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Abstract

The growth competition of two grains, with orientations (110) and (100), during directional solidification of silicon is simulated by
using a phase field model. The two-dimensional simulations show two distinct competition mechanisms, with either interfacial or kinetic
dominance, depending on the undercooling. At low undercooling, the interfacial effect is dominant so that (110) grain grows laterally,
expelling the other grain. On the other hand, at high undercooling, the grain competition follows the same pattern at the beginning, but
the (100) grain eventually becomes dominant, expanding its domain. In addition, the facet vanishing process and the dihedral angle evo-
lution are discussed. The simulated results and phenomena are consistent with the experimental observations of Fujiwara et al. [Fujiwara
K, Obinata Y, Ujihara T, Usami N, Sazaki G, Nakajima K. J Cryst Growth 2004;266:441] and the analytical predictions of Atwater
et al. [Atwater HA, Thompson CV, Smith HI. J Mater Res 1988;6:1232].
© 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The crystal growth of polycrystalline silicon (poly-Si)
from the melt has become an important subject in the pho-
tovoltaic industry because of the increasing market share of
poly-Si solar cells. Because the grain size and orientation
dramatically affect the minority carrier lifetime and thus
the conversion efficiency, control of the grain growth behav-
ior, especially grain competition, is critical [1-4]. Fujiwara
et al. [1] observed the silicon melt growth starting from a
bicrystal seed in (100) and (111) orientations. They found
that the cooling rate affected the grain growth behaviors sig-
nificantly. At low cooling rate (~1 K min~!), the planar
interface was observed both on (100) and (111) grains.
The (111) grain grew laterally to (100) diminishing the
(100) grain during the solidification. However, at a much
higher cooling rate (~30 K min"'), the (100) grain grew
faster than the (111) grain and gradually eliminated the
(111) grain. Fujiwara et al. [1] proposed that the behavior
at the lower cooling case was dominated by the force
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balance at the grain boundary tri-junction; the grain with
a lower surface energy will be dragged by the higher one.
For the higher cooling case, Atwater et al. [2] proposed
the relative growth rates of the grains as the main factor
determining growth behavior; the faster grain wins the com-
petition and occupies the space during growth. In addition
to the grain competition, in the experiments by Fujiwara
et al., macro-steps also appeared from the (100) interface
at high cooling rates, while the (11 1) grain remained planar.
These macro-steps on the (100) grain, having various sizes
and derivates from the (111) face at unsteady state, grow
with time, and only those composed of the (111) face
remained at steady state [3]. Simulation of these experi-
ments could be useful, and provide a foundation for the
large-scale modeling of poly-Si solidification. However,
the simulation of grain growth remains a great challenge
in solidification, and no such a simulation showing the
key experimental features has been carried out so far.

The phase field model (PFM) has been used extensively
to study the microstructural dynamics of solidification (e.g.
[5,6]), but generally without considering the grain bound-
ary effects. The modeling of polycrystalline material
requires the treatment of crystallographic orientations
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and interfacial energies, but very few models have been
proposed. Indeed, in polycrystalline phase field modeling,
the complicated physical effect of crystalline orientation
on solidification and grain interactions needs to be consid-
ered. Morrin et al. [7] proposed a free energy density func-
tion with n wells for n different orientations. Steinbach
et al. [8] developed a multiphase field model and succeeded
in modeling the solidification of eutectic and peritectic
materials. However, their models were not able to keep
the rotation symmetry of the free energy potential in the
modeling of grain boundary formation and dynamics. By
proposing an orientation field 6, which describes the local
grain orientation, Kobayashi et al. [9,10] made a successful
attempt, based on a rotation-invariant free energy func-
tion, at the phase field modeling of grain boundaries.
Warren et al. [11] further extended the model to the solid-
ification of polycrystalline materials. Recently, nucleation
phenomena have also been considered by Granasy et al.
[12,13]. For a material having a highly anisotropic interfa-
cial energy and a tendency to form facets, such as silicon,
special attention is needed. By using a regularization
method, Eggleston et al. [14] have simulated successfully
the crystal shape with corners and edges. Although suitable
PFMs have been proposed for the solidification of poly-
crystalline materials, there are some computational issues.
One of the most critical problems in phase field simulation
arises from the diffusive interface thickness . The choice of
0 needs to be small enough so that the sharp-interface limit
can be approached. However, such a value, which is usu-
ally of the order of the microscopic capillary length d, is
too small from the simulation point of view. With the use
of adaptive meshes [15,16], the computational efficiency
can be greatly improved, and this can be particularly useful
for polycrystalline solidification having grain boundaries.

