) (ch _ T)
(19)

The physical meanings and numerical values of these variables
arelisted in Table 1. In this example, T is the controlled vari-



Table 1: The physical meanings and nominal values of vari-
ablesin the CSTR example

reactant conc. Ca 0.1 mol/L
reactor temp. T 438.54 K
coolant rate Qe 103.41  ¢/min
process rate q 100  ¢/min
feed conc. Cay 1 mol/l
feed temp. T 350 K

avv coolant temp. T,y 350 K
reactor volume v 100 ¢

heat trans. coeff. ha 7x10%  cal/min/K
reaction rate ko 7.2x101° 1/min
activation energy E/R 108 K

hesat of reac. AH —2x10% cal/mol
liquid dens. P Pe 103 g/¢
specific heat Cp, Cpe 1 cal/g/K

able, q. isthe manipulated variable, and the feed concentration,
C4y,isthe main disturbance. Based on thelinearized dynamic
equations, two types of models are used for subsequent con-
troller design, a single local linear model and a global fuzzy
nonlinear model:

Model 1. the single local linear model (SM)
Considering asingle local linear model,

. ai; a2 b1

&) = [am a22} =) + [bz} u(t) (20)
yt) = [0 1]a(t)

Suppose the process will be operated around

qe(t) €[93.069,113.751], Cas(t) €[.9, 1.1]mol /¢, and

Ty(t) €[345, 355 K. Thelocal linear model isestablished around
themidpoint of theoperating regiem, i.e., ¢.(t) = 103.41¢/min,
Cas(t) = 1mol/¢, and T (t) = 350K. One can determine
the possible values for elements in the coefficient matrices, as
shownin Table4. According to the varying ranges of the coeffi-

Table 2: The spread of parameters for a single model in the
CSTR example

qc(t) € [93.069,113.751]

max nominal min
a1 | —3.6934 —9.9987 —30.836
a1 .63108 .b7326 .46446
as | —43.973 —146.92 —487.12
92 8.2079 7.3264 5.5305
by 0 0 0
by —5.5321 —-7.4077 —9.4843

cient values, one can determine the standard state-space equiv-

adent of the parametric uncertainty model.

. —17.265 54777 0
2 = | 26555 6.8692} “’(t)+[—7.5082} u(t)+
191047 .7098 .39252
15.055 11.426 7.2477] olt)
[9.4297 60771 —6.2076
g(t) = | 74103 —.51668| x(t)+ | 5.315 | u(t)
| —.69793  —.26304 4.7876
y(t) = [0 1]a(t)

(21)

Model 2: the global fuzzy model (FM)

Considering the same operating ranges as those of Model 1.
Suppose C4f(t) = 1mol/¢, T¢(t) = 350K, and three local
linear models are found around the operating points of ¢.(t) €
{98.234, 103.41, 108.58}, respectively. The three loca mod-
els and the membership functions, shown in Fig. 1, are used to
establish the global fuzzy model. According to the given mem-

VA 7(2) 7(3)

qc(t)

93.41

98.41 103.41 108.41 113.41

Figure 1: The membership functionsfor ¢,

bership functions, it is clear that the three models are respon-
siblefor ¢.(¢) valuesfaling into the range of [93.069, 103.41],
[98.234, 108.58] and

[103.41, 113.751], respectively. Thuswe can determinethe pos-
sible model coefficient values, such as shown Table 4. The



equivalent norm-bounded state-space model s can then befound.

1st Model:

IF w(t) is ZM) THEN

o [-173 54773 0

20 =] 6612 6.9106] “’(t)+{—7.5431] )+

78019 95551 ©.36745]
12.3327 16.032 7.4717) "

[ 6.7136  —.37994 5.5662
q(t) = | 8.9759  .48971 | z(t) + | —6.3674| u(t)
| —.75741  —.25032 4.7392
y(t) =1[0 1]a()
2nd Model:
IF w(t) is Z® THEN
. [ —15.01 .54781 0
21 = | _297.99 6.8792] “’(t)+{—7.3589] )+
40246 82821 .6475 o(t)
7.4175 13.597 10.189
[1.3838 —.18049 4.5533
q(t) = |7.9102 41248 | z(t) + |—5.5398 u(t)
6.4984 —.28867 4.2557
y(t) =10 1] x(t)
3rd Mode:

IF u(t) is Z® THEN

o [-12.983 54841 0

26 = | _196.46 6.8792] “’(t)+{—7.1916] u(t)+
49974 64954 38185)
8.3788 10.144 6.8867

8.2103 .015641 54071
q(t) = |6.2823 096996 | z(t) + |—1.2776| u(t)
2.9229 031037 1.4655

y(t) =0 1]z()

Now, we design the k-dimensional output feedback controllers
based on the above two types of models. Here, a single H*>
controller and an H*° fuzzy controller will be investigated, re-
spectively. Notably, we choosey = 3 in all three design cases.

