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Abstract

Three-dimensional (3D) simulation is conducted for the floating-zone (FZ) growth of silicon in an ellipsoid mirror
furnace, for the first time, simultaneously considering the time-dependent Marangoni flow, heat transfer, and moving
interfaces. The numerical method is based on an efficient multigrid finite-volume method with front tracking. The

growth of an 8mm diameter silicon crystal under microgravity is considered. A half-zone configuration is also used for
benchmarking, and the calculated bifurcation points and flow structures are in good agreement with previous results.
However, quasi-periodic modes and angular waves are observed at higher Marangoni number. For full zone
calculations, including the feeding and growth interfaces, the bifurcation behavior is similar, but the primary bifurcation

is found to be subcritical and the 3D one-fold flow mode is dominant. Significant growth rate fluctuations and back
melting are found for a typical growth condition as well. The major fluctuation frequency ranges from 0.1 to 0.3Hz, and
the severe back melting may be related to the angular waves. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Floating-zone (FZ) crystal growth is a popular
technique for growing single crystals. Particularly,
it is a crucibleless process, so that the contamina-
tion from the crucibles could be avoided. How-
ever, the free surface of the molten zone often
induces significant Marangoni flow leading to
unstable heat flows and distorted interfaces, even
in the microgravity environment [1,2]. Severe
growth striations due to the unstable flow are

typical, which are believed to the cause of the
unstable growth rate (even with back melting).
Numerical simulation provides a quick way for
better understanding, especially in the interplay of
the heat flows and the growth phenomena. Most
of the numerical models for FZ crystal growth are
two-dimensional (e.g., [3,4]), in which the heat
transfer, fluid flow, and interfaces are considered.
However, many experimental and numerical evi-
dences (e.g., [5–7]) indicate that, even with a
perfect growth condition, unsteady three-dimen-
sional (3D) heat flows prevail in the molten zone.
Hence, a 3D model is required and this enables the
development of several 3D models (e.g., [5,6]).
Unfortunately, in these models, the moving

*Corresponding author. Tel.: 886-2-2363-3917; fax: 886-2-

2363-3917.

E-mail address: lan@ruby.che.ntu.edu.tw (C.W. Lan).

0022-0248/01/$ - see front matter # 2001 Elsevier Science B.V. All rights reserved.

PII: S 0 0 2 2 - 0 2 4 8 ( 0 1 ) 0 1 3 2 8 - 8



phase boundaries have not yet been taken into
account. In fact, to model the growth in a self-
consistent manner, the moving interfaces cannot
be ignored.

In this study, a self-consistent 3D model is
developed. An efficient numerical algorithm using
a multigrid finite volume method (FVM) with
front tracking is adopted to simulate the unsteady
Marangoni flow and the moving interfaces.
Through this 3D model, the nonlinear bifurca-
tions, from symmetry breaking to time-dependent
modes, are investigated for the growth of an 8mm
diameter silicon crystal in a mono-ellipsoid mirror
furnace. To build the confidence on our numerical
simulation, some benchmarkings with previous
studies and experiments are also considered. In the
next section, the mathematical model and numer-
ical solution are described. Section 3 is devoted to
results and discussion, where detailed benchmark
comparison will be also presented. Brief conclu-
sions are drawn in Section 4.

2. Model description and numerical solution

A generic FZ crystal growth in a mono-ellipsoid
mirror furnace is illustrated in Fig. 1a. Since axi-
symmetry is no longer assumed here, the system is
described by a Cartesian coordinate (x; y; z). The
point-source model [3] for the mirror furnace
is adopted for the heat input condition. This
model is simple and only considers the primary
light reflection from the point lamp source. Even
though the higher-order reflections are ignored,
the basic features of lamp heating still can be
captured. The calculated superheating for a typical
zone length of an 8mm silicon rod being about
408C is consistent with the detailed 2D simulation
[1]. The sample pulling speed is Uc, while the
furnace upward speed Uh. For a pseudo-steady
state growth, the furnace can be set at stationary
(Uh ¼ 0). The free surface is assumed rigid in this
study due to the small free surface deformation in
microgravity. The deformed meniscus will be

Fig. 1. (a) Schematic of floating-zone crystal growth in a mono-ellipsoid furnace; (b) a sample finite volume mesh (coarse grid) for

calculation.
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considered in the near future. The flow and
temperature fields as well as the melt/feed
(hf ðx; y; z; tÞ) and melt/crystal (hcðx; y; z; tÞ) inter-
faces are also represented in the Cartesian
coordinate.

