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Abstract

Three-dimensional (3D) heat flow, dopant segregation, and interface shape during crystal growth by a gradient freeze
technique in a centrifuge are analyzed by a finite volume method. The basic flow patterns for a fixed geometry (with a
concave interface) at different configurations agree well with the previous report (Friedrich et al., J. Crystal Growth 167

(1996) 45). However, the self-consistent analysis allows us for the first time to further investigate the role of the Coriolis
force and centrifugal acceleration on the heat and mass transfer and the interface, simultaneously. Furthermore, the
rotation speed found for the weakest convection, where the Coriolis force balances the gravitational and centrifugal

forces, turns out to have larger radial segregation, despite having a larger effective segregation coefficient. Rotation
about the growth axis is also investigated. For this configuration, it is found that both axial and radial segregation could
be reduced under certain conditions. r 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The control of melt flow, which influences the
interface morphology and dopant segregation
(both radial and axial), is important in bulk crystal
growth. The most effective way for the flow and
thus segregation control is by external forces.
Crystal growth in a centrifuge has been regarded
as one way for growth control (e.g. [1,2]). A
minimum segregation (with the largest effective
segregation coefficient) at the so-called ‘‘magic-g

level’’ was experimentally found by Regel and
Rodot [2]. Furthermore, M .uller et al. [3] have
shown, both experimentally and numerically, that
the Coriolis force suppresses the oscillatory con-
vection in top-seeded Bridgman growth. Similar
observations were also found by Rodot et al. [2].
Since then, much attention has been paid to find
the magic-g level for the minimum convection,
which may be a condition for minimum segrega-
tion (e.g. [3–6]), i.e., the diffusion-controlled limit
being approached. Thus, this condition would
resemble microgravity as well. However, the
numerical simulation in these studies was focused
on the heat transfer in the melt only. Segregation
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and interface morphology were not considered.
The axial segregation was estimated by a simplified
model based on the boundary-layer theory. More
importantly, because of the poorer mixing at the
magic-g level, the radial dopant distribution of a
grown crystal in a centrifuge could be an
important issue, but it has not yet been discussed.
Besides the use of a centrifuge, steady ampoule
rotation has a similar effect. In a recent study by
Lan [7], it was found that an inversion of radial
segregation exists at a certain rotation rate for the
growth with a concave interface. At this critical
rotation rate, a flow transition was also illustrated
numerically, where the centrifugal acceleration
becomes dominant. In addition, a more diffu-
sion-controlled axial segregation could be
achieved, where the effective segregation coeffi-
cient was closer to one. However, there is a
disadvantage due to the steady ampoule rotation
under asymmetric heating. The analysis by Lan
et al. [8] has shown that severe angular segregation
can be induced. Therefore, on the other hand, it is
believed that the use of a centrifuge, carrying the
whole growth system, may be more feasible in
practice. In fact, with axisymmetric heating,
the steady ampoule rotation is equivalent to the
situation in a centrifuge by placing vertically the
sample at the rotating axis.

In this study, we present for the first time a self-
consistent simulation of a gradient-freeze growth
in a centrifuge. Before the full model is taken into
account, we illustrate first the basic flow structures
at different configurations and rotation speeds
with a fixed interface and further compare our
results with the excellent work done by M .uller’s
group [1]. Starting from there, the interface is then
solved with the field variables simultaneously, so
that the convection induced by interface deforma-
tion can be better simulated. Interface concavity
and growth rate are also discussed. Furthermore,
3D radial segregation patterns are calculated and
the condition for reducing segregation is discussed.

2. Model description and numerical solution

A generic gradient-freeze crystal growth system
in a centrifuge is illustrated in Fig. 1a. Since the
configuration is truly three-dimensional (3D), the
system is described by Cartesian coordinates
(x; y; z) in a rotating frame with an angular
rotation vector O

!
. For comparison purposes, the

ambient thermal distribution is set to be linear
with a constant gradient G. Although the fully
time-dependent calculation is carried out here, the
simulation of a whole growth period is still too

Fig. 1. (a) Schematic sketch of gradient-freeze growth in a centrifuge; (b) a portion of a sample mesh used in the calculations.
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costly. Therefore, for the calculation of dopant
fields, we have further adopted a pseudo-steady-
state approximation, with the ampoule pulling
speed at Uamp. The averaged growth rate is set at
the same speed. It should be pointed out that in
practice the furnace temperature decreases with
time for gradient freeze, i.e., UampG being the
cooling rate. Therefore, the present treatment is
just a simple way to treat the pseudo-steady
situation. The time-dependent calculation is then
imposed to the steady state to reveal the transient
behavior. Similar treatment has been adopted by
many authors for two-dimensional analyses (e.g.,
[9,10]), and the calculated radial dopant distribu-
tion is consistent with that by a global time-
dependent analysis [11].