In this paper, we present adaptive phase field modeling
of poly-Si solidification. During simulation, the mesh is
adaptively refined or coarsened with the phase field vari-
able and variable gradients. The directional solidification
of silicon from a bicrystal seed is focused, and the effect
of undercooling is discussed. The PFM and the adaptive
numerical scheme used are described briefly in Section 2.
In Section 3, the validation of the present PFM by an ana-
Iytical solution is presented through grain boundary groove
simulations. Section 4 is devoted to the simulations of the
competitive melt growth of silicon, where the analysis
and discussions of the growth behaviors are also given.
Finally, short conclusions are given in Section 5.

2. Phase field model
The present PFM is developed following the work of

Warren et al. [11]. The free energy function F in a constant
volume V is postulated as

2 2
F=/ lf(dnT)+83‘”|V¢|2+s¢2|v0|+%¢2|v0|2 av, (1)

where ¢ is a phase field variable representing the crystalline
state as ¢ = 1 and the melt state as ¢ =0, and the param-
eter &4 is used to measure the anisotropic effect. The orien-
tation field variable 6 measures the local orientation of the
crystal with respect to the fixed coordinate system, and lies
in the domain of —n < 6 < n. The Helmholtz free energy
density f{¢, T) takes the form

FOT) = pl@) "+ WL~ §) @)
where T is the temperature, Ty, the melting point, and W'is
the height of the free energy potential barrier between bulk
phases and p(¢) = ¢>(10 — 15¢ + 6¢%). The parameter s
measures the energy cost due to the misorientation at the
grain boundary.

To model the anisotropic crystal shape, the gradient
energy coefficient &, needs to be further modified. As pro-
posed by Kobayashi [17], as a function of the crystalline
orientation , which is defined as the angle between the
interface normal and the reference axis, the coefficient ¢,
or a crystal with 4-fold symmetry can be written as

gp() = esn() = Ey[1 + scos (Y — ih)]. 3)

The crystalline orientation 1 is calculated by
Y= tanfl(q')y/qu), where the subscript in the phase field
variable denotes the first derivative with respect to the spa-
tial coordinate. However, when the anisotropic strength ¢ is
greater than 1/15, missing orientations occur and the crys-
tal shape obtained from the anisotropic function is not
realistic where the reciprocal y-plot becomes concave. To
overcome this, and at the same time to reveal the edges
and corners for silicon crystals, we adopt the modified gra-
dient energy coefficient &, within the missing orientations
as proposed by Eggleston et al. [14]:

U7
" cos(y,)

where /,, is the first missing orientation, and is calculated
from the following relationship:

on(¥m)
oy
Finally, through the variation principle that minimizes

the total free energy, the evolution of the phase field, orien-
tation field and temperature variables can be derived:
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In the above equations, M, and M, are the mobility of the
phase field and the orientation field variables, respectively.
L is the latent heat, C, the heat capacity and o the thermal
diffusivity. For simplicity, we also assume equal thermal
diffusivity in all phases in the simulation. To link the
PFM parameters with the realistic physical properties,
the parameters used in the WBM model [5] are taken:

&y = V600, 9)
o
=3 1
=32, (10)
_:ukTm

where o is the solid-liquid surface energy.