The dimensionless variables are defined by
scaling length with the crystal diameter Dc, time
with D2

c=am, velocity with am=Dc, pressure with
rma

2
m=D

2
c , and temperature with the melting point

Tm, where am is the thermal diffusivity and rm the
melt density. The time-dependent governing equa-
tions describing the convection and heat transport
in the melt (m) based on the Boussinesq approx-
imation are as follows:

= � v ¼ 0; ð1Þ

qv=qtþ v � =v ¼ � =P þ Pr=2v

� Pr RaTðy� 1Þeg; ð2Þ

qy=qtþ v � =y ¼ =2y; ð3Þ

where t; v;P; and y are the dimensionless time,
velocity, pressure, and temperature, respectively.
Pr is the Prandtl number. In the source term of
Eq. (2), eg is the unit vector of gravity, which is
aligned with the growth axis in this study. Also,
Tm serves as a reference temperature. The asso-
ciated dimensionless number RaT is the thermal
Rayleigh number, defined as follows:

RaT �
gbTTmD3

c

amnm
;

where g is the gravitational acceleration, bT
the thermal expansion coefficients, and nm is the
kinematic viscosity. In this study, due to
the microgravity, RaT ¼ 0 is adopted.

In the crystal (c) and the feed (f ) only heat
transfer needs to be considered:

qy=qtþ ðviez þ rOiefÞ � =y ¼ = � *ki=y;

ði ¼ c; fÞ; ð4Þ

where r is the radial distance, Oi the dimensionless
rotation speed, and *ki � ai=am the dimensionless
thermal diffusivity of feed and crystal; ai is the
thermal diffusivity of the feed (i ¼ f) or the crystal
(i ¼ c). Also, ez and ef are the unit vectors in the
axial and angular directions, respectively.

The no-slip condition is used for the velocity on
solid boundaries:

v ¼ gcðvcez þ rOiefÞ; ð5Þ

where gc � rc=rm and vc is the dimensionless
crystal pulling speed. At the free surface, the shear
stress balance is imposed:

tns ¼ Ma* qy=qs; ð6Þ

where tns is the shear stress at the n–s plane of the
free surface; n and s are the unit normal and
tangential vectors at the free surface, respectively.
Also, Ma* is the Marangoni number defined as

Ma* �
ðqg=qTÞTmDc

rmnmam
;

where qg=qT is the surface-tension-temperature
coefficient of the melt. For better comparison with
previous reports (e.g., [1] and [5]), two similar
numbers are defined as the following:

Ma � Ma*DTLm=ð2TmDcÞ; Re � Ma=Pr;

where DT is the maximum surface overheating
(Tmax � Tm) and Lm is defined as the maximum
zone length at the free surface. The Reynold’s
number Re is the same as the definition of
DcV=nm, where V � ðqg=qTÞDT=ðrmnmÞ is the
characteristic thermocapillary velocity. In Eq. (6),
two tangential directions need to be considered for
the stress balance. Also, the kinematic condition at
the free surface is also considered, i.e.,

n � v ¼ 0; ð7Þ

where n is the unit normal vector at the free
surface. Therefore, the velocity boundary condi-
tion at the free surface is then completed for its
three components.