The flow, temperature, and dopant fields as well
as the melt/crystal interface are also represented in
the Cartesian coordinate (x; y; z). As shown in
Fig. 1a, the centrifuge has an arm Rarm and the
real radius to any point in the system can be
determined if the tilt angle y is set. For the free-
swing configuration, if the center of mass of the
system is at the origin of the coordinate system, the
steady angle y of the furnace is given by RO2 ¼
g tanðyÞ with R ¼ Rarm þ L sinðyÞ, where g is the
gravitation acceleration and L the length of the
sample. For this case, the resultant gravity is thus
antiparallel to the x-axis. Furthermore, it is also
assumed that the dopant concentration is so low
that its effects on the flow and liquidus tempera-
ture can be neglected.

Since the origin is defined at the bottom of the
ampoule, the rotation arm vector R

!
, angular

rotation vector ~O, and gravity vector ~g are defined
as follows: R

!
¼ R~eR ¼ R½@sinðyÞ~ex þ cosðyÞ~ey�,

~O ¼ O~eO ¼ O½cosðyÞ~ex þ sinðyÞ~ey�, ~g ¼ g~eg ¼ g½@
cosðyÞ~ex @sinðyÞ~ey�, where ~ex, ~ey, and ~ez are the
unit vectors in the x-, y-,and z-direction, res-
pectively. At any point on the sample, the
position vector is given by ~r ¼ x~ex þ y~ey þ z~ez.
Then, the resultant acceleration vector ~b can be
represented as:

~b ¼ ~g@ ~O�ð~O�ð~rþ R
!
ÞÞ

h i
: ð1Þ

Furthermore, the dimensionless variables are
defined by scaling length with the crystal diameter

Dc, velocity with am=Dc, pressure with rma
2
m=D

2
c ,

and dopant concentration with its average con-
centration C0 in the crystal, where am is the
thermal diffusivity and rm the melt density. The
dimensionless temperature is scaled by the melting
point Tm. Based on the rotating frame with the
angular velocity ~O, the time-dependent governing
equations describing convection and heat and
dopant transport in the melt (m) are as follows:

r 
~v ¼ 0; ð2Þ

q~v
qt

þ ~v 
 r~v ¼@rpþ Prr~v@PrRaTðT@1Þ~eb

@PrTa1=2~eO�~v; ð3Þ

qT
qt

þ~v 
 rT ¼ r2T ; ð4Þ

qC
qt

þ~v 
 rC ¼
Pr

Sc
r2C; ð5Þ

where ~v; t; p; P and C are the dimensionless
velocity, time, modified pressure, temperature,
and dopant concentration, respectively. Pr is the
Prandtl number (Pr � �m=am) and Sc the Schmidt
number (Sc � �m=D), where �m is the kinematic
viscosity and D the dopant diffusivity in the melt.
In Eq. (3), the thermal Rayleigh number RaT and
the Taylor number Ta in the source term are
defined as follows:

RaT �
gbTTmD

3
c

am�2
m

; Ta ¼ 4O2D4
c=�

2
m;

where bT is the thermal expansion coefficient. If
one is interested in using temperature difference to
represent the Rayleigh number, the conversion is
also straightforward. Furthermore, the dimension-
less resultant acceleration ~eb becomes

~eb ¼ ~eg@Fr ~eO�ð~eO�ð~rþ R
!
Þ

h i
; ð6Þ

where the Froude number Fr ¼ O2Dc=g is the
ratio of centrifugal and gravitational accelerations;
~r and R

!
are dimensionless here. Furthermore, in

Eq. (3) PrTa1=2~eO�~v is the dimensionless Coriolis
force. The static pressures due to gravitational and
centrifugal accelerations are combined with the
original pressure when using the Boussinesq
approximation.
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In the crystal (c) and the ampoule (a), only heat
transfer needs to be considered:

qT
qt

þ Pei~ex 
 rT ¼ kir2y; ði ¼ c; aÞ; ð7Þ

where Pei � riCpiUampDc=km is the Peclect num-
ber, ki � ki=km the dimensionless thermal con-
ductivity of crystal or ampoule: km is the thermal
conductivity of the melt, ri, Cpi, and ki are the
density, specific heat, and thermal conductivity of
the phase i (i ¼ c or a), respectively.