To facilitate the simulation, the governing equations are
further represented in dimensionless form, where the length
is rescaled by the characteristic length /, and the time ¢
rescaled by [;/x. The dimensionless temperature u is
defined by (T—T,,)/Ty unless otherwise stated. Fig. la
shows the computational domain of the directional solidi-
fication of bicrystalline silicon. A bicrystal seed with differ-
ent crystalline orientations is placed in front of the
undercooled silicon melt. Because the simulation is two-
dimensional, it is assumed that the (111) and (110) orien-
tations are the same. The symmetry boundary condition is
applied to the both sides of the domain, while at the top the
temperature is given; the lower thermal boundary is set to
be adiabatic. The physical properties of silicon used in the
simulation are listed in Table 1. The interface thickness is
taken as 4.1 x 107®m in all simulations. According to
Wheeler et al. [5], the interface thickness has to be of the

a =0 u=-A b

Undercooled melt

Undercooled
Melt

Symmetry
Symmetry

<110>

<100>

ks

X
Grain 1 Grain 2
Adiabatic W
¢=1
Fig. 1. (a) A schematic directional solidification of silicon bicrystal in

undercooled melt. (b) A sample adaptive mesh in silicon growth
simulation.

Table 1

Physical properties of silicon

Properties  Name Value References
o Thermal diffusivity (m?s™") 28 %107 [17]

o Surface energy (J m 2 0.59* Estimated
L Latent heat (J m™>) 415%x10°  [17]

Lhe Kinetics coefficient (m K~'s™")  0.02° Estimated
g Anisotropy strength 0.25 Estimated

% The value of the surface energy is estimated from the equation
5 =o(V2)'? /L where jg =0.525 [15].

® The kinetic coefficient we used is simply chosen by assumption; how-
ever, the order of the value is close to those evaluated from the experi-
ments and the simulations [16-18].

order of capillary length (of the order of 107°m) to
approach the sharp-interface solution. However, this will
greatly increase the computational cost. Hence, a much
thicker interface is adopted, and the comparisons between
theory and the simulations thus are merely qualitative.
Nevertheless, we anticipate that certain physical features
of the experiments could be revealed through the simula-
tion. The governing equations with the boundary condi-
tions are solved by an adaptive finite volume method
[15,16]. A sample adaptive mesh during simulation is
shown in Fig. 1b. As shown, the mesh is refined to give bet-
ter numerical resolution near the interfaces, while grids are
coarser in the area without significant physical features.
The criterion for the mesh refinement is based on the phase
field variable in the range of 0.05 < ¢» < 0.95, and the min-
imum dimensionless mesh size Ax = 0.0625 is used. Before
the simulation for silicon melt growth, which will be dis-
cussed in Section 4, is presented, we shall first simulate
grain boundary grooving problems. Through the compari-
son with the analytical solutions, the adaptive PFM simu-
lation can be validated.

3. Grain boundary grooving

The grain boundary groove is formed during solidifica-
tion between two adjacent grains. The groove shape at
the junction is a force balance of the interfacial tensions.
To obtain a static groove shape, a linear temperature pro-
file having a gradient G of 1.25 x 10° K m™' is given; a
domain 16 pm x 8 pum is used. Because once a steady state
has been reached, only the static shape is of interest, the
release of latent heat does not play a role. The characteris-
tic length /, is 2 pm here, which is calculated from (%)1/2
[18]. Two examples, with isotropic and anisotropic interfa-
cial energies, are discussed in the following sections.

3.1. Dihedral angle

Again, as just mentioned, the dihedral angle is a result of
the force balance at the tri-junction. For simplicity, we
have first assumed that the interfacial energy is isotropic.
Therefore, the analytical solution of the dihedral angle 04
could be easily obtained from Young’s law as
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1 Veb
04 = 2cos 1<i>, 12
a 2, (12)
where 7,4y, is the grain boundary energy and yg is the solid—
liquid surface energy, i.e. . y4, can be calculated from the

derivation in Ref. [11]:

w
o =Y (1= ), (13)
¢min :; (14)
(1 +iA9>

Three cases with different grain boundary energies are sim-
ulated: (a) Y5 = 751, (b) 7gp = 1.5y and () 75 = 1.95y4. In
addition, to determine the dihedral angle from simulated
results, the position of ¢ = 0.5 is taken for measuring the
angle; the dihedral angle is obtained from the intersection
of the grains. Fig. 2 shows the simulation results, and the

0 2 4 6 8
y

Fig. 2. Simulations of isotropic grain boundary groove: (a) g, = 741, (b)
Yeb = 1.5741, (€) 7gb = 1.9574. In each figure, melt is at the upper half and
the crystals are at the lower half. As predicted by Young’s law, the
dihedral angle will decrease as the grain boundary energy increases.