The thermal boundary conditions at the growth
and feeding fronts are set by the heat flux balances:

Qjm � Qji þ gc½ðvi þ dhi=dtÞez

� rOief
St � n ¼ 0; i ¼ c or f ; ð8Þ

where n is the unit normal vector at the feeding or
growth interface pointing to the melt. Qjm, Qjc,
and Qjf are the dimensionless total heat fluxes at
the melt, the crystal, and the feeding sides, respec-
tively. The Stefan number St � DH=ðCpmTmÞ
scales the heat of fusion (DH) released during
solidification to the sensible heat in the melt; Cpm
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is the specific heat of the melt. The component for
(rOef � n) is particular important for 3D interfaces
during rotation. In this paper, the effects of
rotation are not included due to the space limit.
However, some interesting contribution of this
term can be found elsewhere for similar applica-
tions [8].

The heat exchange between the sample and the
furnace is by both convection and radiation
according to the energy balance along the sample
surface,

�n � ki=yji ¼Biðy� yambÞ þRadiðy
4 � y4ambÞ

� eLQL; ði ¼ f ;m; cÞ ð9Þ

where n is the unit normal vector on the sample
surface pointing outwards, Bi � hDc=km the Biot
number, and Radi � seiT3

mDc=km the Radiation
number, h is the heat transfer coefficient, km the
melt thermal conductivity, s the Stefan Boltzmann
constant, and ei the surface emissivity; i= f, c, m,
and L (the lamp). Temperature yamb is the ambient
temperature and QL is the dimensionless total heat
flux from the lamp. Detailed calculation of QL can
be found in our previous report [3]. A more
realistic modeling of the lamp heating is possible
(e.g., [1] and [9]), but it needs much more
computing effort, which is less feasible for 3D
simulation here. In the present study, all the
boundary and heating conditions are axisym-
metric. Therefore, any 3D results obtained here
are due to the nonlinear bifurcation of the physical
process.

The above governing equations and their
associated boundary conditions can only be solved
numerically. We have developed efficient FVM
schemes using the primitive variable formula-
tion and multigrid acceleration [10] for the free
or moving boundary problem. For time-dependent
calculations, a fully implicit Euler scheme is used
for the time-derivative terms. A sample converged
coarse-mesh for calculation is shown in Fig. 1b.
As shown, finer grid spacing is placed near the
interfaces to enhance the accuracy of calculation.
Although the results obtained by the coarse mesh
(the first level) are very close to that obtained by
the fine mesh (the second level), in the following
discussion, all the calculations are performed using

the fine mesh, which contains eight times more of
the finite volumes than that in Fig. 1b. A more
detailed description of the numerical method can
be found elsewhere [10,11].

3. Results and discussion

Before presenting the results, we have per-
formed extensive benchmark comparisons with
previous works for both a full 2D model [3] and a
simplified 3D model [5]. To save space, only the
3D comparison is presented here. For the simpli-
fied 3D model, the half-zone configuration is
considered, where the upper and lower interfaces
are assumed flat and fixed. For comparison pur-
poses, the unit aspect ratio and Pr=0.01 with an
adiabatic free surface [5] are considered. Detailed
physical properties used can be found in Table 1;

Table 1

Physical properties of silicon and some input parameters [3]