Suitable boundary conditions are also neces-
sary. The no-slip condition is used for the melt
velocity on solid boundaries. When the pseudo-
steady-state is assumed, the upper open boundary
is considered as an artificial boundary [9,10], and
its velocity boundary condition is kept the same.
The thermal and solutal boundary conditions at
the melt/solid interfaces are set by the heat and
mass flux balances. For example, at the growth
front:

~n 
 rT jm@~n 
 kcrT jc

þgc Pem@
qh
qt

� �
Stð~ex 
~nÞ ¼ 0; ð8Þ

~n 
 rCjm

þgc Pem@
qh
qt

� �
Sc

Pr
ð1@KÞCð~ex 
~nÞ ¼ 0; ð9Þ

where ~n is the unit normal vector at the growth
interface pointing to the melt. The Stefan number
St � DH=ðCpmDTÞ scales the heat of fusion (DH)
released during solidification to the sensible heat in
the melt; gc � rc=rm is the ratio of density in the
crystal over the melt. The equilibrium segregation
coefficient K of the solute is according to the phase
diagram; K � Cc=C at the growth interface, where
Cc is the dopant concentration in the crystal. The
temperature at the melt/solid interface is assumed
to be the melting point. In Eq. (9), the dopant
diffusion in the solid phases is ignored.

For simplicity, the temperatures at the top and
bottom surfaces are set to be the furnace
temperatures. With the pseudo-steady-state as-
sumption, an artificial boundary condition is used
at the upper boundary for the consistence of
the overall dopant balance [8,9]. The heat ex-
change between the ampoule and the furnace is

by both radiation and convection according
to the energy balance along the ampoule
surface,

@~n 
 karT ja ¼ BiðT@TaÞ; ð10Þ

where ~n is the unit normal vector on the ampoule
surface pointing outwards, Bi � hDc=km the Biot
number. For simplicity, the radiation effect is
incorporated into the enhanced heat transfer
coefficient h. The effective furnace temperature
Ta is assumed to be linear with the gradient G; it is
equal to Tm at x ¼ L=2.

The above governing equations and their
associated boundary conditions can only be solved
numerically. We have developed an efficient finite
volume method (FVM) scheme using the primitive
variable formulation [12] and multigrid accelera-
tion [13] for the free boundary problem. This
approach is much more efficient and robust than
the previous FVM/Newton’s method [14]. A
sample converged mesh for calculation is shown
in Fig. 1b. As shown, finer grid spacing is placed
near the boundaries to enhance the accuracy of
calculation. Two grid levels are used. In the first
level, there are 10� 18� 30 (in the radial, angular,
and axial directions, respectively) finite volumes in
the melt and 10� 18� 15 in the crystal, and
5� 18� 45 in the ampoule. The second level
doubles the finite volumes in each direction, i.e.,
20� 36� 60 cells in the melt. All calculations are
obtained by the fine grid. The calculations are
performed in personal computers (AMD/K7-
800 MHz CPU with 512 M SRAM). One calcula-
tion takes about 2 h of CPU time. It should be
pointed out that the convergence of the steady-
state approach is much slower and requires
significant relaxation due to the large Coriolis
force term. Therefore, the simulation is conducted
through a fully time-dependent calculation using
an implicit scheme. The integration step is less
than 0.2 s. Usually, a steady-state result can be
easily obtained in 10–40 s, but all the calculated
results are taken after 100 s. Detailed description
of the numerical method can be found elsewhere
[13].

To evaluate the axial segregation, we use the
effective segregation coefficient Keff defined by
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Adornato and Brown [9], i.e.,

Keff � 1= Ch i; ð11Þ

where Ch i is the average dopant concentration in
the melt. Although this value differs from the one
obtained by the best-fit from the axial segregation,
it provides a good index for the global dopant
mixing. If the mixing is poor (say for a diffusion-
limited situation), the dopant concentration is near
C0 (or 1 for dimensionless concentration). Then,
Keff is close to one. For such a case, if the growth
length is long enough (much longer than the
diffusion length), the axial segregation is dimin-
ished. On the contrary, if the global mixing is
good, the dopant concentration is uniform being
C0=K . Then, Keff ¼ K , which is the equilibrium
value obtained from the phase diagram.