Table 2
Comparison of calculated dihedral angles with analytical solutions

Dihedral angle comparison

PablVs1 1 1.5 1.95
Analytical 118° 78° 25°
Simulation 119° 76° 24°

comparison of the calculated dihedral angles with the ana-
lytical solutions is shown in Table 2. As shown, they are in
good agreement; the trivial difference is due to the diffusive
interface assumed in the PFM.

3.2. Anisotropic grain boundary groove

We have obtained a good agreement between the simu-
lated results and the analytical ones for the isotropic grain
boundary energy. We now need to further check the agree-
ment for the case with highly anisotropic surface energy.
The analytical solution for the grain boundary groove with
highly anisotropic surface energy is also available [18] as
the following:

T [V %y 1) sin
=— g+ —5 dys, 15
X GL 0, ('Y 1 ad/z l// ( )
2T 0 2
m : Vsl
= - ~ - . 1

The above equations are solved in two intervals, i.e.
0 <y <0;and 6, <Y < i where 0, and 0, are orienta-
tions very close to the kink orientation. In Eq. (15), the
dihedral angle 04 can be obtained from Herring’s relation

[19]:

a’))sl :
ygb—2aw siny — 2y, cosyy = 0. (17)

In order to prevent the tilting of the grain boundary due to
unequal horizontal forces at the junction, the crystal orien-
tations of the grains are chosen to have the same value but
with an opposite sign. Three cases with different crystal ori-
entation Y, are simulated: n/6, n/4 and w/3. The grain
boundary energy is fixed at 1.99 g, so that only the surface
energy is varied for all three cases. The anisotropic strength
¢ =0.08 is adopted. The reason for not using a higher ¢ as
listed in Table 1 is to avoid the oscillating wave, so that a
static shape can be obtained by simulation for comparison.
Fig. 3 shows a comparison of the simulated results with the
analytical solutions. Again, the calculated groove shapes
are in good agreement with the analytical ones. This good
agreement reinforces our confidence in the simulation of
bicrystal problems.

4. The competitive growth of silicon grains
The simulation of the competitive growth of silicon

grains, as illustrated in Fig. 1a, is presented in this section.
The following values are chosen: coupling constant
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Fig. 3. Comparison of calculated anisotropic grain boundary groove
shape with analytical solution at ¢ = 0.08.

s =2 J m 2 and characteristic length /, = 2.1 x 10~% m; the
domain size is taken as 42 um x 16.8 pm. In addition, the
orientation field mobility My is set to 0.05 M, because
the time scale of solidification is much smaller than the
grain boundary dynamics. In other words, evolution of
the crystal orientation is much slower than solidification.
It should be pointed out that the domain size and the sim-
ulation time are three orders of magnitude smaller than
those in the real experiments [1]. In view of the diffusive

Undcrcooling= 1.685K

1.6ms
'y

42pm

¥
l6 8um

6.4ms

interface kinetics, the characteristic time for silicon growth
is about 107" s; therefore it is too costly to simulate the real
experiments, which lasted a few minutes. In fact, since the
physical features are the focus of this study, simulation
using smaller length and time scales should reveal the same
physical phenomena. Two undercoolings, A = 1.685 K/T,,
and A=6.74K/T,,, are simulated, and the simulated
results for the evolution of grain growth are shown in Figs.
4 and 5, respectively. As shown, the interface morphology
and the grain competition are consistent with the observed
ones [1]; the (110) grain prevails at low undercooling, while
the (100) grain becomes dominant at high undercooling.
Further discussion of the morphology and grain competi-
tion is given in the following sections.