Physical Properties

Tm ¼ 14108C
DH ¼ 1803 J g�1

kf ;c ¼ 0:22Tm=T Wcm�1 K�1

km ¼ 0:64W cm�1 K�1

CPf ;c ¼ 1:038 J g�1 K�1

CPm
¼ 1:059 J g�1 K�1

qg=qT ¼ �0:13 dyn cm�1 K�1

g ¼ 865þ ðT � TmÞqg=qT dyn cm�1

mm ¼ 0:007 g cm�1 s�1

bT ¼ 1:32� 10�4 K�1

ef ;c ¼ 0:7
em ¼ 0:3
rs ¼ 2:33 g cm�3

rm ¼ 2:55 g cm�3

Input parameters

Df ;c ¼ 0:8 cm
Uf ;c ¼ 02� 24 cm h�1

Uh ¼ 0 cm h�1

Of ;c ¼ 0RPM

L ¼ 8 cm

Tamb ¼ 2008C
a ¼ 9 cm

b ¼ 8 cm

WL ¼ 700W

eL ¼ 0:8
h ¼ 1:1� 10�3 W cm�2 K�1
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however, for the half zone, the viscosity is adjusted
slightly to match Pr=0.01. The calculated bifurca-
tion diagram for the maximum surface tempera-
ture difference (in the angular direction) at the
mid-height is illustrated in Fig. 2; the absolute
value of the Re number is used. As shown, the
primary bifurcation is supercritical and bifurcates
from an axisymmetric mode or the so-called m0
mode (like (a) in Fig. 2) to a 3D two-fold (m2)
mode (such as (b)) at Rec1 � 1980, while the
secondary bifurcation or the Hopf point (at
Rec2 � 7400) is to a time-dependent m2 mode.
This result is in good agreement with previous
calculations (Rec1 ¼ 1960 and Rec2 ¼ 6250 in Ref.
[5] by a finite element method, Rec1 ¼ 2020 and
Rec2 ¼ 6880 in Ref. [12] by a finite difference
method, and Rec1 ¼ 1890 in Ref. [6] by the linear
stability analysis). Also, at Re ¼ 3500 (see (b) in
Fig. 2), the calculated maximum velocities (umax ¼
0:08716 and vf ¼ 0:01476) also agree well with
previous calculation (umax ¼ 0:08607 and vf ¼
0:01340 in Ref. [5]).

At Re ¼ 2� 104, the periodic oscillations of
four surface temperatures (908 apart at the middle

surface) are also shown in Fig. 2, where some flow
and isotherms of a period of oscillation are also
illustrated in Fig. 3. As shown, the dimensionless
frequency is about one and the isotherms are not
rotating; there is no exchange of the high and low
temperatures in the angular direction. This flow
structure moving back-and-forth is also consistent
with the previous calculation [5]. However, we find
that the periodic and non-rotating oscillation is
retained only up to Re � 4� 104. Beyond that,
there is a wave motion in the azimuthal angle
direction and it travels slowly. As a result, side
(lower) frequencies appear, and this new bifurca-
tion point may be denoted by Rec3. Nevertheless,
at Re ¼ 5� 104, the angular speed is changing
with time, and sometimes the wave direction can
be reversed. As will be discussed shortly, this
angular wave may be related to the significant
back melting during crystal growth. Further com-
parison is also conducted for the half-zone experi-
ment by Nakamura et al. [7] in microgravity; the
zone length=1 cm, Dc=1 cm, and DT ¼ 1508C.
The calculated heat flows also show some wave
structure in the angular direction. Interestingly,

Fig. 2. Bifurcation diagram for the half-zone configuration (aspect ratio=1 and Pr=0.01). (a) Flow structure and isotherms at

Re=1500; (b) flow structure and isotherms at Re=3500; (c) oscillation of four surface temperatures at the mid-height for Re=2� 104.

After the Hopf point, the solid lines indicate the mean values of the high and low temperatures during oscillation.
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Fig. 3. Some flow patterns and isotherms at Re=2� 104 for (c) in Fig. 2. The time interval is about 0.25 (dimensionless).

Fig. 4. Bifurcation diagram for the full-zone configuration with moving interfaces; (a) an axisymmetric solution ðm0Þ at Re=1083;

(b) a 3Dm1 solution at Re=3200. The lamp power is 700W.
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the fast Fourier analysis of the temperature
oscillation (2mm above the lower boundary)
agrees very well with the measured one; the
frequency is about 0.1–0.2Hz. In addition, the
calculated amplitudes (about 208C) of the tem-
perature oscillation are also consistent with the
experiments.