3. Results and discussion

For comparison purposes, we consider mostly
the gallium-doped germanium (GaGe) growth in
the gradient-freeze furnace investigated by Frie-
drich et al. [1] in his study. They considered the
cases with a fixed interface and the calculations
were restricted to the melt only. Two cases for
gallium melt were also considered. However, to
simulate the similar system in a self-consistent
manner, we have included the free interface at the
center of the domain, as shown in Fig. 1a. The
position and shape of the interface are affected by
the global heat transfer in the system as well as by
the melt convection. The physical properties and
some input parameters used are listed in Table 1.
For comparison purposes, the radiation effect is
not considered here for keeping the thermal profile
inside the sample as linear as possible.

3.1. Basic flow structures

We have performed a series of calculations for
the comparison with the previous results [1]
considering different growth configurations and
rotation speeds. Since the exact interface deflection
used in the previous report is not available, we
need to find a reference state to start the
comparison. To do this, we first calculate the case

for no convection. By adjusting (increasing) the
thermal conductivity of the crystal, we get a
smaller deflection of interface, which matches the
radial thermal gradient used by Friedrich et al. [1]
for getting the same convection level at normal
gravity (0 rpm). Then, the interface is frozen for
the rest of the calculations. The calculated samples
for this configuration with a free-swinging angle
are illustrated in Fig. 2. As shown for the cases of
0, 40, and 80 rpm, the basic flow structures in the
x2z plane are in good agreement with that
presented by Friedrich et al. [1]. For 0 rpm shown
in Fig. 2a (y ¼ 01), the flow is axisymmetric and its
structure is typical for the gradient-freeze config-
uration with a concave interface [9,10]. At 40 rpm

Table 1

Physical properties and some input parameters [9,17]

GaGe

rc ¼ 5:5 g cm@3

rm ¼ 5:5 g cm@3

Tm ¼ 937:41C
DH ¼ 460 J g@1

h ¼ 46:571 W cm@2
1C@1

kc ¼ 0:17 ðor 0:39Þ W cm@1
1C@1

km ¼ 0:39 W cm@1
1C@1

Cpc ¼ Cpm ¼ 0:39 J g@1
1C@1

bT ¼ 1 � 10@4 K@1

bS ¼ 0 ðmol%GaÞ@1

D ¼ 2:1 � 10@4 cm2=s

K ¼ 0:087

Graphite

ra ¼ 1:8 g cm@3

ka ¼ 3:26 Wcm@1
1C@1

Cpa ¼ 1:814 J g@1
1C@1

Other input parameters

L ¼ 8 cm

Rc ¼ 1 cm; (Dc ¼ 2Rc ¼ 2 cm)

Ramp ¼ 1:2 cm

TH ¼ 977:41C
Tc ¼ 897:41C
G ¼ 101C=cm

Uamp ¼ @2 � 10@4 to @5:6 � 10@4 cm=s

Rarm ¼ 104 cm; R ¼ Rarm þ L sinðyÞ
O ¼ 02200 rpm

y ¼ 02901

Dimensionless groups

Pr ¼ 0:00715; Sc ¼ 6:19; RaT ¼ 4:02 � 106; Ta ¼ 1:00 � 106;

Fr ¼ 0:224 (for 100 rpm)
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(y ¼ 63:321), the flow near the growth interface is
significantly suppressed by the Coriolis force and
the flow structure is also changed dramatically. As
it will be discussed shortly, this significantly alters
the radial dopant distribution. Although the
averaged resultant gravity direction is still anti-
parallel to the growth axis, the centrifugal accel-
eration and the Coriolis force in the melt are
asymmetric leading to the 3D flow. Due to the
nonuniform forces, the global convection increases
slightly away from the interface. As the rotation
speed is further increased to 80 rpm (y ¼ 82:891),
the centrifugal force becomes dominant and the
convection increases, which can be seen from the
larger velocity vectors. The flows in the x2y plane
are also shown, but they are in general featureless
except for the flow near the growth interface.