4.1. Morphology

The evolution of morphology for A =1.685 K/T,, and
A=6.74K/T,, extracted from Figs. 4 and 5 are put
together for comparison in Fig. 6a and b, respectively. As
shown, with a smaller undercooling at A = 1.685 K/T,,
the interface of the (110) grain remains planar, but small
edges emerge from the (100) interface. The difference in

3.2ms

4.8ms

9.6ms 11.2ms

Fig. 4. Simulation of Si melt growth at A = 1.685 K/Tp,.
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Undercooling =6.74K

0.8ms
x

42pm

!6 8um

3.8ms

2.4ms

l.6ms

4.6ms 5.6ms

Fig. 5. Simulation of Si melt growth at A = 6.74 K/T,,.

<|10> <100>

5.6ms
A
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<110> <100>

11.2m
5
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F 3
¥

16.8pm 16.8um

Fig. 6. Evolution of the morphology of competitive growth at different
undercoolings: (a) 1.685 K/T,, and (b) 6.74 K/T,,.

the morphology can be explained by the grain surface
energy, which stabilizes the solid-liquid interface. Appar-
ently, the (110) surface energy plays a stronger role in

stabilizing the interface. These edges appearing in the
(100) surface are smaller than 1 um, and the sizes remain
about the same during solidification at A =1.685 K/T},.
However, the situation is slightly different for
A =6.74 K/T,, in that these edges coarsen into larger fac-
ets. Furthermore, the intersection angle of these edges is
also changing during solidification. As the edges become lar-
ger, only those with an angle close to 70° remain, as shown in
Fig. 7a. This could be explained by the minimization of the
surface energy. When the missing orientations disappear,
the equilibrium edge angle is obtained. This can be further
explained by the equilibrium crystal shape grown from a seed
in an undercooled melt; the anisotropic strength ¢ is greater
than 1/15, so that the edge and angle appear in the range of
the missing orientations [14]. Fig. 7b shows a sample simula-
tion of the equilibrium crystal shape. As shown, its equilib-
rium edge angle is about 70°.

Interestingly, the vanishing of the facet, leading to big
(110) facets, or the coarsening process, is suppressed by
the surface energy at low undercooling, but becomes signif-
icant at high undercooling. This is consistent with the
experimental observations. Nevertheless, it should be
pointed out that the crystal shape with edges obtained
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Fig. 7. (a) Coarsening of edges at A = 6.74 K/Ty,. (b) Equilibrium shape
of the crystal at ¢ = 0.25.

using the present anisotropic function, though similar to
the experimental results, is not the case for the faceted mor-
phology; they are not totally flat surfaces. According to
Wulff’s theorem, the faceted portion of the crystal corre-
sponds to the cusps in the polar plot of the surface energy,
but the function we use here is a smooth function. In other
words, the simulation based on the smooth function leads
to curved edges instead of facets. However, the curved sur-
face at high anisotropic strength looks quite similar to a
facet.

4.2. Force balancing at the groove root

According to Fujiwara et al. [1], growth behavior at low
undercooling is dominated by the force balance at the grain
boundary root. In other word, the grains with lower sur-
face energies remain. To check this, we apply Herring’s
relation [19] to analyze the force balance in the groove dur-
ing growth at A = 1.685 K/T,,. Herring’s relation describes
the interfacial tension balance at the junction for aniso-
tropic interfacial energies:

2 . oy,

pwcosf =3 (vi sing, - g1 coswi), (18)
i=1 i
2 6y

Yep SN = Z (yicoswi +ﬁ sinu,b,-). (19)
i=1 i

In the above equations, the grain boundary energy is as-
sumed to be isotropic, where the angle f is defined as the
tilt angle of the grain boundary with the x-axis. It should
be pointed out that by definition the interfacial tension is
equivalent to the surface energy. For the horizontal part
of the force, we have taken the force as positive when it
is pointing to the y-axis, which here is the direction of

the (100) interfacial tension. For the vertical part, the force
is positive when it is towards the positive x-axis. The over-

all interfacial tension is defined by |XF|=.\/F; + F?,

where F;, and F, are the overall horizontal and vertical
interfacial tensions, respectively. The decrease in the over-
all interfacial tension, in other words, corresponds to the
minimization of the surface energy.