Controller 1: asingle H*° controller design based onthesingle
liner model (SM-SC)

The positive definite matrices of R, .S and P can be determined
according to Model 1.

R— 17365 2.7366} g — [ 65.767 —3.3015
2.7366 56.746 -3.3015  .2211
65.767 —3.3015 7.7392 0
p_ —-3.3015  .2211  —2.4664 —.47594

7.7392 —2.4664 11594  26.343
0 —.47594 26.343  6.0601

The resulting single H>° controller can be obtained by solving

Table 3: The spread of parameters for the three models in the
CSTR example

qc(t) € [93.069,103.41)

max nominal min
a1 | —3.7638 —12.074 —30.836
a2 .62725 .b7362 146821

a1 | —45.124  —180.8 —487.12
a2 8.2079 7.3837 5.6113
b1 0 0 0

b —5.6018 —7.7633 —9.4843
q.(t) € [98.234,108.58|

max nominal min
a1 | —3.6941 —9.9987 —26.236
a2 .62988 57326 46574
as1 | —43.958 —146.92 —412.02
aos 8.2079 7.3264 5.5505
b1 0 0 0
b —5.5504 —7.4077 —9.1675
q.(t) € [103.41,113.751]

max nominal min
a1 | —3.6837 —8.173 —22.383
a2 .63108 .5702 46574
as1 | —43.816 —117.1 —349.11
a22 8.2079 7.2253 5.5505
b1 0 0 0

b —5.5279 —7.0259 —8.8552

Eq.(18),

s [-2.2513  —.23086] . —~.20563
2O = | _oo1052 —1.7041) &V {.61407 y(t)
u(t) = [—.66548 —.1135] &(t) +.14592y(t)

(22)

Controller 2: asingle H° controller design based on the fuzzy
dynamic model (FM-SC)

Thepositive definite matricesof R, S and P, can be determined
according to Model 2.

R— 19575 3.0918} g— [ 68.151  —3.5933
3.0918 64.675 —3.5933  .24087
68.151 —3.5933 21.724 0
—-3.5933  .24087 —3.4604 —.23773
21.724 —-3.4604 156.02 15.309
0 —.23773  15.309 1.6048

P =

A single H* controller can be established by solving Eq.(18),
where 9 LMI s should be solved simultaneously.

oo [-2.0576 —.12301] .. . [-.14027
¥ = | 021401 —1.7883 m(t)+[1.0923 y(t)
u(t) = |[—.55446 —.014802] &(¢) + .081101y(t)

(23)

Controller 3: an H° fuzzy controller design based on the fuzzy
dynamic model (FM-FC)
The positive definite matrices of R, S and P are the same as



that for Controller 2. The elements of the fuzzy controller can
be found by solving Eq.(17) sequentially.

1st Controller:

IF w(t) is Z THEN

_{—2.0878 —.13043] #(t) [—.15082} o(0)
023258 —1.8483 89047

u(t) = [-.59782 —.0011671] &(t) + .15793y(t)

2nd Controller:
IF wu(t) is Z3® THEN
~1.9118 —.092157] . —.15523
- [.048426 —1.9329] m(tH[ 1.112 ]y(t)

u(t) =[—.52867 —.002886] &(t) + .13002y(t)

3rd Controller:

IF w(t) is Z® THEN

18858 —.083425] . . [.13997
:[.046909 —1.876]m(t) [1.2599]9“)

u(t) =[5295 —.016391] Z(t) 4+ .057829y(t)
(24)

5 Conclusion

The LMI based H*® fuzzy controller design for nonlin-
ear dynamic systems has been investigated in this article. The
entire possible operating range for a process was partitioned
into several smaller regimes. A set of multiple local linear
models with norm-bounded parameter uncertainties was then
identified and integrated as the so-called Tagaki-Sugeno (T-
S) fuzzy model. The control design problem, based on the
norm-bounded T-S fuzzy model, was transformed into a multi-
plestandard H °° control problem. The necessary and sufficient
conditionsfor the existence of an H°° fuzzy controller wasfor-
mulated into a set of Linear Matrix Inequalities. An effective
computational procedure was also established for determining
controller parameters. One chemical process, an exothermic
non-isothermal continuous stirred tank reactor, was used to demon-
strate the effectiveness and appropriatness of the proposed de-
sign method.
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