We also present two flow patterns in the y2z
plane shown at the bottom of the figures for 40
and 80 rpm, respectively. One is at x ¼ 4:2 cm and
the other at 4.9 cm. The edge of the interface is
about at x ¼ 4:0 cm. As shown, near the interface
the flow is mostly counterclockwise, but at some
place the flow may be in the opposite direction.
Interestingly, at 80 rpm, the flow pattern at x ¼
4:9 cm shows two cells with different flow direc-
tions. Therefore, the flow seen from the top does
not have a well-defined structure. Closer to the

growth interface, the counterclockwise flow seems
to be more clear. Nevertheless, as the interface
becomes flat, the flow pattern is also changed. The
orientations for the figures in Fig. 2 will be used
for the rest of study, unless otherwise stated.

The maximum melt velocity varying with the
rotation speed is further illustrated in Fig. 3 (open
symbols), where the results of Friedrich et al. [1]
(filled symbols and solid lines) are also included
for comparison. We also perform calculations for
gallium melt (both the free-swing and horizontal
configurations). The comparison with the previous
study is also shown in Fig. 3. As shown, they are
all in good agreement. The solid lines in Fig. 3 are
from the scaling analysis of Friedrich et al. [1]. As
shown for the free-swing case of Ge, there is a
minimum of convection at about 20 rpm. This is
supposed to be the so-called magic-g level having
the least axial dopant segregation. At this critical
rotation rate, the Coriolis force balances the two
gravitational forces. Beyond this value, the cen-
trifugal force becomes dominant and enhances the
convection.

For the case with a flat bottom, there is no flow
at 0 rpm (at y ¼ 01 or vertical orientation) because
the gravitational force is perfectly antiparallel to
the thermal gradient. Therefore, as shown at the
lower plot of Fig. 3, the maximum velocity

Fig. 2. Calculated results for small interface deflection (fixed) similar to the ones used by Friedrich et al. [1]: (a) 0 rpm (y ¼ 01);

(b) 40 rpm (y ¼ 63:321); (c) 80 rpm (y ¼ 82:891).
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increases with the rotation first and then decreases
before the centrifugal force becomes dominant. On
the other hand, the flow speed in the horizontal
configuration, shown at the top of Fig. 3, de-
creases monotonically with the rotation speed. In
this case without rotation, convection is quite
strong because gravity is perpendicular to the axial
thermal gradient. The maximum melt velocity is
more than one order of magnitude higher than
that in the vertical case. Nevertheless, in this
configuration the flow in the Ga melt is still stable.
However, for the 2-cm Ge growth oscillatory flows
can be easily induced, which will be illustrated in
Section 3.2.

3.2. Interface deflection and segregation

As we allow the interface to deform using the
crystal thermal conductivity reported in the
literatures (e.g. [9,15]), the interface becomes much
more concave toward the melt. This is typical for a

linear heating profile [15]. For the free-swing
configuration, the distortion of the isotherms and
also the bending of the interface are small due to
the weaker flow and the small Prandtl number
(0.00715). However, for the horizontal case the
interface deformation is significant. Fig. 4 shows
the effects of rotation on the melt flow and the
interface shape for the horizontal configuration
(y ¼ 901). The ampoule pulling speed is set to
22 � 10@4 cm=s. Without rotation the flow is
unsteady and only a snap shot is shown in Fig. 4a.
The oscillation is quite random and the periods are
smaller than 1 s. As shown, significant buoyant
flow is induced because gravity orientation is
perpendicular to the thermal gradient. The flow
in the x2y plane is mainly in clockwise direction.
The isotherms and also the interface shape are
significantly distorted by the flow. Due to the
unsteady nature, the flow near the centerline is not
stable. Furthermore, the flow seen from the
bottom (at the x2z plane) does not remain
symmetric about the centerline due to nonlinear
symmetry breaking. The maximum melt speed is
about 30 mm/s.

As the rotation speed is increased to 30 rpm, the
flow becomes weaker and stable. Now the max-
imum melt velocity is only 1.79 mm/s. As shown in
Fig. 4b, the distortion of the isotherms is greatly
reduced. As a result, the interface becomes almost
axisymmetric. Interestingly, the flow structures at
both views at 30 rpm turn out to be similar to the
ones shown in Fig. 2b (the free-swing case). Again,
beside the similar flow structures, the maximum
flow speeds of both cases become closer as the
rotation speed is further increased.