Fig. 8 shows the overall horizontal and vertical interfa-
cial tension evolutions at A = 1.685 K/T,,,; the total interfa-
cial tension is also included. As shown, the overall
horizontal tension is much greater than zero, indicating
that the interfacial tension on the (100) face is significantly
larger than that on the (111) face. The value is decreasing
with time as force relaxes, consistent with the experimental
observation [1]. For the overall vertical interfacial tension,
the value reduced to about —0.6 J m~2 (in the negative x-
direction). This can be easily understood in terms of the
reluctance of the grains to grow, so that the interfacial ten-
sion is a suppressing force. However, because the underco-
oling is sufficiently large, solidification still proceeds [14].
Nevertheless, from the plot of the overall interfacial tension
shown in Fig. 8, the value is decreasing with time. Since the
thermal driving force remains approximately the same in
the simulation, the horizontal interfacial is indeed the key
factor in determining the trend of the tension evolution.
In other word, the decrease in the interfacial tension indi-
cates the minimization of the surface energy. Eventually,
the gain having a lower surface energy becomes dominant
in the growth, while the groove shape reaches an
equilibrium.

A similar interfacial force balance is also carried for high
undercooling at A = 6.74 K/T,,, and the interfacial tension
balance results are given in Fig. 9, again for the component
and overall interfacial tensions. As shown in Fig. 9, the
evolution of the interfacial force balances is quite different
from the previous one. In Fig. 9, the horizontal and overall
interfacial tensions increase at the beginning, and then
gradually decrease. According to the discussion in Ref.
[2], instead of the interfacial tension balance at the groove,
the growth at high undercooling is dominated by the rela-
tive growth rates among the grains. Hence, we should first

2
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Fig. 8. Plot of the overall force component vs. time at A = 1.685 K/T,,
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g. 9. Plot of the overall force component vs. time at A = 6.74 K/T,.

address the growth rate anisotropy in the present PFM.
According to the work by Kobayashi [17], modifying the
gradient energy coefficient as an orientation function in
the PFM also leads to an anisotropic kinetic coefficient, i.e.

6M¢8¢L

=——— . 20
For a crystal with 4-fold symmetry in two-dimensions, the
anisotropic kinetic coefficient is maximum in the (100)
direction (0 =0°) and minimum in the (110) direction
(0= 45°). Atwater et al. [2] further explained that the
growth direction of the grain boundary could be found
from the anisotropic growth rates:
sing = Uslower grain (21)

)
Ufaster grain

where o is the angle between the grain boundary and the
slower growing grain surface. For our case here, initially
the growth is affected by the interfacial tension balance
so that the grain boundary is pulled toward the right as
in the case of low undercooling. However, since the effect
of kinetics becomes significant at high undercooling, the
faster growing grain ((100)) forces the dihedral angle to
decrease. As a result, the resultant interfacial tension in-
creases, instead of relaxing, until the grain boundary is
tilted toward the (110) grain. The tilting to the left approx-
imately follows the relationship in Eq. (21). Once the grain
boundary tilting angle « is established, the interfacial ten-
sion start to relax and eventually an equilibrium groove
will form.

We also confirm this via force balance analysis of the
experimental results in Ref. [1]. For the growth experiment
at a cooling rate of 30 K min~!, the growth rate of each
grain was approximately constant, so that the growth
direction of the grain boundary remained about the same.
By applying Herring’s relation to the experimental results,
we find that the overall interfacial tension decreases from
about 0.7 to 0.15J m~? within the growth period. There-
fore, we can conclude that the interfacial tension balance
at A = 6.74 K/T,, initially is destroyed by the kinetic effect
and the interfacial tension balancing restarts when the
kinetic effect no longer dominates the growth behavior.
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Fig. 10. Evolutions of the dihedral angle deviation from the final state: (a)
low undercooling at 1.685 K/T,, and (b) high undercooling at 6.74 K/Tp,.