For full zone calculations, the growth of an
8mm Si crystal in microgravity is considered;
the heating configuration is as that illustrated in
Fig. 1a and the power is set at 700W. Again, the
detailed physical properties and input conditions
are listed in Table 1. The calculated bifurcation
diagram is summarized in Fig. 4, where the Re
number is adjusted by changing qg=qT ; the
maximum temperature difference and zone length
are taken after the calculation is finished. Similar
to the half-zone configuration, as shown in Fig. 4,
there are also two typical bifurcation points. The
primary bifurcation, however, is from an m0 to an
m1 mode. Interestingly, it is subcritical; there is a
hystersis at Re � 1000. Even with the coarse grid,
the subcriticality is obvious. Although, this point is
far away from the typical growth condition (Re �
105), it is again a good example showing the
coupling of the flow bifurcation and the deform-
able interfaces. Similar bifurcation for the buoy-
ancy convection in the vertical zone-melting was
also observed by Lan and Liang [11]. The range of
this hysteresis also agrees reasonably well with the
reported values (ranging from Re � 1000 to
1500). The time-dependent mode appear at
Re � 7000, and the m1 flow structure is dominant.
Again, these are consistent with previous reports
[1,2,5]. Because of the low Prandtl number, the
deformation of the interfaces is not much and
deviates only slightly from the axisymmetry (m0),
as shown by (b) in Fig. 4.

At Re ¼ 1:1� 105 by using a typical value
of qg=qTð�0:13 dyn=cm�1 K�1Þ, the flow oscilla-
tion becomes much more severe. The most
interesting part is the induced oscillation of the
interface speed. As shown in Fig. 5a, the oscilla-
tion ampltude is comparable to the growth rate
(2–3 mmmin�1); four interface speeds (908 apart)
at the surface are monitored. As shown, significant
back melting with frequency in 0.1–0.4Hz is
obvious. The significant back melting was also

observed in a recent experiment [2], which was
performed using an 8–10mm diameter silicon rod
with a much longer zone (about 16mm). The result
of the fast Fourier transform of the growth rates is
shown in Fig. 5b; four positions with 908 apart are
considered. Clearly, the low frequency mode at
about 0.1Hz seems to be more significant. How-
ever, it should be pointed out that, this mode
corresponding to the significant growth and back
melting may be due to the angular thermal waves.
Due to the larger values, their Fourier’s compo-
nents are also larger. Meanwhile, the high
frequency mode, which corresponds to the local
flow oscillation, has smaller oscillation amplitudes,
and hence the Fourier’s components are smaller.

Fig. 5. (a) Calculated interface speed at Re=1:1� 105. The

dash lines indicate the typical growth and melting velocity at

3 mm=l; (b) power spectrum of four interface speeds at the free

surface.
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The mean value of the growth rate from the view
of the observer is zero here. One can further
compare the time domain oscillations shown in
Fig. 5a and their corresponding Fourier’s compo-
nents in Fig. 5b to get a better picture.

If we take the some flow patterns and isotherms
at the three cross sections (at y ¼ 0, z ¼ 0, and x ¼
0:55), as shown in Fig. 6, the nature of interface
oscillations becomes clearer; the time interval is
1s in Fig. 6. As illustrated in Fig. 6, the angular
motion of the isotherms, though not very regular,
is obvious. This is also similar to the half-zone
configuration at Re ¼ 5� 104, even through it
has an m2 flow structure. The back melting occurs
when the high temperature front arrives; by
the time the zone length there also becomes longer.
Meanwhile, as the cold front comes, the place
having the lowest surface temperature, or the
shortest zone length, grows faster. This simula-
tion result thus provides a clear picture to
the interesting back melting observed in experi-
ments [2].

4. Conclusions

A self-consistent 3D model considering heat
flows and interfaces is developed for the FZ silicon
growth in a mirror furnace. The calculated results
for the half-zone configuration agrees well with
previous calculations and experiments. The bifur-
cation behavior of the growth of an 8mm silicon
crystal in a mono-ellipsoid mirror furnace is also
investigated. It is found that the primary bifur-
cation is subcritical, and the 3D m1 modes are the
dominant flow structures. For the case corre-
sponding to a real growth situation, the angular
traveling wave leads to significant back melting
along the rim of the growth interface, which is
consistent with the experimental observation.
However, the speed of the traveling wave is not
constant. In the present model, the free surface is
assumed to be flat and rigid. Although we do not
anticipate any significant effect from the deform-
able free surface, the release of this assumption and

Fig. 6. Some flow patterns and isotherms at Re=1:1� 105; time interval is about 1 s and the spacing for isotherms is 2:98C.
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the coupling of the free surface and Marangoni
instability will be considered in the near future.
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