For the free-swing configuration, similar calcu-
lations using the real crystal thermal conductivity
are carried out. The calculated results, which are
similar to that of Fig. 2, are shown in Fig. 5, where
the dopant fields (iso-concentration lines) are also
included. Due to the small Pr number and the
weak flow, the effect of flow on the isotherms and
the interface shape for the free-swing case is small.
Therefore, the larger interface concavity, com-
pared with that in Fig. 2, is due to the lower crystal
thermal conductivity used here [15]. Although the
use of the same crystal and melt conductivity gives
a much flatter interface, which is closer to the

Fig. 3. Effects of rotation rate on the maximum melt velocity

for various growth configurations. Present results are indicated

by the open symbols and the filled symbols and the solid lines

are results from Ref. [1].
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experimental observation [1], the value used for
benchmarking [9,10] is adopted here. We believe
that the thermal gradients in the furnace used in
the experiment were higher in the crystal and lower

in the melt. Interestingly, this argument has been
confirmed in Friedrich’s thesis [16]. Besides the
stronger thermal convection for the more concave
interface, the flow and dopant fields based on

Fig. 4. Effects of rotation on the interface, isotherms, and flow patterns for the horizontal configuration (y ¼ 901): (a) 0 rpm; (b)

30 rpm. DT ¼ ðTH@TmÞ=10.

Fig. 5. Effects of rotation rate on the flow and dopant fields for the free-swing configuration: (a) 0 rpm (y ¼ 01,Cmin ¼ 1:82,

Cmax ¼ 12:94); (b) 40 rpm (y ¼ 63:321,Cmin ¼ 2:58,Cmax ¼ 15:27); (c) 80 rpm (y ¼ 82:891,Cmin ¼ 4:58, Cmax ¼ 13:32); bottom figures

are the dopant distributions in the grown crystal. Uamp ¼ @2 � 10@4 cm=s, DC ¼ ðCmax@CminÞ=10, and Keff ¼ 1=/CS.
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different concavities are similar, except that for the
flat interface.

Due to the large Sc value, the dopant transport
is mainly driven by the flow. Therefore, the dopant
fields in Fig. 5 are significantly affected by the
flow. For the case without rotation shown in
Fig. 5a, the dopant distribution in the grown
crystal is axisymmetric. In the figures, Cmin and
Cmax are the minimum and maximum dopant
concentrations in the melt, while Ccmin

and Ccmax

are the minimum and maximum dopant concen-
tration in the grown crystal; Cc ¼ KC. Since the
flow is induced locally near the growth front, the
dopant fields are less distorted and the mixing is
less away from the interface. Due to the slow
growth rate (2� 10@4 cm/s), the effective segrega-
tion coefficient Keff is 0.147 which is not large. As
the rotation rate is increased to 40 rpm, the flow
near the interface is suppressed leading to poorer
dopant mixing. Accordingly, the radial segregation
in the grown crystal increases dramatically. Never-
theless, since the global dopant mixing is im-
proved, the effective segregation coefficient
decreases slightly. In this case, Keff is the largest
at about 20 rpm. However, due to the low growth
rate, we do not anticipate much improvement in
the axial segregation here by the centrifuge. But, as
the growth rate increases, the increase of Keff by
rotation becomes significant, which will be dis-

cussed shortly in Fig. 7. Further increasing the
rotation speed to 80 rpm, both local and global
mixings increase, because a stronger flow arises by
the centrifugal acceleration. As a result, the radial
segregation decreases. Meanwhile, Keff also de-
creases quite significantly. The peak of the dopant
distribution in the grown crystal is located closer
to the axis of rotation (opposite to the y-direction).
Again, as just mentioned, the flow near the growth
interface is counterclockwise. Therefore, the dis-
tortion of the dopant distribution in the crystal is
also driven in the same direction.