Furthermore, the evolution of the dihedral angle can
also be examined. As we just illustrated, the interface
energy eventually decreases with time in both cases. In
other words, the dihedral angle between two grains should
also reach an equilibrium. Since, we have no actual balance
angle, we take the final one at the end of simulation as a
reference. Then, the evolutions of the angle deviating from
the final one can be examined as shown in Fig. 10a and b
for low and high undercoolings respectively. For low und-
ercooling (A = 1.685 K/T,,,), since the total process is dom-
inated by the interfacial energy, the same trend is found for
the angle deviating from the final one as shown in Fig. 10a.
This is also consistent with the experimental observation in
Ref. [1]. On the other hand, for the high undercooling case
(A =6.74 K/T,,) as shown in Fig. 10b, at the beginning, the
balance is destroyed by the kinetic effect. However, once
the grain competition has reached to a certain extent, the
angular deviation from the final state starts to decrease,
showing the same trend as the total interfacial energy after
the peak.

5. Conclusions

In this study, phase field simulation is carried out for the
competitive growth of silicon grains. The orientation field
variable is used to treat polycrystalline solidification, and a
high anisotropic function is adopted to simulate the edges.
The present model is first validated through grain boundary
groove simulations. The force balance test and the equilib-
rium groove shape from the simulation are in good agree-
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ment with the analytical results. Furthermore, competitive
growth of silicon grains is simulated, and the competition
between the interfacial and kinetic effects is illustrated. The
undercooling is found to be the most important factor for
the competition and the simulation results, which are consis-
tent with the experimental observation and model predictions.
Although the present phase field simulation is primitive and
qualitative, it indeed provides deeper physical insights into
the polycrystalline crystal growth and grain control.

References

[1] Fujiwara K, Obinata Y, Ujihara T, Usami N, Sazaki G, Nakajima K.
J Cryst Growth 2004;266:441.

[2] Atwater HA, Thompson CV, Smith HI. J Mater Res 1988;6:1232.

[3] Fujiwara K, Nakajima K, Ujihara T, Usami N, Sazaki G, Hasegawa
H, et al. J Cryst Growth 2002;243:275.

[4] Aoyama T, Kuribayashi K. Acta Mater 2000;48:3739.

[5] Wheeler AA, Boettinger WJ, MacFadden GB. Phys Rev A
1992;45:7424.
[6] Loginova I, Amberg G, Argen J. Acta Mater 2001;49:573.
[7] Morin B, Elder KR, Sutton M, Grant M. Phys Rev Lett
1995;75:2156.
[8] Steinbach L, Pezzola F, Nestler B, Sesselberg M, Prieler R, Schmitz
GJ, et al. Physica D 1996;94:135.
[9] Kobayashi R, Warren JA, Carter WC. Physica D 1998;119:415.
[10] Kobayashi R, Warren JA, Carter WC. Physica D 2000;140:141.
[11] Warren JA, Kobayashi R, Lobkovsky AE, Carter WC. Acta Mater
2003;51:6035.
[12] Granasy L, Borzsonyi T, Pusztai T. Phys Rev Lett 2002;88:206105.
[13] Granasy L, Borzsonyi T, Pusztai T. Phys Rev Lett 2007;98:035703.
[14] Eggleston JJ, McFadden GB, Voorhees PW. Physica D 2001;150:91.
[15] Lan CW, Liu CC, Hsu CM. J Comp Phys 2002;178:464.
[16] Lan CW, Hsu CM, Chang YC. Phys Rev E 2002;65:61601.
[17] Kobayashi R. Physica D 1993;63:410.
[18] Voorhees PW, Coriell SR, McFadden GB. J Cryst Growth
1984,67:425.
[19] Herring C. The physics of powder metallurgy. New York: McGraw-
Hill; 1951. p. 143.



	Phase field modeling of growth competition of silicon grains
	Introduction
	Phase field model
	Grain boundary grooving
	Dihedral angle
	Anisotropic grain boundary groove

	The competitive growth of silicon grains
	Morphology
	Force balancing at the groove root

	Conclusions
	References