Although the flow structures in Figs. 2 and 5 are
similar, the interface shape plays an important role
in the local flow. To illustrate this, we have
performed additional calculations for the flat and
slightly concave interfaces, shown in Fig. 6, for
free-swing rotation at 40 rpm. In Fig. 6a, the
interface shape is fixed (flat). Interestingly, the
flow direction near the growth front is reversed,
both in the x2z and x2y planes. As a result, the
peak dopant concentration appears at the edge,
while the concentration is lower at the center. The
radial segregation is also smaller. As the interface
is allowed to move for kc ¼ km, the interface
deflection is mainly due to the heat of fusion
released by the growth. Then the flow pattern
becomes similar to that shown in Fig. 2b.
Although the maximum melt speed remains about

Fig. 6. Effects of interface shape on the flow and dopant fields (40 rpm, y ¼ 63:321): (a) flat interface (Cmin ¼ 2:48,Cmax ¼ 12:41); (b)

kc ¼ km (Cmin ¼ 1:93;Cmax ¼ 12:32); (c) kc ¼ 0:436 km (Cmin ¼ 2:58,Cmax ¼ 15:27); Uamp ¼ @2 � 10@4 cm=s and DC ¼
ðCmax@CminÞ=10.
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the same, radial dopant segregation increases.
More importantly, its dopant distribution is also
quite different from that in Fig. 6a. As the inter-
face concavity further increases with the use of a
smaller kc, the convection near the growth inter-
face increases, and the radial segregation increases
further as well. But, the segregation pattern
remains similar.

If we further take the case with kc ¼ km for
examination, but with a much higher growth rate
(5:6 � 10@4 cm=s), the results showing the effect of
40 rpm rotation are illustrated in Fig. 7. Due to the
larger growth rate, the calculated Keff ’s are also
larger. As shown in Fig. 7, the global dopant
mixing at 40 rpm is reduced significantly as
compared with that of no rotation. This result is
similar to that observed in the experiment [1].
More interestingly, although our definition of Keff

is different from the previous one [1], which used
the best-fit value to the axial segregation profile,
the ratio (Keff j40 rpm=Keff j0 rpm) appears to be about
the same (about 1.6). Besides the increase of Keff ,
the rotation introduces a severe radial segregation,

i.e., more than 165%. Therefore, the general
feature of the free-swing rotation becomes clear.
Before the centrifugal acceleration becomes
dominant, the radial segregation increases with
the rotation speed due to the poorer mixing. For
the same interface concavity, increasing local
convection seems to be the only way to reduce
radial segregation, but they may reduce Keff

due to the better global mixing. In addition to
the further increase of rotation rate, one can
also tilt the sample from the free-swing angle
(63:321).

For the free-swing configuration, the resultant
gravity is antiparallel to the growth axis or the
axial thermal gradient. Therefore, its flow intensity
is supposed to be the weakest. Away from the free-
swing angle, the convection increases. Fig. 8 shows
the comparison of the flow and dopant fields at
40 rpm for three different angles; the case in
Fig. 5b (at the same free-swing angle) is chosen
for comparison (Fig. 8b). As shown in Figs. 8a and
c, the convection is enhanced with the tilting from

Fig. 7. Effects of rotation on flow and dopant fields for kc ¼ km

and Uamp ¼ @5:6 � 10@4 cm=s: (a) 0 rpm (Cmin ¼ 1:02,

Cmax ¼ 16:04); (b) 40 rpm (y ¼ 63:321,Cmin ¼ 1:01,Cmax ¼
23:49).

Fig. 8. Effects of tilt angle on flow and dopant fields: (a) y ¼
53:321 (Cmin ¼ 3:45,Cmax ¼ 14:42); (b) y ¼ 63:321 (free-swing

angle) (Cmin ¼ 2:58,Cmax ¼ 15:27); (c) y ¼ 73:321 (Cmin ¼ 2:91,

Cmax ¼ 13:18); O ¼ 40 rpm and Uamp ¼ @2 � 10@4 cm=s.
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the free-swing angle. As a result, due to the better
global dopant mixing, Keff and radial segregation
decrease. More importantly, with a smaller angle,
the centrifugal acceleration is more perpendicular
to the axial gradient. As a result, its effect is more
obvious (similar to the horizontal one). On the
other hand, besides the stronger convection, the
larger tilt angle gives a different segregation
pattern in the grown crystal.

3.3. Rotation about the growth axis

So far, we have illustrated the effects of rotation
on the global (axial) and local (radial) dopant
segregations. Indeed, operating the growth at the
so-called magic-g level gives a weaker convection
and thus poorer global mixing. As a result, one
may expect a larger Keff and thus smaller axial
segregation (if the growth distance is long enough,
i.e. much greater than D=Uamp). Unfortunately, we
have found that the radial segregation at this
critical rotation rate turns out to be larger due to
the poorer local dopant mixing near the growth
interface. Therefore, if one wants to control the
growth with a small radial dopant segregation,
while keeping a larger Keff , he needs to control the
growth interface to be flat or convex. Indeed, this
is feasible by modifying the heating profile.
Recently, Lan [7] has shown numerically using a
2D model that rotating the sample about the
growth axis may be a better way to keep a high
Keff value while reducing radial segregation. Since
in his study the axial gradient is large, being
501C=cm, the centrifugal acceleration can contri-
bute more. In our case here, the axial thermal
gradient is smaller (101C=cm), but the diameter is
twice as large as his. Therefore, we anticipate that
a similar result may be obtained.

Fig. 9 shows the effects of rotation rate for this
configuration. As shown, flow is suppressed most
effectively at about 80 rpm. In fact, even at only
40 rpm, this configuration is more efficient than the
free-swing one in flow suppression; the highest
melt velocity is 0.12 mm/s in Fig. 9a, as compared
with 0.56 mm/s in Fig. 5b. More interestingly, at
80 rpm shown in Fig. 9b, the dopant distribution is
almost the same as the diffusion-controlled one.
On increasing the rotation speed to 160 rpm, the

flow speed increases indicating that the centrifugal
acceleration becomes important near the ampoule
wall. The radial segregation is improved, while Keff

only decreases slightly.
In Fig. 10, we put the maximum melt speeds at

different rotation rates from the previous calcula-
tions together. We can find that rotating the
sample about the growth axis indeed suppresses
the convection more effectively than the free-swing
one. The slope of the melt speed versus rotation
rate is @1 (or @1

2 in terms of Ta number). This
scaling is also shown numerically by Lan [7] for the
damping effect by the Coriolis force. The weakest
flow for axial rotation appears at about 80 rpm.
The corresponding radial segregation (left scale)
and Keff (right scale) are shown in Fig. 11. Again,
rotation about the growth axis gives a smaller
radial segregation, but larger Keff . The slow
reduction of Keff for the rotation about the growth
axis is also due to the much smaller acceleration
contribution in this configuration. Therefore, it

Fig. 9. Effects of rotation rate on flow and dopant fields for

rotation about growth axis: (a) 40 rpm (Cmin ¼ 1:24,

Cmax ¼ 14:05); (b) 80 rpm (Cmin ¼ 1:22,Cmax ¼ 12:59);

(c) 160 rpm (Cmin ¼ 1:28,Cmax ¼ 11:91); Uamp ¼ @2�
10@4 cm=s.
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may be concluded that rotating the system about
the growth axis may be a better way for the
operation if one wants to take the advantages of
the centrifuge.

4. Conclusions

In this study, we performed for the first time a
self-consistent simulation of gradient-freeze crystal
growth in a centrifuge. In addition to the heat
transfer and melt flow, the interface shape and
radial dopant segregation are also considered for
various growth configurations. Detailed bench-
markings with previous calculations are performed
and good agreement is found. For the free-swing
configuration, increasing rotation rate suppresses
convection before the centrifugal acceleration
kicks in. For the horizontal configuration, the

flow speed decreases monotonically with the
rotation speed and as a result, the unstable flow
is suppressed. Especially, for the free-swing con-
figuration, a condition for a minimum convection
is found, where the Coriolis force balances the
gravitational ones. Although a larger effective
segregation coefficient is found at the critical
rotation speed, the poorer mixing near the growth
interface can induce severe radial segregation.
Minimizing the radial segregation would require
reducing the interface concavity or the growth
rate. Interestingly, we have found that rotating the
system about the growth axis may be a better way
to control both the axial and radial segregation for
the growth with a concave interface and this is also
consistent with previous 2D calculations. Never-
theless, further numerical simulation for the whole
growth as well as the experimental verification is
necessary, which will be carried out in the near
future.

Fig. 10. Effects of rotation rate on the maximum melt velocity

for the free-swing and rotation-about-axis (Rarm ¼ 0 cm and

y ¼ 01) configurations; the ones from Fig. 2 have a smaller

interface deflection.

Fig. 11. Effects of rotation rate on radial segregation (left scale)

and effective segregation coefficients (right scale) for the

free-swing and rotation-about-axis configurations; DCc ¼
ðCcmax

@Ccmin
Þ. The ones from Fig. 2 have a smaller interface

deflection.
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